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Abstract: 25 

Nuclear RNAi in C. elegans induces a set of transgenerationally heritable marks of H3K9me3, 26 

H3K23me3, and H3K27me3 at the target genes. The function of H3K23me3 in the nuclear RNAi 27 

pathway is largely unknown due to the limited knowledge of H3K23 histone methyltransferase (HMT). 28 

In this study we identified SET-21 as a novel H3K23 HMT. By taking combined genetic, biochemical, 29 

imaging, and genomic approaches, we found that SET-21 functions synergistically with a previously 30 

reported H3K23 HMT SET-32 to deposit H3K23me3 at the native targets of germline nuclear RNAi. 31 

We identified a subset of native nuclear RNAi targets that are transcriptionally activated in the set-32 

21;set-32 double mutant. SET-21 and SET-32 are also required for robust transgenerational gene 33 

silencing induced by exogenous dsRNA. The set-21;set-32 double mutant strain exhibits an enhanced 34 

temperature-sensitive mortal germline phenotype compared to the set-32 single mutant, while the set-21 35 

single mutant animals are fertile. We also found that HRDE-1 and SET-32 are required for 36 

cosuppression, a transgene-induced gene silencing phenomenon, in C. elegans germline. Together, these 37 

results support a model in which H3K23 HMTs SET-21 and SET-32 function cooperatively to ensure 38 

the robustness of germline nuclear RNAi and promotes the germline immortality under the heat stress.  39 

  40 
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 41 

Introduction: 42 

RNA interference refers to a diverse set of gene silencing activities that are guided by the small 43 

interfering RNAs (siRNAs) 
1-3

. Broadly speaking, the underlying gene silencing mechanisms of RNAi 44 

fall into two categories: transcriptional gene silencing (TGS) 
4-8

 and post-transcriptional gene silencing 45 

(PTGS) 
9, 10

. The TGS mechanism, which is also referred to as nuclear RNAi, guides the formation of 46 

heterochromatin at transposons and other repetitive DNA, and plays an essential role in genome stability 47 

and germ cell development in plants, fungi, and animals 
11, 12

. Since its initial discovery in plants 
13, 14

 48 

and S. pombe 
15

, nuclear RNAi has been used as a model system to explore different aspects of 49 

chromatin biology, particularly in the regulatory function of non-coding RNA and the mechanisms of 50 

transgenerational epigenetic inheritance (TEI) 
16, 17

. 51 

In C. elegans, exogenous dsRNA or piRNA can induce various heterochromatin marks including 52 

H3K9me3 
18, 19

, H3K27me3 
20

, and H3K23me3 
21

 at a target gene. Remarkably, RNAi-induced histone 53 

modifications and the silencing effect can persist for multiple generations 
18, 20, 21

, which makes C. 54 

elegans a tractable system to study TEI.  The heterochromatic histone modifications also mark the native 55 

targets of the germline nuclear RNAi, which are largely composed of transposable elements 
20-23

. 56 

Surprisingly, although H3K9me3 is one of the best-known constitutive heterochromatin marks, we and 57 

others found that the H3K9me3 appears to be dispensable for transcriptional repression at the nuclear 58 

RNAi target genes 
24-26

. H3K27me3 is a hall mark for the facultative heterochromatin. In C. elegans, 59 

H3K27me2/3 in adult germ cells is deposited by the Drosphila E(Z) and human EZH2 homolog MES-2 60 
27, 28

. Loss of MES-2 leads to sterility
28

, which makes it difficult to investigate the function of 61 

H3K27me3 in C. elegans nuclear RNAi.   62 

 Although H3K23me is an evolutionarily conserved heterochromatin mark found in plants 
29

,  63 

fungi 
30

, and animals including mammals 
30-37

, much less is known about this histone modification 64 

compared to H3K9me or H3K27me. Loss of H3K23me in Tetrahymena is associated with an increase in 65 

DNA damage 
32

 . H3K23me is an abundant histone modification throughout C. elegans development 66 

and is present in both the soma and germline
33, 34

. The whole-genome distributions of H3K23m3 and 67 

H3K9me3 are similar to each other, and both are highly enriched in the heterochromatin in C. elegans 
21

