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Abstract:  

Tenascin-C (TNC) is a secreted extracellular matrix protein that is highly expressed during 

embryonic development and re-expressed during wound healing, inflammation, and neoplasia. 

Studies in developmental models suggest that TNC may regulate the Wnt signaling pathway. Our 

lab has shown high levels of Wnt signaling and TNC expression in anaplastic thyroid cancer 

(ATC), a highly lethal cancer with an abysmal ~3-5 month median survival. Here, we investigated 

the role of TNC in facilitating ligand-dependent Wnt signaling in thyroid cancer. We utilized bulk 

RNA-sequencing from three independent multi-institutional thyroid cancer patient cohorts. TNC 

expression was spatially localized in patient tumors with RNA in situ hybridization. The role of 

TNC was investigated in vitro using Wnt reporter assays and in vivo with a NOD.PrkdcscidIl2rg-

/- mouse ATC xenograft tumor model. TNC expression was associated with aggressive thyroid 

cancer behavior, including anaplastic histology, extrathyroidal extension, and metastasis. Spatial 

localization of TNC in patient tissue demonstrated a dramatic increase in expression within cancer 
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cells along the invasive edge, adjacent to Wnt ligand-producing fibroblasts. TNC expression was 

also increased in areas of intravascular invasion. In vitro, TNC bound Wnt ligands and 

potentiated Wnt signaling. Finally, in an ATC mouse model, TNC increased Wnt signaling, tumor 

burden, invasion, and metastasis. Altogether, TNC potentiated ligand driven Wnt signaling and 

promotes cancer cell invasion and metastasis in a mouse model of thyroid cancer. Understanding 

the role of TNC and its interaction with Wnt ligands could lead to the development of novel 

biomarkers and targeted therapeutics for thyroid cancer. 

Keywords: Thyroid cancer, tenascin-c, Wnt-2, invasion, metastasis 

 

1. Introduction: 

Thyroid cancer is projected to be the fourth leading cancer diagnosed in the U.S. by 2030.1 Most 

thyroid cancers are well-differentiated tumors that are treatable with surgery and radioactive 

iodine. However, up to 30% of patients will have metastasis, recurrence, or progression.2,3 

Anaplastic thyroid carcinoma (ATC) is a highly lethal, aggressive form of thyroid cancer that grows 

quickly in the neck, leading to rapid airway compression. There has been minimal progress in 

treating patients with ATC, with a 12-month overall survival of less than 20% and metastasis being 

found at diagnosis in 50% of ATC patients.4 The high mortality rate of ATC is related to the rapid 

invasion of tumor cells into adjacent neck structures and distant metastasis of cancer cells into 

the lungs.5 An improved understanding of the mechanism of tumor cell invasion and metastasis 

could lead to targeted therapies and improve survival in ATC. 

 

Technological advances, including DNA and RNA sequencing, have enhanced our understanding 

of many tumors, including those in the thyroid. Genomic and molecular studies have identified 

common driver mutations in well-differentiated thyroid cancer. 6-18 BRAFV600E and RAS mutations 

are mutually exclusive and represent the most common alterations in well-differentiated thyroid 
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cancer (WDTC).6-18 WDTC and ATC share driver mutations and some high-risk mutations, 

including TERT promotor and TP53 mutations. Despite identification of high-risk mutations, clear 

mechanistic understanding of disease progression, invasion, and metastasis remain limited. 

Analysis of stromal recruitment and signaling pathway activation is needed to better understand 

factors that support and enhance thyroid cancer invasion and metastasis. 

 

Wnt signaling upregulation is consistently seen in ATC across molecular subtypes.19,20 The Wnt/β-

catenin pathway is a conserved, developmental signaling pathway that is harnessed to drive many 

cancers.21-25 Wnt signaling regulates many cellular processes, including cell fate determination, 

motility, polarity, and stem cell renewal.26 A key step in Wnt signaling is the formation of the Wnt 

signalosome.25 The Wnt signalosome is a ligand-activated receptor complex that includes the Wnt 

co-receptors, Frizzled and LRP6, and the cytoplasmic protein, Dishevelled.25 Formation of the 

Wnt signalosome is required for receptor-mediated stabilization of the transcriptional co-activator, 

β-catenin. Consequently, β-catenin accumulates in the cytoplasm, enters the nucleus, and binds 

the TCF/Lef1 family of transcription factors to mediate a Wnt-specific transcriptional program. 

Several cancers, including colorectal cancer, are known to have Wnt signaling pathway mutations 

that impair β-catenin degradation or mutations in proteins that promote Wnt signalosome 

formation.27-29 Other cancers are driven by increases in Wnt ligands themselves.30-32 Within 

thyroid cancer, several components of the Wnt signaling pathway are known to be altered.19,33-36  

 

We recently discovered that ATCs exhibit dramatically high levels of Wnt ligand expression yet 

few Wnt pathway-activating mutations.10,19 This result suggests that Wnt signaling may play an 

important role in the pathophysiology of ATCs.  One protein that has been shown to amplify ligand-

driven Wnt signaling in development is Tenascin-C (TNC). TNC synthesis is tightly regulated in 

humans, having widespread expression in embryonic tissues and restricted distribution in adult 

tissues.37,38 Several studies have proposed the presence of a TNC-Wnt crosstalk during 
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development.39-41 As TNC is a secreted glycoprotein, it may interact with extracellular mediators 

of Wnt signaling, including Wnt ligands, LRP6, or Frizzled. Studies in the whisker stem cell niche 

indicate that TNC can bind and concentrate Wnt-3a ligands to upregulate Wnt activation.40 In 

support of this proposed mechanism, studies of acute kidney injury demonstrated that TNC co-

immunoprecipitates with Wnt-1 and Wnt-4 overexpressed in the human kidney cell line (HKC-8).39 

TNC expression in cancer has been proposed to promote invasion and metastasis and is 

commonly thought to be derived from the tumor stroma.37,41-47 However, our understanding of 

TNC expression and TNC-Wnt cross-talk in thyroid cancers is limited.  

