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Abstract
The successor representation has emerged as a powerful model for understanding mammalian
navigation and memory; explaining the spatial coding properties of hippocampal place cells and
entorhinal grid cells. However, the diverse spatial responses of subicular neurons, the primary output
of the hippocampus, have eluded a unified account. Here, we demonstrate that incorporating rodent
behavioural biases into the successor representation successfully reproduces the heterogeneous
activity patterns of subicular neurons. This framework accounts for the emergence of boundary and
corner cells; neuronal types absent in upstream hippocampal regions. We provide evidence that
subicular firing patterns are more accurately described by the successor representation than a purely
spatial or boundary vector cell model of subiculum. Our work offers a unifying theory of subicular
function that positions the subiculum, more than other hippocampal regions, as a predictive map of
the environment.

Introduction
The hippocampal formation is intimately linked to episodic memory and spatial cognition1–3 -
functions believed to rely on distinct populations of spatially modulated neurons. Most notably,
these include CA3/1 place cells4 and medial entorhinal cortex grid cells5, as well as several other
cell-types distributed through the hippocampus and associated regions6–9. Collectively, these
neurons, which constitute a representation of self-location, are held to form a cognitive map10 that
supports flexible navigation and reasoning in both physical and abstract spaces11,12.

Compared to CA3/1 and entorhinal cortex, subiculum — the primary output structure of the
hippocampus — has received comparatively little attention. This oversight is surprising given its
computational potential: subiculum contains a larger number of principal neurons with more diverse
morphology than CA3 and CA1 combined13, coupled with extensive recurrent connectivity14,15.
Moreover, subiculum holds a privileged position in the connectome, with dense projections to an
extensive cortical and subcortical network that includes anterior thalamic nuclei, retrosplenial,
medial prefrontal, and entorhinal cortices13,16,17.

To a certain extent, this relative neglect can be attributed to the absence of a clear and unifying
computational role for subiculum. Subicular principal neurons exhibit a diverse menagerie of spatial
responses6, with authors often choosing to emphasise one distinct aspect of their observed activity.
Amongst these, boundary vector cells are perhaps the best known. Initially theorised as an
allocentric input to place cells18, neurons matching this description were subsequently identified in
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subiculum19,20. However, these cells lie downstream of primary CA3/1 projections17, raising the
possibility that they may be derived from place cell activity, rather than contributing to it. Boundary
vector cells are characterised by elongated firing fields that run parallel to boundaries and generally
align with the surrounding environmental geometry20,21. A subsection of these fields also generate
‘trace’ responses that persist after barrier removal8. These characteristics have been construed as
demonstrating a potential role for subiculum in representing and recalling environmental geometry
and physical affordances8,19,20,22.

Further studies have highlighted the role of subiculum in representing movements and trajectory
sequences. For example, subicular neurons have been reported to represent the current axis of
travel23, as well as composite signals of place and head orientation24, specific trajectories25, running
speed25,26, and head direction23,26. Adding to this complexity, Sun et al.9 recently identified subicular
neurons that represent corners — both concave and convex — within an environment.

Unlike subiculum, the simple hippocampal place code has attracted considerable attention from
theoreticians proposing normative and mechanistic models27–30. Recently, predictive coding has
emerged as a powerful framework for understanding hippocampal function and the generation of
neural responses in associated regions31–36. In particular, the successor representation, which
calculates expected future state occupancies37, accounts for how place fields are shaped by both
environmental boundaries and animal behaviour32,38. Importantly, the successor model consolidates
evidence that agent behaviour greatly influences spatial representations39–41, and explains
navigational and search biases observed in humans and rodents performing spatial tasks42,43.

While the successor representation can model spatial responses as long-run predictions over discrete
locations32, it can also be learnt over amalgams of sensory information termed ‘features’ that
correspond to a more plausible neural representation of state38,44. Building on this, recent work has
shown that biological computations within the hippocampus are sufficient to approximate successor
learning45–47. Thus, spike-timing-dependent plasticity48 (STDP) over sequences of place cell firing,
ordered by theta sequences, can sweep into subiculum28,49,50 and provide a physiological mechanism
that rapidly encodes transitions between fields.

Although in previous work the successor representation has been deployed as a model of CA3/1, we
here propose a reconceptualisation based on the position of the hippocampus atop a multi-modal
sensory hierarchy. Thus, place cell responses can be viewed as generalised amalgams of information
from diverse modalities51–53 – corresponding to neural representations of spatial or non-spatial states
depending on the available sensory input. We posit that STDP acting on theta sweeps over these
states, or equivalent computations, yields successor features in the downstream subiculum that align
with its unique anatomical and physiological properties. Furthermore, because rodents exhibit
stereotyped behaviours, such as thigmotaxic running and corner-dwelling, we hypothesise that
successor features based on biologically realistic trajectories, using place cell activations as basis
features, will more closely match the statistics, features, and appearance of subicular representations
than those found in other hippocampal regions.