.   68 

 We previously reported that SET-32 can catalyze H3K23 methylation in vitro and is required for 69 

the nuclear RNAi-mediated H3K23me3 in vivo 
21

. However, Loss of SET-32 only leads to a partial loss 70 

of H3K23me3, indicating the existence of additional H3K23 HMTs
21

. Most of the known HTMs contain 71 

an evolutionarily conserved catalytic SET domain 
38

. In C. elegans, there are 38 SET domain-containing 72 

proteins 
39

. In this paper, we identified and characterized SET-21 as the other H3K23 HMT that 73 

functions in the germline nuclear RNAi pathway.  74 

 75 

Results 76 

SET-21 exhibits H3K23 methyltransferase activity in vitro 77 

To identify other putative H3K23 methyltransferases, we performed a phylogenetic analysis of 78 

the 38 C. elegans SET domain-containing proteins
39

. Among them, SET-21 and SET-33 have the 79 
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highest homology to SET-32 (Fig. 1A). set-33 is listed as a pseudogene in the WormBase 
40

 and 80 

therefore was not investigated by this study.  81 

 SET-21 and SET-32 share 43% sequence identity, and the two genes also share similar gene 82 

structures (Fig. S1A, B). To determine whether SET-21 is an H3K23 HMT, we performed an in vitro 83 

HMT assay by using purified recombinant GST-SET-21 and H3 proteins. Mass spectrometry analysis of 84 

the reaction product showed that GST-SET-21 methylated the lysine 23 in H3. Both H3K23me1 and 85 

H3K23me2 were detected in the reaction product (Fig. 1B), although H3K23me3 was not detected. 86 

Future studies are needed to explain why our GST-SET-21 cannot produce H3K23me3 in vitro and 87 

determine whether SET-21 can produce H3K23me3 in vivo. Nevertheless, our results indicate that SET-88 

21, the closest SET-32 homology in C. elegans, exhibits H3K23 HMT activity in vitro.  89 

 90 

SET-21 is expressed in C. elegans adult germline and embryo 91 

Based on the published tissue-specific and developmental RNA-seq data sets 
41

 
42

, both set-21 92 

and set-32 mRNA expressions appeared to be germline-enriched (Fig. S1C and D). We performed 93 

immunofluorescence (IF) microscopy analysis using gonads dissected from adult hermaphrodite animals 94 

expressing the SET-21(native)::3xFLAG or SET-32(native)::3xFLAG protein. Our anti-FLAG IF 95 

microscopy of SET-32(native)::3xFLAG agrees with the previous study
36

 showing that SET-32 is 96 

expressed throughout the different developmental stages of adult germline (Fig. 2A, C). SET-32 is 97 

present in both the cytoplasm and nucleus.  98 

We found that SET-21::3xFLAG was strongly enriched in the nuclei of oocyte diakinesis germ 99 

cells (Fig. 2A-B). Interestingly, the SET-21 expression progressively intensifies as diakinesis oocytes 100 

mature.  Only a background level of SET-21::3xFLAG was observed in the earlier stages, including the 101 

mitotic proliferating and meiotic pachytene cells. We did not detect any expression of SET-21::3xFLAG 102 

in sperm. This result indicates that SET-21 expression is developmentally regulated and, in an adult 103 

animal, predominantly expressed in the oocyte nuclei.  104 

 We also performed anti-FLAG IF analyses in embryos. We found that both SET-21::3xFLAG 105 

and SET-32::3xFLAG proteins were broadly expressed in embryos (Fig. S2). Like adult germline, SET-106 

32 is present in both the cytoplasm and nuclei of embryos, while SET-21 is strongly enriched in the 107 

nuclei of embryos.  108 

 109 

SET-21 and SET-32 promote germline immortality at a high temperature 110 

To characterize the function of SET-21, we obtained a set-21 mutant strain created by the 111 

genomic deletion consortium project 
43

. The set-21(ok2320) allele
43

 carries a 1.6 kb deletion that 112 

includes the entire catalytic SET domain of SET-21, likely resulting in a loss-of-function mutation. In 113 

addition, we constructed a putatively catalytic inactive mutation of set-21 (Y502F, allele name red109). 114 

The tyrosine 502 residue is in the highly conserved Motif IV of the SET domain (Fig S1A) and its 115 

phenolic hydroxyl group is essential for the binding of S-adenosyl-methionine and catalysis in other 116 