 

Here, we investigated the expression of TNC in thyroid cancer and its role in amplifying ligand-

driven Wnt signaling. In this study, we utilize patient sequencing data from three large multi-

institutional thyroid patient cohorts.9,10,48 We demonstrate that TNC expression is upregulated in 

thyroid cancer cells along the tumor’s invasive edge and within intravascular spaces. Using co-

culture and in vitro modeling, we demonstrate an interaction between Wnt ligand and TNC that 

potentiates Wnt signaling. Finally, in an ATC tumor model, we demonstrate that TNC increases 

Wnt pathway activation, tumor burden, tumor cell invasion, and metastasis. The interaction 

between TNC and Wnt is likely integral to thyroid cancer behavior and serves as a potential 

marker for both prognostication and targeted therapeutics. 

2. Methods: 

2.1 Analysis of TCGA and GTEx WDTC RNA-sequencing data 

GEPIA is a web-based tool that delivers rapid and customizable functions for analyzing The 

Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression Program (GTEx) data 

(http://gepia.cancer-pku.cn/).9,49 GEPIA was used to compare TNC expression between tumor 

and normal samples from TCGA and GTEx. GEPIA statistical tests were performed via one-way 

ANOVA with a cutoff of p< 0.01. For additional analyses, TCGA Bulk RNA-sequencing and clinical 
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data were downloaded from cBioPortal (cbioportal.org).50-52 The clinical data included the BRAF-

like or RAS-like designation, whether the patient had lymph nodes positive for the disease at 

resection of the sequenced primary tumor, and the degree of extrathyroidal extension at resection 

(none, minimal, or moderate/advanced). TNC expression levels were log2 transformed and 

compared between TCGA tumors with BRAF-like versus RAS-like phenotypes, tumors with and 

without associated lymph node metastases, and tumors with no extrathyroidal extension, minimal 

extrathyroidal extension, or moderate/advanced extrathyroidal extension. Statistical differences 

in log2 TNC expression between groups were calculated using Wilcoxon rank-sum test with 

Bonferroni correction and plotted using R package ggplot2 3.5.0.53 

2.2 Analysis of VUMC/UW Bulk RNA-Sequencing Patient Cohort:  

TNC expression was analyzed in a previously published bulk RNA-sequencing cohort of 312 

thyroid resection specimens (251 patients) from Vanderbilt University Medical Center and 

University Washington (VUMC/UW).10 Samples were grouped into benign (multinodular goiters, 

follicular adenomas, Hürthle cell adenomas), WDTC (papillary thyroid carcinomas, follicular-

variant papillary thyroid carcinomas, follicular thyroid carcinomas, Hürthle cell carcinomas), poorly 

differentiated thyroid carcinomas (PDTC), and ATC. WDTCs were further split into BRAF-like or 

RAS-like, as previously described.9,10 TNC expression levels were log2 transformed and 

compared across diagnoses (benign, WDTC, ATC) and between BRAF-like or RAS-like WDTCs. 

Within the entire malignant cohort (WDTC, PDTC, ATC) and the WDTC cohort, the expression of 

TNC in primary tumors was compared based on the presence or absence of associated lymph 

nodes and distant metastases. TNC expression was also compared between primary samples 

and lymph node samples. Significance was calculated using Wilcoxon rank-sum tests, and 

boxplots were generated with R package ggplot2 3.5.0.53 Progression-free survival (PFS) metrics 

were calculated as previously described for this cohort,10 using a 50th percentile TNC expression 

cutoff within all malignant (WDTC, PDTC, and ATC) or WDTC only. R packages survival 3.5-5 
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and survminer 0.4.9 were used to generate PFS plots, and significance was determined via log-

rank test.  

2.3 Analysis of Lee et al. bulk RNA-sequencing patient cohort 

Raw count matrices and sample meta data for 16 ATCs, 348 PTCs, and 263 normal thyroids from 

Lee et al. were downloaded from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) 

using accession number GSE213647.48 Raw counts were TPM normalized and log2 transformed. 

TNC expression was compared for log2 TPM counts across diagnoses (ATC, PTC, normal 

thyroid) using Wilcoxon rank-sum test with Bonferroni correction and plotted using R package 

ggplot2 3.5.0.53 

2.4 Hallmark Wnt--catenin score calculation 

For all sequencing cohorts, hallmark Wnt--catenin scores were calculated from TPM (Lee, 

VUMC/UW) or RSEM (TCGA) counts using the R package GSVA 1.48.3 with the Molecular 

Signatures Database hallmark Wnt--catenin signaling gene set and default arguments for the 

GSVA function.54,55  

2.5 Cancer-associated fibroblast (CAF) deconvolution 

Estimated CAF levels for the VUMC/UW bulk RNA-sequencing data were previously calculated 

using the CAF EPIC deconvolution algorithm within TIMER 2.0.10,56,57 

2.6 Bulk RNA Spearman’s correlations 

Across the TCGA, Lee et al., and VUMC/UW cohorts, Spearman’s correlations between Wnt 

ligands, TNC, Hallmark Wnt signaling, and CAF abundance were calculated and plotted with the 

R packages ggplot2 3.5.0,53 and corrplot 0.92.  