Here, we test this proposal by comparing predictions from the successor representation model to
two electrophysiological and one calcium imaging dataset recorded from rodent subiculum8,9,21 and
hippocampus54,55. We find that successor features, derived from place cell basis features and trained
on real rodent trajectories, closely resemble subicular spatial responses. Specifically, this simple
model generates corner responses9 and border activations that correspond to boundary vector
cells19,20. We demonstrate that the boundary responses emerging from the successor representation
framework better match the population statistics of subicular boundary cells than predictions
derived from the boundary vector cell model18. Furthermore, we use representational similarity
analysis (RSA)54 to quantify that a successor representation model based on rodent trajectories fits a
composite dataset comprised of three subicular experiments better than alternative models.
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Collectively, these findings support the first unified, computational account of subicular function;
positioning it as a predictive map of the environment, derived from hippocampal inputs.

Results

To investigate whether subiculum implements a successor representation over hippocampal states,
we modelled CA1 as a set of spatially-modulated ‘basis features’, ϕ(st), that resemble the observed
statistics of hippocampal place cells53. Thus, in a rectangular environment, these sparse basis features
vary with location, st, and are instantiated as thresholded 2D Gaussian fields (see Methods) that
increase in size towards the centre of the environment and compress orthogonal to boundaries
(Fig.1a; key results replicated with symmetric, uniform sized Gaussian fields in Supplementary Figure
6). The longest distance rodent trajectory from each of the three datasets8,9,21 was down-sampled to
10-12 Hz (Fig.1b; Methods) and the successor matrix, M, (Fig.1c) was updated at each time point
according to the temporal-difference learning rule:

M←M + α[ϕ(st) + γψ(st+1) − ψ(st)]ϕ(st)⊤

where:

(1)

ψ(st) =Mϕ(st) (2)

are the corresponding successor features.

The population activity of successor features at a given time, ψ(st), constitutes a predictive code that
collectively captures long-run expectations about upcoming spatial states. Thus, these expectations
recapitulate rodent behavioural biases, such as a proclivity to run along boundaries (thigmotaxis) and
dwell near corners. The resultant successor features extend along walls and into corners (Fig.1d left);
ultimately resembling the firing patterns of subicular neurons (Fig.1d right).

Fig. 1 Model pipeline. (a) Biological basis features (place fields) were sampled along real rodent trajectories (b) (N=2458) in square
environments in order to learn the successor matrix, M (c). A representative single trial trajectory in a 100cm square (b) highlights rodent
thigmotaxis and preference for corner dwelling; with 85.7% occupancy in the perimeter versus the equally-sized inner area (mean distance
of animal to nearest wall=11.8cm). Once trained, successor features are formed by the matrix multiplication of M with the population
vector of basis features. (d) Exemplar successor features generated from rodent trajectories (left columns) closely resemble rodent
subicular responses (right columns), here recorded by Sun et al. 2024.
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Boundary responses

We first set out to investigate whether successor features provide a better account of subicular
boundary responses than prior theories - specifically the boundary vector cell model18–20.
Boundary-responsive neurons in subiculum (Fig.2a) are explained in the boundary vector cell model
as having receptive fields that are tuned at certain distances and directions to environmental
boundaries18 (Fig.2b). Conversely, the successor feature model (Fig.2c) proposes that boundary
responses arise from predictable patterns in animal movement; particularly thigmotaxic running
alongside walls56. To quantify these behavioural biases, we segmented each environment into a 3x3
grid (Fig.2d top) and calculated the polar histogram of heading directions in each segment (Fig.2d
bottom). Trajectory heading directions in segments adjacent to boundaries were significantly less
heterogeneous than those in the central portion of the environment (Fig.2e; pairwise t-test between
Kullback-Leibler divergence from uniform distribution for the longest distance trajectory from each
trajectory used to generate successor features, t(2)=-9.97, p=0.010). This means that basis features
spanning the same stretch of wall become highly predictive of one another, giving rise to successor
features that diffuse along boundary edges.

The boundary vector cell and successor feature models make competing and testable predictions
about the morphology of boundary responses in subiculum. Specifically, canonical versions of the
boundary vector cell model propose that vector responses evenly span all directional tunings and
encompass distance tunings sufficient to cover the local environment18,19, in order to provide a
comprehensive and boundary-centred representation of allocentric space. Conversely, rodents’
proclivity to run adjacent and parallel to environmental boundaries means that the successor feature
model predicts subicular responses that align proximal to environmental walls.