HMTs 
38

.  To examine any possible synthetic effect, we constructed two set-32;set-21 double mutant 117 

strains, each carrying a different mutant set-21 allele. 118 
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   All of the set-21, set-32, and set-32;set-21 mutants were continuously maintained in our 20°C 119 

incubator for at least one year without any sign of sterility. After shifting to 25°C, we found that the set-120 

32;set-21 double mutant animals, regardless which of the two aforementioned set-21 mutant alleles was 121 

used, exhibited a progressive reduction in brood size and became sterile after approximated eight 122 

generations at 25°C (Fig. 2D and S3A-B). Such phenotype, termed mortal germline (Mrt), is common to 123 

the mutations in the germline nuclear RNAi pathway 
44, 45

. We examined set-32;set-21 mutant animals 124 

cultured at 25°C for seven generations. We found that some mutant animals lacked sperm while some 125 

lacked oocytes or both types of gametes (Fig. S3C), indicating that both male and female germ cell 126 

development is defective in the mutant. 127 

set-32 mutant animals also exhibited the Mrt phenotype (Fig. 2D), consistent with the previous 128 

reports 
36, 46

 . Compared to the set-32;set-21 mutant animals, it took much longer (>20 generations) for 129 

the set-32 mutant to reach complete sterility in our analysis. Neither of the two set-21 mutant strains 130 

showed any sign of the Mrt phenotype at 25°C (up to 23 generations). Our results indicated that SET-21 131 

and SET-32 function synthetically to promote germline immortality at an elevated temperature.  132 

 133 

SET-32 and SET-21 are required for the H3K23me3 at the native nuclear RNAi targets 134 

Knowing that SET-21 can methylate H3K23 in vitro, we decided to investigate the role of SET-135 

21 in H3K23me in vivo. To this end, we performed H3K23me1, H3K23me2, and H3K23me3 ChIP-seq 136 

in the N2 (WT), set-32, set-21, and set-32;set-21 young adult animals. To detect any obvious global 137 

changes, we made whole-chromosome coverage plots for each mutant in comparison with WT (Fig. S4). 138 

Each of the three mutants exhibited essentially WT-like profiles for all three H3K23me marks at the 139 

resolution we used for this analysis (10 kb).  140 

We then increased the resolution to 1 kb for the mutant versus WT comparison (Fig. 3). We 141 

found that set-21 mutation alone had virtually no effect on H3K23me1, me2, or me3 ChIP-seq signals. 142 

set-32 single mutation had virtually no effect on H3K23me1 or H3K23me2, but resulted in modest 143 

decreases in H3K23me3 for 165 kb regions (cutoff: mutant/WT  2/3, FDR  0.05), which is consistent 144 

with our previous report 
21

. Mutating both set-32 and set-21 had no impact on H3K23me1, but showed 145 

modest decreases in H3K23me2, and significant losses in H3K23me3 (Fig. 3).  146 

To perform more detailed, quantitative analysis of H3K23me3 ChIP-seq data, we identified 147 

H3K23me3-enriched genomic regions using MACS2 
47

. We first compared the H3K23me3 ChIP-seq 148 

and input signals in the WT animals, and identified 9918 H3K23me3 peaks, which covers approximately 149 

5% of the genome (4.9 Mb) (Table 1).  We then asked which of these peaks are dependent on HRDE-1 150 

or SET-32/21 for H3K23me3. To this end, H3K23me3 ChIP-seq analysis was also performed for the 151 

hrde-1 mutant in this study.  152 

By comparing WT with hrde-1 or set-32;set-21 mutants, we identified 372 peaks (496 kb) and 153 

408 peaks (512kb) in which the H3K23me3 enrichment is dependent on HRDE-1 or SET-32/21, 154 

respectively (cutoff: mutant/WT  2/3, FDR  0.05), (Fig. 3A and Table 1. See Fig. 5 for examples.).  155 

We found that the HRDE-1-dependent H3K23me3 peaks and the SET-32/21-dependent ones largely 156 
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overlap (Fig. 4A), suggesting that SET-32/21-dependent H3K23me3 is largely limited to the germline 157 

nuclear RNAi targets.  158 

Consistent with the 1kb whole-genome analyses (Fig. 3), set-32 mutant exhibited weaker 159 