2.7 Multiplex immunofluorescence (IF) of formalin-fixed paraffin-embedded (FFPE) tissue  

Multiplex immunofluorescence was performed as previously described.10 Primary antibodies 

(Abcam ab207178 recombinant rabbit monoclonal anti-fibroblast activation protein alpha (FAP) 

IgG, clone EPR20021, 1:100; Abcam ab88280 mouse monoclonal [EB2] anti-Tenascin-c 1:100; 
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were diluted in blocking buffer and incubated on tissue sections at 4C for 16h (Abcam, 

Cambridge, UK; Bioss USA, Woburn, MA). Tissue sections were washed with 0.05% Tween 20 

in PBS. Secondary antibodies (Invitrogen A-21245 polyclonal goat anti-rabbit IgG Alexa Fluor 647 

1:150; Abcam ab97035 polyclonal goat anti-mouse IgG H&L (Cy3 ®) preadsorbed 1:100) were 

diluted in blocking buffer containing Hoechst 33342 nuclear stain (1:1000) and incubated on tissue 

sections at 37C for 1 h (Abcam, Cambridge, UK; Thermo Fisher, Waltham, MA). Representative 

20X images were taken of each tissue section on a Nikon Spinning Disc confocal microscope. 

2.8 RNA in situ hybridization 

Five µm tissue sections were cut from FFPE blocks and stored at -20C. RNAscope® probes Hs-

TNC-C1, Hs-WNT2-C1, and Hs-FAP-C2 and RNAScope® 2.5 HD Duplex and RNAscope® Wash 

Buffer Reagents were purchased from Advanced Cell Diagnostics (Newark, CA). RNAscope® 

was performed according to the manufacturer’s guidelines. 

2.9 Cell culture:  

K1 cells were obtained from Sigma Aldrich. WPMY-1 and HEK293 (CRL-1573) cells were 

obtained from American Type Culture Collection (ATCC). Cells were authenticated using STRS 

analysis and maintained and used experimentally at <20 passages from thaw. K1 cells were 

grown in RPMI (VWR) containing 10% FBS (ThermoFisher Scientific), 1% penicillin-streptomycin 

(Sigma), 1X MEM Non-Essential Amino Acids (VWR), and 1 mM sodium pyruvate (Vanderbilt 

Molecular Biology Resource). WPMY -1 and HEK293 cells were grown in high-glucose DMEM 

(Sigma) containing 8-10% FBS (ThermoFisher Scientific), and 1% penicillin-streptomycin 

(Sigma). All cell lines tested negative for Mycoplasma contamination. 

2.10 Generating stable cell line:  

Stable Wnt reporter cell lines were generated using lentiviral transduction. Viral media was 

collected from HEK293FT cells transfected with the 7TFP lentiviral plasmid (Addgene #24308), 
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along with the PAX2 (packaging) and pMD2G (envelope) plasmids. Thyroid cancer cell lines were 

cultured in lentiviral media with 8 mg/mL Polybrene for 24 hours. Antibiotic selection was 

performed with puromycin (10 µg/mL) (Mediatech/CellGro-Corning (MT61385RA)). 

2.11 Transfections: 

Plasmid transfections were performed using Lipofectamine 3000 Transfection reagents 

(Invitrogen). For cell-based luciferase TOPFlash assays, K1 cells were overexpressed with either 

large splice variant TNC (Addgene 65414) or small splice variant TNC (Addgene 65415) and 

WPMY cells were overexpressed with Wnt-2 (Addgene 43809). All flag plasmids were 

manufactured by Gene Universal. Co-immunoprecipitation plasmid transfections were performed 

using the calcium phosphate method.  

2.12 TOPFLASH assay: 

Cells were lysed with CellTiter-Glo 3D Assay (Promega) and One Glo Luciferase Assay 

(Promega). Luminescence was quantified using a Synergy NEO (BioTek multi-mode plate 

reader).  One-Way ANOVA was performed with Tukey’s test correction.  

2.13 Co-immunoprecipitation sample preparation: 

Cells were lysed using non-denaturing lysis buffer (NDLB) (50 mM Tris-HCl pH 7.4, 300 mM NaCl, 

5 mM EDTA, and 1% Triton X-100 (w/v), supplemented with 1 mM PMSF and PhosSTOP 

phosphatase inhibitor cocktail tablets(Roche). Samples were incubatedat 4°C for 30 min, followed 

by clarification by spinning in a microfuge at 13,000 RPM for 10 min at 4°C. Lysates were diluted 

to 1 mg/mL with NDLB and incubated with antibodies with overnight rotation at 4°C. Samples were 

then incubated with Protein A/G magnetic beads (Millipore) for two hours with rotation at 4ºC. 