To test these two predictions, we adopted the procedure of Muessig et al.21 and fit the boundary
vector cell model to subicular8,9,21 and successor feature data. We simulated N=3120 boundary vector
cells in a square environment for each of the three independent datasets8,9,21, and used vectorial
direction tunings that spanned 0-354° in 6° increments and preferred distance tunings that covered
4-52% of the environment’s dimension in 4% increments. Using an exhaustive search that maximised
the Pearson r correlation between a candidate rate map and the best fitting boundary vector cell
model rate map, we classified and compared the boundary vector cell (BVC) model fits to subicular
data, the successor feature model (SF) built on the longest distance rodent trajectory from each
dataset, and the Gaussian place cell control model (PC). Following 21, a population threshold of r=0.7
was used, classifying 40.1% of N=1285 cells in subiculum as fitting the boundary vector cell model
(Fig.2f), compared to 35.6% and 23.9% of cells in the successor feature and place cell models,
respectively (N=1200 for both). Best fitting correlation values were similar between subicular data
(Fig.2g) and the successor feature model (Fig.2h; t-test following Fisher z-transform: t(2483)=0.057,
p=0.955) with both producing significantly better fits than the place cell control model (Fig.2i; SUB vs
PC, t(2483)=5.67, p<0.001; SF vs PC, t(2483)=6.54, p<0.001).

In line with our previous work21, subicular boundary responses over-represented short-distance
tunings (Fig.2j), and provided a better match to the successor feature model (Fig.2k) than the place
cell control (Fig.2l; pairwise t-test on magnitude of probability density residuals between SUB-SF vs
SUB-PC, t(12)=3.67, p=0.003). Further, following 21, subicular vectorial responses were clustered near
directions orthogonal to environmental walls, such as the cardinal axes of a square arena (Fig.2m).
We quantified this four-fold symmetrical clustering using the Rayleigh test on the quadrupled,
wrapped directional tunings from the boundary vector cell model fits (Rayleigh test for
non-uniformity, v=90.9, p<0.001). These characteristics were matched by the successor feature
model (Fig.2n; Rayleigh test for non-uniformity, v=405, p<0.001; Watson-Williams test of circular
means, SUB vs SF directional tunings, F1,953=0.541, p=0.462), where stereotyped behaviour along
walls, coupled with more heterogeneous behaviour away from boundaries (Fig.2d,e), generated an
absence of long-range and off-axis boundary responses. Conversely, the place cell control model was
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only matched to perpendicular vectorial tunings (Fig.2o; Rayleigh test for non-uniformity, v=287.0,
p<0.001) and less proximal (Fig.2l) boundary distances.

Fig. 2 Successor features produce subicular boundary representations. (a) Boundary-responsive cells in rodent subiculum have previously
been explained by (b) the boundary vector cell model as having receptive fields tuned to environmental boundaries at certain directions
and distances. Conversely, the successor feature model (c) predicts that behavioural biases near walls produce similar boundary responses
in the resulting successor features. This is due to (d) trajectory heading directions being more heterogeneous in the central portion of the
environment than at the perimeter adjacent to walls, where trajectories are constrained both directionally and by anxiety behaviours such
as thigmotaxis, measured by (e) the Kullback-Leibler divergence of trajectory headings vs uniform distribution (pairwise t-test middle vs
outer segments, using the longest distance trajectory from each dataset, t(2)=-9.97, p=0.010). (f) Fitting the boundary vector cell (BVC)
model to subicular data (SUB), successor features (SF) and a Gaussian place cell control model (PC) identified 40.1%, 35.6% and 23.9% of
cells as having boundary vector tuning, respectively. Model fits were similar between (g) subiculum data and (h) the successor feature
model (t-test following Fisher z-transform: t(2483)=0.057,p=0.955), with both producing significantly better fits than (i) the place cell
control model (SUB vs PC, t(2483)=5.67, p<0.001; SF vs PC, t(2483)=6.54, p<0.001). (j) Subicular boundary cells were found to
over-represent boundary responses proximal to environmental walls, better matching (k) the successor feature model than (l) the place cell
control (pairwise t-test on absolute probability density residuals between SUB-SF vs SUB-PC, t(12)=3.672, p=0.003). Crucially, (m) vectorial
responses in subiculum were clustered around directions orthogonal to the walls in a square arena (quadrupled, wrapped directional
tunings to test four-fold symmetrical clustering: Rayleigh test for non-uniformity, v=90.9, p<0.001), as predicted by (n) the successor
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feature model (quadrupled, wrapped direction tunings, Rayleigh test for non-uniformity, v=229, p<0.001; Watson-Williams test of circular
means, SUB vs SF, F1,953=0.54, p=0.462), while the canonical boundary vector cell model predicts evenly-distributed tunings18,19 (dashed line)
and (o) the place cell control model only detects vectorial tunings perpendicular and slightly distal to boundaries.