H3K23me3 loss in the SET-32/21-dependent regions than the set-32;set-21 double mutant (Fig 4B and 160 
21

); while the set-21 mutant did not show any obvious H3K23me3 losses in the same regions (Fig. 4B).  161 

We also performed H3K23me3 ChIP-seq in the met-2 set-25 double mutant and found that loss of these 162 

two H3K9 HMTs did not cause significant reduction in the H3K23me3 level (Fig. 4B). 163 

Our results indicate that SET-32 and SET-21 are germline nuclear RNAi-specific H3K23 164 

methyltransferases. We note that, outside of the germline nuclear RNAi targets, most H3K23me3 peaks 165 

in C. elegans genome are independent of HRDE-1 or SET-32/21, indicating an RNAi-independent 166 

H3K23me3 pathway(s) and other unknown H3K23 HMTs.  167 

 168 

SET-32 and SET-21 are also required for the H3K9me3 at the native nuclear RNAi targets 169 

SET-32 has been also shown to promote H3K9me3 in vivo in previous studies 
24, 36

. To 170 

investigate the possible role of SET-32/21 in whole-genome distribution of H3K9me3, we performed 171 

H3K9me3 ChIP-seq in WT and set-32;set-21, as well as hrde-1 and met-2 set-25 mutant animals. 172 

H3K23me3 and H3K9me3 have almost the same genomic distribution in WT animals (Fig. 173 

S5A)
21, 33

. So we used the genomic annotations of the H3K23me3 peaks for the H3K9me3 analysis. We 174 

first determined the regions that showed at least 33.3% reduction (FDR  0.05) in H3K9me3 in hrde-1, 175 

set-32;set-21, or met-2 set-25 mutant and called these regions with HRDE-1, SET-32 SET-21, or MET-2 176 

SET-25-dependent H3K9me3, respectively. 177 

We found that HRDE-1-dependent H3K9me3 and HRDE-1-dependent H3K23me3 are largely 178 

overlap (Fig. 4C).  SET-32 SET-21-dependent H3K23me3 and SET-32 SET-21-dependent H3K9me3 179 

also have very similar genomic distribution (Fig. 4D).  In contrast, MET-2 SET-25-dependent H3K9me3 180 

covers more genomic regions than MET-2 SET-25-dependent H3K23me3 (Fig. 4E and Fig. 6). In 181 

addition, the overlap between HRDE-1-dependent H3K23me3 (or H3K9me3) and MET-2 SET-25-182 

dependent H3K23me3 (or H3K9me3) are much smaller than the ones between HRDE-1 and SET-32 183 

SET-21 (Fig. S5B and C). These results suggest that germline nuclear RNAi-mediated H3K23me3 and 184 

H3K9me3 are two highly correlated events, and both are dependent on SET-32 and SET-21. Given the 185 

lack of the in vitro H3K9 HMT activity for SET-32 
21

 and SET-21 (this study), we suggest that the 186 

H3K9me3 at the nuclear RNAi targets is deposited by MET-2 and SET-25 and is downstream to the 187 

activity of SET-32/21-mediated H3K23me3.  188 

 189 

SET-32 and SET-21 are required for transcriptional repression of a subset of germline nuclear 190 

RNAi native targets 191 

We performed RNA-seq of WT, set-32, set-21, set-32;set-21, and hrde-1 mutant animals. There 192 

are 484 protein-coding genes became derepressed in the hrde-1 mutant using a minimal fold change 193 

[hrde-1/WT] of 3.0 (FDR  0.02) (Fig. S7A and Table 2), which is consistent with our previous studies 194 
22, 23

.  Using the same cutoff, we found that only four and one genes were derepressed in the set-32 and 195 
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set-21 single mutants, respectively. 24 genes were derepressed in the set-32;set-21 mutant animals (Fig. 196 

S6A-B and Fig. 5E and Table 2). All four genes that were derepressed in the set-32 mutant were also 197 

derepressed in the set-32;set-21 double mutant. The single gene that was derepressed in the set-21 198 

mutant is likely due to genetic background because the same gene was not derepressed in set-32;set-21 199 

double mutant or a different set-21 allele (Fig. S6C). We named the 24 desilenced genes as set-32/21-200 

sensitive targets. The siRNAs of set-32/21-sensitive targets are bound by HRDE-1 (Fig. S10A). 17 of 201 

the set-32/21 sensitivity targets are also desilenced in the hrde-1 mutant (Fig. 3B).  202 