Beads were washed 5 times with NDLB, and sample buffer was added to elute the bound protein 

(95°C for 10 min). Proteins were analyzed by SDS-PAGE and immunoblotting. Fluorescence 

signal was detected using a an Odyssey (LI-COR). Obtained images and band intensity were 

analyzed using Empiria (LI-COR).  

2.14 Co-Immunoprecipitation sample preparation for recombinant proteins: 
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Recombinant TNC (1 µg, EMD Millipore) and Recombinant Wnt-2 (Biomatik) were diluted to a 

total volume of 1 mL with NDLB and incubated with TNC antibody overnight at 4°C. Samples were 

then incubated with Protein A/G magnetic beads (Millipore). Beads were washed 5 times with 

NDLB, and sample buffer was added to elute the bound protein (20°C for 1h). Proteins were 

analyzed by SDS-PAGE and immunoblotting. Chemiluminescence signal was detected using an 

Odyssey (LI-COR). Obtained images and band intensity were analyzed using Image Studio (LI-

COR). 

2.15 Antibodies for immunoblotting: 

The following antibodies were used for immunoblotting: Rabbit anti-FLAG (Proteintech, 20543-1-

AP), Mouse anti-FLAG (Vanderbilt Protein and Antibody Resource), Mouse anti-Tubulin 

(Developmental Studies Hybridoma Bank, E7), Mouse anti-Tenascin C (Abcam, ab3970), Rat 

anti-Tenascin C (R&D Systems, MAB2138-SP), Rabbit Anti-Wnt-2 (Abcam, ab1009222), Rabbit 

anti-V5 (Cell Signaling, 13202S), Goat anti-rat IgG H + L-HRP (Thermo Fisher, 31470), Goat anti-

mouse IgG H + L-HRP (Promega, W4021), Goat anti-rabbit IgG H + L-HRP (Promega, W4011), 

Goat anti-rabbit 800 (Licor), Donkey anti-mouse 800 (Licor), Goat anti-rabbit 680 (Licor), and Goat 

anti-mouse 680 (Licor). All primary antibodies were used at 1:1000 dilution except anti-tubulin 

(1:10000) and anti-flag (1:2000). All secondary HRP antibodies were used at 1:2000 dilution, and 

all fluorescence antibodies were used at 1:20000 dilution. 

2.16 Mouse experiments: 

All procedures were approved by the Institutional Animal Care and Use Committee prior to 

completion. NOD.PrkdcscidIl2rg-/- (NSG-Jackson Laboratories) were injected with 

1x106 xenograft THJ-16T cells subcutaneously in the flank using a 25G SubQ needle affixed to a 

1 mL syringe. When tumors became palpable (approximately 1-week post-injection), intratumoral 

injections were performed with 1X PBS (Corning) or recombinant Tenascin-C (EMD Millipore, 0.2 

mg/mL) twice weekly. Tumors were measured twice weekly using digital calipers, and mice were 

weighed weekly to ensure that weight loss did not exceed 20% of body weight. When tumors 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2024. ; https://doi.org/10.1101/2024.11.04.621959doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.04.621959
http://creativecommons.org/licenses/by-nc/4.0/


 11 

reached 2 cm in any dimension or ulcerated, mice were humanely euthanized. Both male (14 

animals) and female (11 animals) mice were used in all experiments and was not considred a 

factor in statistical analysis. 

2.17 Mouse tumor histology and immunohistochemistry: 

Tumors were resected and weighed, fixed in 10% neutral buffered formalin, processed, and 

embedded in paraffin. 5 µm sections were cut and either stained with hematoxylin and eosin or 

used for immunohistochemistry. Slides used for immunohistochemistry were stained by the 

Translational Shared Pathology Resource (TPSR) center. Slides were placed on the Leica Bond 

Max IHC stainer. Heat induced antigen retrieval was performed using Epitope Retrieval 2 solution 

for 20 minutes. Slides were placed in a Protein Block (Ref# x0909, DAKO) for 10 minutes. Slides 

were incubated with anti- B-Catenin (Cell Signaling, 9582) for one hour at a 1:100 dilution. The 

Bond Polymer Refine detection system was used for visualization. Slides were the dehydrated, 

cleared and coverslipped. 

2.18 Statistics: 

Tumor volumes and tumor weights from three experiments (batches) were analyzed. Linear 

mized-effects model was used to evaluate the association between treatment and Wnt reporter 

activation and account for correction due to technical replicates from the same biological samples. 

Wnt reporter activation by treatment group was estimated using least-squares means (i.e., model-

based means), and differences among groups were compared using the Wald test with Tukey’s 

test correction. We employed the power variance function to address heteroscedasticity across 

treatment groups. Batch was included as a covariate to adjust for potential batch effects. Residual 

analysis was conducted to verify the model’s assumptions. Tumor volumes were log-transformed 

(with the addition of 1 to avoid log(0)) to address heterogeneity detected in residual analysis. 

Statistical analyses were performed in R v4.4.0.  

3. Results: 

3.1 TNC expression is increased in WDTC and ATC 
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To first analyze Tenascin-C expression in thyroid cancer, we assessed TCGA WDTC (n = 512) 

and GTEx normal thyroid (n = 337) gene expression using GEPIA. TNC expression was 

upregulated in WDTC compared to normal thyroid tissue (Fig. 1A, p<0.01). Additionally, TNC is 

known to have several different splicing events,58 so we evaluated the different isoforms of TNC 

present in thyroid cancer. TNC isoforms-12, 11, and 1 are the most common (Fig. S1A and Fig. 