Notably, the successor feature model predicts that individual biases in animal trajectories will
propagate into inhomogeneities in spatial fields. Indeed, such models have previously been used to
explain the backwards skewing of CA1 place fields against the direction of travel on linear
tracks32,47,57. In the successor feature model, this anticipatory skew occurs because earlier locations
are predictive of an animal’s future position along the track. If subicular representations do arise
from a successor framework learnt over CA1 basis features, they should also exhibit path-dependent
skewing - a core property of successor features32,47. Specifically, we would expect subicular fields to
exhibit greater path-dependent skewing between consecutive trials than CA1 place cells recorded in
the same environment. We reasoned that this effect should be particularly evident in
border-responsive neurons, given that rodents have stronger behavioural biases near environmental
boundaries.

To test this proposition, we identified subicular cells with firing fields that were adjacent to
boundaries in two consecutive trials (Fig.3a; peak firing <=5 bins from a wall, corresponding to
<7.5cm for data from 21 (N=42 cells) and <8.3cm from 9 (N=13 cells) – data from 8 did not include
consecutive trials without other manipulations). We averaged each cell’s main firing field onto its
long axis (x or y) and calculated the change in its 1-dimensional centre of mass between trials as its
skew (Fig.3b). Next, we quantified the bias of rodent runs through these fields, parallel to the
cardinal walls (Fig.3c,d; see Methods). For those cells that were recorded over two consecutive trials
(N=55 cells, 110 ratemaps), we found that subicular fields skewed significantly against the dominant
axis of travel (Fig.3e; Spearman’s r(53)=-0.28, p=0.018). The skew of CA1 fields (N=59 cells, 118
ratemaps) recorded in the same environment was not significant (Fig.3f; Spearman’s r(57)=0.01,
p=0.528), likely because without specific goal-location manipulations58,59, behaviour in a
2-dimensional environment is less biassed and directionally constrained than on an linearised track57.
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Fig. 3 Boundary-tuned subicular responses are skewed by behavioural biases. The successor representation framework predicts that
spatial firing fields will skew against an agent’s dominant axis of travel. To quantify this, (a) boundary-responsive CA1 and subicular fields
were isolated and (b) averaged onto a single dimension, parallel to the adjacent wall. (c,d) The change in the directional bias of rodent runs
through these fields was then regressed against the change in their centre of mass between consecutive trials. (e) Consistent with the
predictive successor framework, subicular fields skewed significantly against rodents’ dominant axis of travel. (f) Notably, this backwards
skew was not evident, under these conditions, in corresponding CA1 fields.

Corner cells

Neurons that fire when an animal is present at an internal corner of the environment9 have recently
been characterised as a unique subicular subclass, distinct from boundary-responsive cells (Fig.4). We
hypothesised that these corner representations could also be accounted for by a successor
representation model that recapitulates animals’ behavioural biases. Specifically, when rodents dwell
in adjacent corners, linked by rapid runs along the intervening walls (Fig.4a-e), the resultant
successor features integrate positional information over multiple corner locations.

In order to quantify corner representations in the successor representation model, we adopted Sun
and colleague’s ‘corner score’ metric9. Across a range of different environmental geometries and
using symmetric Gaussian basis features, the successor representation model generated a strikingly
similar proportion of corner cells to those recorded empirically in subiculum. For example, in a
100cm square environment, 6% of successor features were identified as corner cells compared to 7%
of subicular cells (across geometries SF vs experimental: χ2(1, N=100)=0.20, p=0.905, Fig.4f; see
Methods) - in contrast 0% of place field bases were classified as being corner responsive.
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Fig. 4 Successor features trained on real rodent trajectories exhibit subicular-like corner responses. Sun and colleagues recently
characterised corner representations in subiculum as a distinct neural sub-class. (a-e) Top: rodent trajectories and positional heatmaps in
square, hexagon, triangle, circle and cross environments, respectively. Bottom-left: subicular recordings (data from 9). Bottom-right:
successor features generated using the same trajectories. Position heatmaps and behavioural paths highlight rodents’ preferences for
running along walls and dwelling in corners. (f) The percentages of corner cells, defined using the ‘corner score’ metric9, were comparable
between populations of successor features and subicular recordings, across multiple environmental geometries. Negligible place field basis
features were classified as corner cells. The proportion of corner cells in the cross environment was not reported in Sun et al.9.