These results suggest that SET-32 and SET-21 play a redundant role in mRNA silencing. This is 203 

consistent with their redundant roles in H3K23me3 at nuclear RNAi targets and germline fertility. 204 

Majority of the 24 set-32/21-sensitive genes are germline nuclear RNAi targets. However, it is 205 

somewhat surprising that only a small fraction of the germline nuclear RNAi targets were desilenced in 206 

the set-32;set-21 mutant despite that most of the germline nuclear RNAi targets showed loss of 207 

H3K23me3 in the set-32;set-21 mutant.  208 

To investigate the role of SET-32/21 in transcriptional repression, we performed Pol II ChIP-seq 209 

analysis of WT, hrde-1, and set-32;set-21 mutant animals. We found that regions with SET-32/21-210 

dependent H3K23me3 exhibited a strong tendency to have increased Pol II occupancies in both the 211 

hrde-1 and set-32;set-21 mutants (Fig. 5A and Fig. 6). Therefore, SET-32 and SET-21 are required for 212 

transcriptional repression at these native nuclear RNAi targets. 213 

Loss of SET-32/21 changes siRNA expressions for many genes  214 

 Previous studies have found intricate connection between chromatin enzymes and siRNA 215 

dynamics in C. elegans 
26, 48, 49

. To investigate the potential roles of SET-32/21 in siRNA regulation, we 216 

performed the sRNA-seq analysis. We found very few siRNA changes in the set-21 mutant (Fig. S6E). 217 

In contrast, both set-32 and set-32;set-21 mutants exhibited extensive siRNA changes and the two 218 

mutants shared very similar siRNA profiles (Fig. S6D, S8C, S8D, and Table 2).  219 

We found that the siRNA changes are more complex than the mRNA changes in the set-32;set-220 

21 mutant (Fig. 5E, 5F and Fig. S9). We found 138 genes had higher siRNA expression levels in set-221 

32;set-21 compared to WT animals and 77 genes had lower siRNA expression levels (cutoff: fold 222 

change ≥3.0 and FDR ≤0.02). Some of the top changes with increased mRNA expressions showed 223 

losses of siRNA expressions in the set-32;set-21 mutant (Fig. 6 and S9A and S9C). Most of the siRNA 224 

changes, particularly for the genes with increased siRNA expressions, were not associated with any 225 

significant changes in mRNA expression in the set-32;set-21 mutant (Fig. S9). Therefore, the impact of 226 

set-32;set-21 mutations are far greater on the siRNA profiles than the mRNA profiles: affecting more 227 

genes and resulting both increased and decreased siRNA expressions.  228 

  Mutation in the key nuclear RNAi factor hrde-1 also resulted in complex and extensive changes 229 

in siRNA expression profiles (Fig. S7B) 
22

. We found that the majority of siRNA changes in the set-230 

32;set-21 mutant also showed corresponding changes in the hrde-1 mutant (Fig. 5C and 5D), indicating 231 

an overlapping role in siRNA regulation between HRDE-1 and SET-32/21.  232 

  We analyzed our published HRDE-1 and CSR-1 coIP sRNA-seq data50 and found that siRNAs 233 

showed differential expressions (either increase or decrease) in the set-32;set-21 mutant tend to be 234 
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bound by HRDE-1, instead of CSR-1 (Figure. S10), indicating that the set-32;set-21 mutations 235 

selectively impact the WAGO-class secondary siRNAs (22G-RNAs).  236 

SET-32 and SET-21 only partially contribute to the transcriptional repression at germline nuclear 237 