S1B). We next investigated TNC expression in the more aggressive thyroid cancer, ATC. Using 

publicly available sequencing data from Lee et al., we assessed TNC expression in normal, PTC 

(the most common type of WDTC), and ATC samples. We found that TNC expression is increased 

in PTC relative to normal (p<0.001) and ATC relative to normal (p<0.001), with the highest 

expression in ATC (Fig. 1B). 

 

We recently collected and published an analysis of a large cohort of whole exome and bulk RNA-

sequencing data analysis of benign and malignant thyroid tissue.10 This cohort was enriched for 

ATC and WDTCs with metastases and poor outcomes to improve detection of drivers of 

aggressive disease. Similar to the cohort from Lee et. al., TNC expression is increased in WDTC 

(p<0.001) and ATC samples (p<0.001), with the highest increase in ATC (Fig. 1C). We further 

classified WDTCs into RAS-like or BRAF-like based on their gene expression profiles.9,10 Using 

the TCGA WDTC cohort, TNC expression is increased in BRAF-like WDTCs compared to RAS-

like tumors (Fig. 1D, p<0.001). Similar to TCGA WDTCs, we observe a significant increase in our 

cohort in TNC expression within WDTCs that are BRAF-like compared to RAS-like (Fig. 1E, 

p<0.001). Taken together, TNC expression is upregulated in thyroid cancer compared to normal 

tissue. The highest increases in TNC are observed in BRAF-like WDTCs and ATCs. Finally, using 

PFS analysis of our whole malignant cohort, we see an improved survival in patients with low 

TNC expression (split by 50th percentile, Fig. 1F, p=0.0026). This significance is not seen within 

our WDTC cohort (Fig. S1C, p=0.46), suggesting that this survival difference is likely driven, at 

least in large part, by the high TNC expression in lethal ATCs.  
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3.2 TNC expression is increased in metastasis 

TNC expression has been implicated as a driver of metastasis,59 so we further assessed the 

association between TNC and metastasis in our thyroid cancer cohorts. Within the TCGA WDTC 

cohort9, primary tumors from patients with lymph node metastases showed higher overall TNC 

expression compared to primary tumors from patients without lymph node metastases (Fig. 2A, 

p=0.0026). Additionally, TNC expression was increased in tumors with minimal (p<0.001) and 

moderate/advanced (p<0.001) extrathyroidal extension (Fig. 2B). An evaluation of TNC and 

metastasis within the VUMC/UW cohort shows similar findings. TNC expression is increased in 

the primary tumors of patients with lymph node metastases (Fig. 2C, p<0.001) when evaluating 

our whole malignant cohort as well as when we restricted the cohort to only WDTC (Fig. S2B, 

p<0.001). This analysis confirms that our correlation is not driven solely by ATC. While TNC 

expression in the primary tumors also correlates with distant metastatic disease, this trend is not 

significant (Fig. S2A, S2C). 

 

Interestingly, not only is TNC increased within the primary tumors of patients with lymph node 

metastases, but it is also increased within the metastatic cells of the lymph nodes (Fig. 2E, 

p<0.001 and Fig. S2D, p<0.001). 

In conclusion, across multiple published thyroid cancer sequencing cohorts, we observe an 

increase in TNC in malignant samples. This increase is highest in samples with aggressive 

behavior, including lymph node metastases, extrathyroidal extension, and transformation to ATC. 

3.3 Spatial localization of RNA and protein expression of TNC in ATC 

While it is commonly thought that TNC is expressed by fibroblasts in the tumor 

microenvironment,44,45 recent studies also suggest that tumor cells in both breast and head and 

neck cancer can produce TNC.46,47 To identify which cells are making TNC in thyroid cancer and 

their spatial localization, we performed RNA in situ hybridization and multiplex 

immunofluorescence on patient ATCs. First, using RNA in situ hybridization, we probed for TNC 
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and fibroblast activation protein alpha (FAP), a ubiquitous CAF marker. We found that 7 of 12 

samples (58%) have TNC staining of tumor cells along the invasive edge (Fig. 3A and 3B). In 

addition, 10 of 12 samples (83%) have TNC staining of endothelial cells and tumor cells within 

blood vessels (intravascular invasion, Fig. 3C and 3D). Finally, all 12 samples (100%) showed 

fibroblast TNC staining (Fig. 3A and 3B). Confirmation of protein expression using multiplex 

immunofluorescence staining shows TNC protein expression of invading tumor cells along the 

tumor-stromal border (Fig. 3E). Altogether, we observe TNC expression by tumor cells at the 

tumor-stromal interface in areas of stromal and vascular invasion. We also detect TNC expression 

within the fibroblast-rich stroma. 

3.4 TNC and Wnt-2 expression correlate in thyroid cancer 

Although TNC is found at the invasive border of ATC, the mechanism by which it influences tumor 

invasion is unclear.46,47 In non-neoplastic disease, TNC has been shown to interact with Wnt 

ligands and augment ligand-dependent Wnt signaling.39,41 As aggressive thyroid tumors have 

increased expression of Wnt ligands, we hypothesized that TNC acts to enhance Wnt signaling 

at the invasive border of thyroid tumors through interactions with Wnt ligands. To investigate the 

relationship between TNC and Wnt signaling, we first looked at hallmark Wnt/β-catenin signaling 

gene activity and observed a positive correlation with TNC expression in all malignant samples 

using the Lee et. al. cohort (Fig. 4A, p<0.001) and our VUMC/UW cohort (Fig. 4B, p<0.001).  We 

observed the same positive correlation when we looked at WDTC TNC expression and Hallmark 

Wnt/β-catenin signaling gene activity across all patient cohorts (Fig. S3A-C). 