Population comparison

Finally, we used representational similarity analysis (RSA)60 to test whether the successor feature
model better fits all subicular representations than existing computational models, agnostic of
specific cell types such as boundary or corner cells. Specifically, we segmented subicular ratemaps
from all three datasets into 3x3 grids, correlated within-cell ratemap activities between pairs of grid
segments, and averaged across all cells in each experiment to yield a single 9x9 RSA matrix per model
(Fig.5a). Our analysis used subiculum data8,9,21 from 9 rats and 5 mice (16 to 366 cells per animal) and
CA1 data recorded from 8 rats54,55 (5 to 112 cells per animal) in square environments (box sides
30-100cm). We compared these condensed measures of biological population activity to similar
matrices constructed for: i) Successor features (SF) based directly on real rodent trajectories (using
the longest distance trial from any rat for each of the three datasets8,9,21); ii) Successor features
trained on synthetic random walk paths61 with inertia but no tendency for wall-bias (thigmotaxis) (SF
RW) and; iii) Biological basis features (place fields) used to derive i and ii (PC).

Ultimately, we found that the successor representation model provided a significantly better fit to
subicular cells than competing models (Fig.5b; SF vs PC: 0.88 vs 0.78, t(13)=8.08, CI=(0.26,0.45),
p<0.001; SF vs SF RW: 0.88 vs 0.85, t(13)=2.48, CI=(0.02,0.27), p=0.027): results that highlight the
importance of animals’ behavioural biases in shaping successor features. Conversely, the successor
representation framework did not yield a significantly better fit to CA1 cellular recordings than place
cell basis features, or successor features generated from a random walk trajectory (Fig.5c; SF vs PC:
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0.85 vs 0.83, t(7)=0.76, CI=(-0.14,0.26), p=0.474; SF vs SF RW: 0.85 vs 0.88, t(7)=-1.49, CI=(-0.29,0.06),
p=0.179). This suggests that subicular cells, more so than CA1, are influenced by specific biases in
animals’ trajectories, which propagate into the successor features and differentiate them from
uniform random walks (Fig.5d; see Supplementary Figure 6 for consistent results using symmetric,
uniform Gaussian basis features).

Fig. 5 Subicular spatial responses are best described by a successor representation model trained using rodent trajectories. (a) Ratemaps
from subicular recordings, successor features and place cell populations were each partitioned into nine sections, flattened, and
cross-correlated. 9x9 correlation matrices were then averaged at either the rodent or rodent-trial level. (b) RSA correlations between
populations of subicular cells to i) successor features based on rodent trajectories (SFs), ii) biological basis features modelled on place cells
(PCs), and iii) successor features based on a biological random walk trajectory (SF RW). (c) Equivalent RSA results for a population of CA1
cells also recorded in the 21 environment are not better fit by SFs than SF RWs. Subicular responses, but not CA1 place fields, are fit better
by successor features trained on real rodent trajectories. (d) Cartoon illustration of how wall-biassed behaviour, compared to a random
walk, skews biologically inspired place cell basis features into elongated successor features, akin to subicular activations.

Discussion

Here we present the first single, unifying model of diverse subicular responses, within the framework
of predictive representations. We demonstrate that a successor framework trained on biologically
plausible CA1 basis features (modelled as place fields) generates spatial responses that closely
resemble those reported in rodent subiculum. Specifically, we illustrate that a subset of successor
features reproduce boundary vector cell responses19,20 and provide a better account of biological
boundary-responsive neurons than their namesake model18. These cells exhibit behaviour-dependent
skewing, as predicted by the successor framework, thus suggesting that the boundary vector cell
model might better describe entorhinal border responses7 than subicular activity. Our framework
also accounts for subicular corner cells9, which we show emerge from animals’ idiosyncratic
interactions with environmental geometry. At a population level, we demonstrate that the successor
framework provides a compelling account of diverse subicular activity across two distinct
electrophysiological and one calcium imaging dataset. Our representational similarity analyses reveal
that this framework outperforms alternative models in capturing the full spectrum of subicular
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responses; encompassing both well-characterised cell types and more complex, mixed
representations.

Thus put simply, the successor representation framework suggests that much of the complexity
observed in subicular responses can be reduced to a single predictive objective31,32. This can be learnt
over states defined by hippocampal place cells via biologically plausible processes, such as
spike-timing-dependent plasticity acting over theta sequences45–47.

Certain aspects of known subicular data, however, are not explicitly accounted for by this framework.
For instance, the duplication of boundary responses against multiple walls within or between
environments19,20 is not directly explained, nor is the presence of distinct corner representations.
Within-environment duplication, observed for drops as well as walls8,62, would plausibly occur if basis
features duplicate between analogous locations, as observed in place fields after barrier insertion19

or in environments with multiple similar corridors or spaces39,63. The cross-environment duplication is
more challenging to explain, as some proportion of place cells typically remap under these
conditions20. We speculate that subicular networks, with their extensive recurrent connectivity14,15,
might support compositional successor representation features that can be redeployed across
environments. Such a mechanism would account for responses that generalise across contexts, such
as trajectory dependent firing23, and the preservation of boundary vector cell characteristics across
environments8,20. Moreover, such a mechanism offers a computational basis for the rapid and flexible
adaptation of learned behaviours to novel settings—a key aspect of spatial cognition.

An implication of our work is to propose distinct roles for the two main hippocampal outputs. CA1
appears to transmit a condensed representation of states that are assembled from wide-reaching
multimodal sensory inputs, while subiculum represents commonly utilised trajectories afforded by
environmental geometry. This differentiation does not negate prior work proposing that CA1 place
fields can be understood within a predictive framework32,47. Rather, it suggests a shift in the relative
emphasis and temporal scope of predictive coding between these structures. The hierarchical
relationship between the two regions implies that subiculum operates with a longer effective time
horizon than CA1. Subiculum’s extended predictive scope may enable more complex and far-reaching
spatial predictions, while CA1 encodes a more immediate representation of current and near-future
states.

In conclusion, our work provides the first unifying and computational account of subicular function,
positioning it as a predictive map of the environment, derived from hippocampal inputs. This
framework not only explains a wide range of observed subicular responses, but also suggests new
experimental directions for probing the predictive nature of subicular representations and their role
in spatial cognition.

Methods

Neural data

We used three experimental datasets in our analysis. Dataset 1 was collected by Muessig and
colleagues21,54,55 and contains electrophysiological recordings from male (3-6mo) lister hooded rats,
freely exploring a plain 62.5x62.5cm square environment for 15 minute trials. Each rat explored the
same squared environment for two to three trials per day. The subicular recordings are from three
rats21 and the CA1 recordings are from a different eight54,55. Each rat was implanted with an
eight-prong tetrode attached to a micro-drive. All Dataset 1 ratemaps were pre-binned into matrices
for each trial. We also obtained the trajectory of each rat for each corresponding trial and
environment.

In order to filter out interneurons and axons from CA1 recordings, we applied the triple filter used in
Muessig et al.21, where we selected only ratemaps whose neurons had a mean firing rate less than
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5Hz, whose spike width was greater than 0.3ms (peak to trough) and whose mean autocorrelation
was less than 25ms. To remove the remaining non-spatial neurons, we only selected cells with a
spatial information (SI) score greater than 1. We cleaned the CA1 ratemaps by removing any outer
rows or columns with more than five NaNs, a procedure that we repeated twice for each ratemap.
We only selected those ratemaps whose resulting shape was 25x25. We then normalised these
ratemaps to sum to one and subtracted the minimum value from each entry. We then padded these
ratemaps to 27x27 matrices, which resulted in 353 CA1 ratemaps covering two consecutive trials.

Next, we similarly filtered the subicular cells of Dataset 1 to include only those with mean firing rates
less than 5 Hz and with a spike width greater than 0.3ms. We removed any outer rows or columns
with more than five NaNs and repeated this procedure twice for each ratemap. We then normalised
each ratemap to sum to one and subtracted the minimum value from each entry. We padded these
ratemaps to 27x27 matrices, which resulted in 335 subicular ratemaps.

Dataset 2 was collected by Sun et al.9 and includes miniscope calcium imaging data from a total of
five male and female mice freely exploring a plain 30x30cm square environment for 20 minute trials.
Each mouse explored the same square environment for two trials in the same day, with at least a two
hour gap between sessions. We cleaned these ratemaps by removing any outer rows or columns with
more than three NaNs, a procedure that we repeated twice for each ratemap. We only selected
those ratemaps whose resulting shape was 18x18. We normalised each ratemap to sum to one and
subtracted the minimum value from each entry. This resulted in 1937 ratemaps which covered two
consecutive trials.

Dataset 3 was collected by Poulter and colleagues8 and contains electrophysiological recordings from
6 male Lister hooded rats, aged 3–5 months old at implant, freely exploring a box of size 100x100cm
for 20 minute trials. We filtered the pre-binned ratemaps by including only those with a mean firing
rate less than 5Hz, as spike width information was not available. We cleaned these ratemaps by
removing any outer rows or columns with more than three NaNs, a procedure that we repeated
twice for each ratemap. We only selected those ratemaps who had the expected resulting shape of
51x51 matrices. We then normalised each ratemap to sum to one and subtracted the minimum value
from each entry. This resulted in 186 ratemaps collected over one trial only.

Successor features and biologically modelled PC

We generated three separate populations of successor features and biologically modelled basis
features using RatinABox61 for each of the three neural datasets. First, we created an environment of
the same shape as each filtered subiculum dataset (for reference, a 100x100 environment scaled to
1x1 environment). We then selected the longest distance trial trajectory from each dataset’s
available rodents and down-sampled it to 10-12 Hz. We used these longest distance trajectories to
generate 400 unthresholded and biologically plausible Gaussian basis features for each of the three
environments. These basis features followed biologically stable statistics of place cell widths and
shapes, with fields being smaller and more elongated near walls, as per Tanni et al.53:

width = G (1/H-H/(H2+wall_distance2)) + W (3)

where we set the minimum field width (W) to 0.053, wall height (H) to 1 and the gain level (G) to
0.74 for all successor feature populations. However, we also reproduce key results using uniform and
symmetric Gaussian basis features in Supplementary Figure 6. We then normalised each basis
feature’s ratemap to sum to 1, subtracted its 40th percentile, and set all negative values to 0.