 

Next, we aimed to determine if there are specific Wnt ligands that TNC is interacting with to 

potentiate Wnt signaling. We recently identified seven Wnt ligands (Wnt-1, Wnt-2, Wnt-5b, Wnt-

6, Wnt-7a, Wnt-10a, Wnt-10b) that are upregulated in ATC.19 Because we spatially observed TNC 

next to fibroblasts, we chose to look at the correlation between TNC, ATC-upregulated Wnt 

ligands, and CAF abundance in ATCs (Fig. 4C). We identified a markedly stronger correlation 
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between TNC and WNT2 than any other Wnt ligand (Fig. 4C-D, =0.74, p<0.001). Additionally, 

both TNC and WNT2 were correlated with CAFs (=0.72 and 0.82, respectively). We confirmed 

the association between TNC and WNT2 across malignant and WDTC-restricted cohorts from 

Lee et al., TCGA, and VUMC/UW (Fig. S3D-H). As multiple reports have indicated that Wnt-2 is 

expressed by CAFs, we anticipated that Wnt-2 may be interacting with TNC via CAFs adjacent to 

invasive, TNC-expressing tumor cells.60-62 To identify whether Wnt-2 is produced in close 

proximity to the invasive border of tumor cells, we performed RNA in situ hybridization, probing 

for WNT2 and FAP within ATC tumors. We found that WNT2 is made by CAFs within the tumor 

microenvironment adjacent to the leading edge of tumor cells (Fig. 4E). In conclusion, across 

patient cohorts, TNC is correlated with hallmark Wnt/β-catenin gene activity. Amongst Wnt 

ligands, TNC exhibits the strongest correlation with Wnt-2, which is produced by CAFs at the 

invasive border with tumor cells, suggesting a possible interaction between Wnt-2 and TNC. 

3.5 TNC potentiates Wnt signaling and directly interacts with Wnt-2 

TNC has been shown to influence Wnt signaling by interacting directly with Wnt ligands.39,41 To 

study the crosstalk between TNC and Wnt ligands in vitro, we used a TOPFLASH K1 thyroid 

cancer cell line. First, we tested whether TNC could potentiate ligand-driven Wnt signaling using 

a co-culture method. Specifically, we overexpressed TNC in the TOPFLASH K1 thyroid cancer 

cell line and overexpressed Wnt-2 in a fibroblast cell line, WPMY. With no overexpression, or with 

only TNC overexpression, we observe baseline activation of the Wnt signaling pathway. With 

Wnt-2 overexpression, we see activation of Wnt signaling. However, Wnt signaling is potentiated 

when we overexpress both TNC and Wnt-2, independent of whether the small or large TNC splice 

variant is overexpressed (Fig. 5A-B). These data suggest a role for TNC in potentiating Wnt 

expression in the tumor microenvironment through Wnt-ligand mediated activation. 

To further explore an interaction between TNC and Wnt ligand, we used recombinant TNC and 

recombinant Wnt-2 and performed co-immunoprecipitation experiments, in which we pulled down 
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TNC and immunoblotted for Wnt-2. Wnt-1, 3a, and 4 have previously been shown to co-

immunoprecipitate with TNC, but the interaction between TNC and Wnt-2 has not been previously 

described.39,40 We found that Wnt-2 pulled down with recombinant TNC, indicating a potential 

interaction between the two proteins  (Fig. 5C). To explore the interaction between TNC and Wnt-

2 further, we FLAG tagged the small splice variant of TNC and created two distinct TNC truncation 

constructs consisting of either the N-terminus, containing EGF-like repeats, or the C-terminus, 

containing FN3-like repeats (Fig. S1B). We then co-overexpressed each constructof TNC with 

V5-tagged Wnt-2and  performed co-immunoprecipitation experiments. We found that Wnt-2 

immunoprecipitated with all three TNC constructs, providing further support for the interaction 

between TNC and Wnt-2. Wnt-2 was pulled down most strongly with the N-terminus of the small 

splice variant of TNC, indicating that the Wnt-2 binding site on TNC is likely contained within the 

N-terminal region (Fig. 5D). Surprisingly, much weaker pulldown was observed with the full-length 

TNC fragment, suggesting that the binding sites for Wnt ligands on TNC may be partially 

conformationally masked. 

3.6 TNC increases tumor burden in vivo 

Finally, we explored the role of TNC in thyroid tumor growth and invasion in vivo. To do so, we 

injected the THJ-16T patient-derived ATC xenograft cell line subcutaneously into the flanks of 

NSG mice. THJ-16T forms a similar morphology tumor to the ATC we commonly observe in TNC-

positive patient tumors, with nests of squamoid tumor cells surrounded by CAFs (Fig. S4A-B). 