11

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 7, 2024. ; https://doi.org/10.1101/2024.11.06.622306doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?4Uczk0
https://www.zotero.org/google-docs/?O9MNPF
https://www.zotero.org/google-docs/?xXiMz7
https://www.zotero.org/google-docs/?t0fHUX
https://doi.org/10.1101/2024.11.06.622306
http://creativecommons.org/licenses/by/4.0/


To calculate the successor features, we thresholded all place cell basis features for ease of training
and then used these to update a 100x100 transition matrix, M, as per Equation (1). We only updated
the matrix, M, whenever the agent’s velocity was >0.0001 between timesteps (corresponding to
0.025cm per timestep). We used a learning rate of 0.002 and a gamma of 0.995 for all three
populations to optimise convergence. We generated all successor features using a smoothing sigma
of 1.8. We normalised all successor features and thresholded them at the 40th percentile, setting any
negative values to 0.

We generated random-walk successor features for each of the three environments using the same
400 basis features, and a trajectory that began randomly within each environment and followed a
biologically plausible movement sequence, without thigmotaxis, as defined in RatinABox61. We
ensured that the average displacement for each random walk was comparable to the average
displacement of the rodent for each of the three datasets.

Boundary vector cell model fits

To fit the boundary vector cell model, we adopted the approach of Muessig et al.21, utilising an
exhaustive search maximising the Pearson r correlation between a candidate rate map and the best
fitting boundary vector cell model rate map. Specifically, we generated idealised boundary vector cell
model rate maps according to the canonical Hartley et al.18 model, defining contributions to the
boundary response, g, as the product of two Gaussians: one tuned to a preferred distance to the
boundary, d, while the other was tuned to a preferred allocentric direction to the boundary,ω.

𝑔
𝑑,ω

(𝑟, θ) ∝
exp( −(𝑟−𝑑)2

2σ2
𝑟𝑎𝑑

(𝑑)
)

2πσ2
𝑟𝑎𝑑

(𝑑)

×
exp( −(θ−ω)2

2σ2
𝑎𝑛𝑔

)

2πσ2
𝑎𝑛𝑔

 (4)

Thus, for a boundary at distance, r, and allocentric direction, subtending at an angle, , the firingθ, δθ
rate, f, of the boundary vector cell is given by:

δ𝑓 =  𝑔(𝑟, θ) δθ (5)

Note, ang is a constant while rad varies linearly with preferred distance tuning d:σ σ

σ
𝑟𝑎𝑑

(𝑑) =  𝑑
1+β σ

0
(6)
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for constant and .β σ
0

Following Muessig et al.21, we calculated idealised boundary vector cell firing for each position in a
25x25 unit grid, with constants ang = 0.2 radians and =183 units fixed as used in Hartley et al.18. As σ β
with Muessig et al.21, we generated a total of N=3120 model cells, varying = 6.2, 12.2, 20.2 or 30.2σ

0
units, with preferred distance tunings, d, ranging from d=1 to d=13 units in 1 unit increments, and
preferred angular tunings,ω, varying fromω=0° toω=354° in 6° increments.

In order to fit the boundary vector cell model to candidate rate maps (derived from either neural
data or our successor representation model), we first resized each rate map, where necessary, in
order to fit the 25x25 grid of the modelled boundary vector cells. We then performed resizing by
MATLAB R2022b’s ‘imresize’ function with the method set to ‘bilinear’. Next, we performed a Pearson
correlation between the candidate rate maps and each of the N=3120 boundary vector cell model
ratemaps, identifying the d, ω, parameters of the best fitting boundary vector cell. We classified aσ

0
candidate rate map as a boundary vector cell if the maximum correlation across all model rate map
fits exceeded r>0.7. To further analyse the four-fold symmetrical clustering of directional tuning
preferences in the square environment, we collapsed direction tunings,ω, across all 4 walls, centred
on the direction orthogonal to the wall, and quadrupled to span the full 360° before applying circular
statistics64.

Data preparation for behavioural skew analysis

In Figure 3, we analysed the correlation between rodent’s behaviour and the development of
asymmetry in subiculum. We performed the following analysis on CA1 neurons from Dataset 1 and
subiculum neurons from Datasets 1 and 2, as these were the only two datasets that recorded
neurons over consecutive and identical trials. Each ratemap was accompanied by an x/y vector of the
rodent’s position over the corresponding trial.

Firstly, we z-scored each ratemap, ignoring NaNs, and set any negative values to 0. We then used
scipy’s ‘ndimage’ package65 to identify the number of discrete objects in each ratemap. We discarded
any ratemaps where we identified more than 5 objects.

To determine the relationship between the behavioural bias of the rodent and the skew of subiculum
or CA1 fields in one-dimension, we limited our analysis to those cells whose primary firing field was
<=5 bins of a boundary, where the rodent’s behaviour is more constrained (Fig.2d,e). This
corresponds to <7.5cm for data from dataset 1 (N=42) and <8.3cm from dataset 2 (N=13). Dataset 3
did not include consecutive trials without other manipulations. If the number of objects identified
was one, we took this object to be the main firing field. If the number was greater than one, we took
the field with the highest maximum firing rate of the first three identified as the primary field. We
then masked all of the ratemap except for this primary firing field in preparation for the next step.

Next, we chose the axis to collapse the newly masked ratemaps over (horizontal or vertical) as that
which gave the lowest maximum when each ratemap was summed over it. Because many fields lay
close to a corner and were therefore close to two walls, we only included those cells whose masked
ratemaps collapsed over the same axis (horizontal or vertical) in both trials. We calculated the centre
of mass of each masked ratemap, now averaged onto one axis, and used the change in this between
two trials to quantify the overall change in field skew.

For the behavioural skew analysis, we first isolated the subsections of the animal’s trajectory that ran
through each cell’s primary firing field (defined above). We then calculated the resulting allocentric
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direction between each consecutive position, if that distance was >0.0001 along either the x or y
dimension (i.e. the agent moved >0.025cm on either axis). We collected these along the whole
trajectory and binned them into a single histogram for each trial, between the allocentric angles of
[-π/4, π/4, π3/4, π5/4] as up, right, left and down. We calculated the overall behavioural skew of
the animal’s movement through this firing field by subtracting the size of the histogram bar for the
‘backwards’ direction (left or down for fields running along horizontal and vertical walls respectively)
from the ‘forwards’ direction (rightwards or upwards for fields running along the horizontal and
vertical walls respectively).

Figure 3e,f presents the correlation of the change in the skew of each cell’s main field against the
rodent’s change in behavioural bias through that field between the two trials. In order to exclude any
cells that are unstable between trials, we only included filtered ratemaps (displaying only the primary
field) with at least a 0.75 correlation between trials 1 and 2, however using other thresholds did not
significantly alter the results.

Corner score analysis

For our corner cell analysis, we repeated the procedure of Sun et al.9 for square, hexagon, triangle
and circular-shaped environments. Since it is unclear how Equation 3 can be extrapolated to
non-rectangular environments, we generated populations of 100 symmetric Gaussian place cell basis
features, with standard deviation 6cm, and calculated the successor features based on the longest
distance rodent trajectory for each geometry, as outlined in Section 1. Following Sun and colleagues9,
we thresholded each successor representation and place cell ratemap at 30-40% of their maximum
value to best isolate their main firing fields. Next, we set all values of these ratemaps that were
negative to be 0, and performed object labelling using scipy’s ‘ndimage’65. For each identified object
in each ratemap, we calculated a corner score based on the distances between the object’s centroid,
the environment’s centre, d1, and the nearest corner, d2, as per Sun et al.9:

(7)

For ratemaps where the number of identified objects was less than the number of corners, we
calculated the overall corner score of a ratemap with k corners and n fields as per Sun et al.9:

(8)

For ratemaps where the number of identified objects was greater than the number of corners, k, we
calculated the corner score using the top n scores as:

(9)

In order to compare the distribution of corner scores between subicular cells and successor features,
we generated 2000 shuffled successor features and took the 95th percentile of their corner scores as
a benchmark. We calculated these shuffled successor features for each geometry by randomly
shuffling the columns of our transition matrix, M, after it had been trained using the rodent’s
trajectory, and re-generating 2D successor features based on this shuffled matrix. As per Sun et al.9,
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we did not include the punishment term for extra firing fields when we calculated the corner scores
for shuffled successor features. Figure 4f compares the percentage of successor features and the
percentage of place cells that were classified as corner cells by this shuffled threshold, to the
percentage of corner cells that are reported for each geometry in Sun et al.9, using their own
spike-train shuffle threshold.

Data availability

The neural recordings analysed in this study were obtained from previously published datasets
(Muessig et al. (2015), Muessig et al. (2019), Poulter et al. (2021), Muessig et al. (2024), Sun et al.
(2024)). Ownership and responsibility for the dissemination of this data remains with the original
authors.

Code availability

The code required to replicate the analysis in this study is publicly available at:
https://github.com/Lauren2909/Unifying-Manuscript.
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