After the tumors became palpable, ~seven days after injection, either PBS or recombinant TNC 

was injected twice weekly into the tumors of these mice, and tumor size was measured. We saw 

a significant increase in tumor size (p=0.008) and weight (p=0.003) in our TNC mice compared to 

our PBS controls (Fig. 6A and 6B). In addition, in 4 TNC-treated mice, we observed dramatic 

cancer cell invasion that extended into the ribcage, pleura, lung, peritoneum, and liver. Metastatic 

disease was also present in 3 TNC-treated mice with tumors present in the spleen and lymph 

nodes (Fig. 6C-D, S4C). PBS-treated tumors were only found subcutaneously in the skin of 
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injected mice. After the humane endpoint was reached, tumors were collected for histologic 

evaluation and -catenin immunohistochemistry. Immunohistochemical staining demonstrated 

membranous -catenin staining with rare cytoplasmic staining in PBS-treated tumors (Fig. 6E). 

However, strong nuclear and cytoplasmic -catenin staining was identified in mice treated with 

recombinant TNC, indicating activation of the Wnt pathway in TNC-treated tumors (Fig. 6F).  

Taken together, these findings show that TNC treatment led to an increase in Wnt activation, 

tumor burden, tumor cell invasion, and tumor metastasis.  

4. Discussion: 

TNC is expressed widely in development but is largely silenced in adulthood. In this study, using 

multiple large patient cohorts, in vitro models, and in vivo mouse models, we identified TNC as 

an important modulator of Wnt signaling in thyroid cancer.  Our data demonstrate that TNC 

expression is tightly regulated in thyroid cancer, as it is expressed by tumor cells along the leading 

edge and within areas of intravascular invasion. The TNC-expressing tumor cells along the 

leading edge are immediately adjacent to Wnt-2 producing fibroblasts. This close approximation 

allows for a TNC-Wnt interaction that leads to the potentiation of Wnt signaling within both the 

invading tumor cells and adjacent stromal cells. Based on our in vivo animal studies, we speculate 

that this potentiation of Wnt signaling by TNC plays an important role in driving thyroid cancer 

invasion and metastasis. Until now, few drivers of thyroid cancer invasion have been identified. 

Thus, TNC may then serve as an important marker that could be used to inform both prognosis 

and treatment. 

 

This study also has broad implications beyond thyroid cancer. TNC had been previously shown 

to interact with Wnt ligands in a handful of developmental or fibrosis models. We show here that 

within thyroid cancer there is an interaction between TNC and Wnt-2 that leads to pathway 

activation. To our knowledge, we are the first to map the interaction between TNC and Wnt-2. 
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The existence of a new Wnt modulator could lead to new research directions for cancer 

therapeutics and beyond. First, TNC is expressed in many tissues and is important in metastasis 

and several pro-tumorigenic roles. Specifically, in breast cancer, TNC splice variants have been 

known to increase invasion.63 Further,  the mechanism behind TNC’s pro-oncogenic effect may 

be through its interaction with Wnt ligands. Within pancreatic cancer, a crosstalk between TNC 

and Wnt signaling has already been established.64 The ability of TNC to modulate Wnt signaling 

across a variety of cancers could lead to the development of target therapies for both TNC and 

Wnt. Second, Wnt-2 is expressed in many tissues and is important in development and tissue 

patterning. In the liver, Wnt-2 is expressed by endothelial cells in the central vein and is essential 

for regulating liver zonation.65 TNC expression has also been identified in inflammatory models of 

liver disease, fatty liver disease, fibrotic liver disease, and liver transplant rejection.66,67 The ability 

of TNC to modulate Wnt signaling across a variety of human diseases could lead to new 

therapeutic directions for many Wnt-driven disease processes. 

 

There are several important limitations of our study. First, analysis of TNC levels in tumor cohorts 

is performed using bulk sequencing. Such a sequencing approach limits the ability to detect the 

specific cell types that express TNC and Wnt-2. To overcome this limitation, we have performed 

RNAScope and multiplex immunofluorescence to localize their expression within patient tissues. 

Another limitation of our study is that both of our TNC variants (N-terminus and C-terminus) 

include the fibrinogen-like globe domain. As both variants pull down Wnt-2, it is possible that the 

fibrogen-like globe domain binds Wnt-2. Additional studies are needed to precisely elucidate the 

exact site of Wnt-2-TNC interaction. Finally, our in vivo mouse studies utilize a flank model of 

ATC. This model was chosen over an orthotopic model since neck ATCs lead to rapid airway 

compression, limiting our ability to perform studies on tumor growth and metastasis. However, a 

limitation of the flank model is that the tumor vasculature may not produce the same metastatic 
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disease as an orthotopic model.  Despite this limitation, TNC-treated mice with flank tumors 

showed metastasis to draining lymph nodes and spleen. 

5. Conclusion: 

Tenascin-c, a hexameric glycoprotein, has been known to increase tumor invasion and metastasis 

in non-thyroid cancers. Using multiple patient cohorts with RNA sequencing data, we show that 

thyroid cancer expresses elevated levels of tenascin-C. Within local metastasis, ATCs, and 

BRAF-mutant WDTCs, we observe increased TNC expression. Using RNA in situ hybridization 

and multiplex immunofluorescence, we are able to localize this expression within the tissue. We 

see a striking pattern emerge with TNC expression in a single-cell layer along the epithelial-

stromal border and expressed by tumor cells themselves. Additional TNC expression is identified 

at sites of intravascular invasion, directly linking TNC expression with metastasis. Mechanistically, 

we show that both the large and small splice variants of TNC bind to Wnt-2 ligand and potentiate 

Wnt signaling. Finally, in vivo mouse tumors show an increase in tumor size, tumor invasion, 

metastasis and Wnt activation when recombinant TNC is injected intratumorally. Taken together, 

we propose that TNC potentiates Wnt signaling and increases thyroid cancer tumor burden. 

These findings suggest that TNC may be a useful biomarker of thyroid cancer invasion and 

metastasis. In addition, targeting TNC may lead to therapeutic advances for some of the most 

aggressive and lethal thyroid cancers. 
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Figure 1. TNC expression is higher in thyroid cancer patient samples.  
(A) Boxplots generated with GEPIA showing TNC expression in TCGA and GTEx 
thyroid samples split by normal thyroid versus WDTC. (B-C) Boxplots showing TNC 
expression in (B) Lee et. al. showing normal, PTC, and ATC samples and (C) 
primary samples by diagnosis (benign = n of 46; well-differentiated thyroid cancer 
(WDTC) = n of 136; anaplastic thyroid cancer (ATC) = n of 20. p-values calculated 
using using Wilcoxon rank-sum test with Bonferroni correction. (D-E) TNC 
expression based on BRAF-like or RAS-like gene expression phenotypes in (D) 
TCGA WDTC Cell 2014 cohort and (E) VUMC/UW primary WDTCs. p-values 
calculated using using Wilcoxon rank-sum test with Bonferroni correction. (F) 
Progression-free survival (PFS) plot for all malignant patients with less than 50th 
percentile TNC expression (red) or greater than 50th percentile TNC expression 
(blue) in primary tumors. p-values calculated using log-rank test. 
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Figure 2. TNC expression is correlated with local 
invasion and lymph node metastasis. (A-B) Boxplots 
showing TNC expression in TCGA WDTCs split by (A) 
presence (YES) or absence (NO) of lymph node spread 
and (B) extent of extrathyroidal extension (none, minimal, 
moderate/advanced). p-values calculated using Wilcoxon 
rank-sum test with Bonferroni correction. (C) Boxplots 
showing TNC expression in primary malignant tumors from 
the VUMC/UW cohort split by presence (YES) or absence 
(NO) of associated local metastases. (D) Boxplots showing 
TNC expression in primary malignant tumors versus lymph 
node metastases in the VUMC/UW cohort. p-values 
calculated using Wilcoxon rank-sum test with Bonferroni 
correction. 
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Figure 3. TNC expression is along the epithelial stromal 
border in ATC. (A-B) RNAscope® of representative ATC samples 
showing staining for TNC (blue) or Fibroblast activating protein 
(FAP, red). (C-D) RNAscope® of representative PTC regions within 
ATC samples showing staining for TNC (blue) or FAP (red). (E) 
Multiplex-immunofluorescence staining of representative ATC 
sample showing TNC staining (green), FAP (red), and Hoechst 
nuclear stain (blue). 
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Figure 4. TNC and Wnt-2 expression are 
correlated in ATC. (A-B) Spearman’s 
correlation between hallmark Wnt/β-catenin 
gene activity in (A) Lee et. al. or (B) VUMC/UW 
bulk RNA-sequencing cohorts for all malignant 
samples. (C) Plot of Spearman’s correlations 
between Wnt ligands, Cancer-associated 
fibroblasts (CAFs), and TNC in VUMC/UW 
ATCs. (D) Spearman’s correlation between 
TNC and WNT2 in VUMC/UW ATC samples. 
(E) RNAscope® of representative ATC sample 
showing staining for WNT2 (blue) or FAP (red). 
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Figure 5. TNC variants potentiate Wnt signaling in presence of Wnt 
ligands. 
(A-B) TOPFLASH Wnt reporter readouts for K1 cells overexpressing (A) TNC 
large splice variant or (B) TNC small splice variant co-cultured with Wnt-2 
expressing WPMYs. p-values were calculated using Wald test with Tukey’s test 
correction. (C) TNC and Wnt-2 co-immunoprecipitation using several 
concentrations of recombinant Wnt-2 and 0.1 mg/mL of recombinant TNC. (D) 
Flag-tagged TNC and V5-tagged Wnt-2 co-overexpressed in HEK293 cells was 
immunoprecipitated (IP) with anti-FLAG antibody and protein A/G beads, and 
co-immunoprecipitated V5-Wnt2 was detected by immunoblotting. 
Abbreviations: WCL, whole cell lysates. * indicates non-specific band 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2024. ; https://doi.org/10.1101/2024.11.04.621959doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.04.621959
http://creativecommons.org/licenses/by-nc/4.0/


 29 

 
 

 
Figure 6. TNC expression increases tumor burden in vivo. 
(A) THJ-16T tumor burden (mm3) measured over time for tumors with PBS injections into 
tumor versus tumors with recombinant TNC injections into tumor. p-values calculated using 
linear mixed -effect model. (B) THJ-16T tumor weight after resection. p-values calculated 
using one way ANOVA. (C) H&E of THJ-16T tumor invading the liver of TNC-treated mouse. 
(D) H&E of lymph node from TNC-treated mouse that is completely replaced by 16T-PDX 

tumor. (E) Immunohistochemistry of -catenin from PBS-treated THJ-16T tumors. (F) 

Immunohistochemistry of -catenin from TNC-treated 16T-PDX tumors. 
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