RNAi targets 238 

 As mentioned in the previous section, some of the top set-32/21-sensitive targets (measured by 239 

mRNA changes) showed losses of siRNA expression in the set-32;set-21 double mutant. We noticed 240 

that these genes also showed loss of siRNAs in the hrde-1 mutant (e.g. f15d4.5 Fig. 6A). Can restoring 241 

the siRNA expression rescue the transcriptional silencing at these targets in hrde-1 or set-32;set-21 242 

mutant animals? To address this question, we used a piRNA-based gene silencing technology, termed 243 

piRNAi 
51

, which expresses a set of custom designed piRNAs from an extrachromosomal array. The 244 

ectopic piRNAs result in abundant secondary siRNAs against the target gene in the germline, which then 245 

leads to both classical and nuclear RNAi at the target gene 
51-54

. 246 

Here we chose f15d4.5 and c38d9.2 as piRNAi targets. Both genes are annotated as putative 247 

protein-coding genes without any known functions in the Wormbase. They are native germline nuclear 248 

RNAi targets with abundant siRNAs in WT animals but exhibited loss of siRNAs and transcriptional 249 

derepression in the hrde-1 and set-32;set-21 mutants (Fig. 7B-D).  We transformed the hrde-1 and set-250 

32;set-21 mutant animals with a piRNAi transgene that expresses both anti-f15d4.5 and anti-c38d9.2 251 

piRNAs. A control piRNAi transgene, which expresses a set of anti-randomly sequence piRNAs, was 252 

also introduced into the mutant strains. We first performed sRNA-seq and confirmed that the anti-253 

f15d4.5 and c38d9.2 piRNAi, but not the control piRNAi, restored their siRNA expressions to the WT or 254 

even higher levels in both mutant strains (Fig. 7B).  255 

We then performed RT-qPCR and found that the anti-f15d4.5+c38d9.2 piRNAi, but not the 256 

control piRNAi, was able to suppress their mRNA expressions in both hrde-1 and set-32;set-21 mutants 257 

(Fig. 7C). However, a much higher degree of suppression was observed in the set-32;set-21 mutant than 258 

in the hrde-1 mutant (e.g. 2.5- and 242-fold reductions in c38d9.2 mRNA expressions in hrde-1 and set-259 

32;set-21, respectively). The partial rescue of silencing by piRNAi in the hrde-1 mutant is consistent 260 

with the model that the piRNAi-induced secondary siRNAs rescue the PTGS, but not the TGS, as 261 

HRDE-1 is required for the TGS but not the PTGS mechanism. The near complete silencing by piRNAi 262 

observed in set-32;set-21 mutant indicates that SET-32 and SET-21 are dispensable for silencing at 263 

these target genes when both HRDE-1 and siRNAs are present. 264 

We performed Pol II ChIP-seq to investigate the role of SET-32/21 in the transcriptional 265 

repression when siRNAs are restored. First we observed that that anti-f15d4.5 and c38d9.2 piRNAi did 266 

not reduce the Pol II level at the target genes in the hrde-1 mutant animals, which is consistent with the 267 

essential role of HRDE-1 in TGS. In set-32;set-21 mutant, anti-f15d4.5 and c38d9.2 piRNAi reduced the 268 

Pol II level at these target genes by 83.8% and 50%, respectively, compared to control piRNAi in the 269 

same mutant. However, restoring the siRNAs in the set-32;set-21 mutant did not fully rescue the 270 

transcriptional repression defect. The Pol II levels at c38d9.2 and f15d4.5 in the set-32;set-21 (piRNAi+) 271 

were still 1.7 and 4.9 times higher than their WT levels (i.e., when fully suppressed, Fig. 7D). The Pol II 272 
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ChIP-seq results are consistent with mRNA-seq results, which showed a slight above the WT-level of 273 

mRNA expression of the two targets in the set-32;set-21 mutant (piRNAi+). 274 

Based on these results, we suggest that SET-32/21-mediated H3K23me3 is a partial contributor 275 

to the siRNA-guided transcriptional repression. For most of the native RNAi targets, loss of H3K23me3 276 

can be compensated by other siRNA-guided TGS mechanisms, and therefore does not lead to significant 277 

desilencing at the mRNA level.  The requirement of SET-32 and SET-21 for certain sensitive targets 278 

such as f15d4.5 and c38d9.2 may be due to siRNA loss or other unknown impacts of heterochromatin 279 

defects.   280 

 281 

The requirement of SET-21 and SET-32 for gene silencing triggered by exogenous dsRNA, piRNA, 282 

and transgene 283 

Nuclear RNAi against a germline-expressed euchromatin gene can be induced by different 284 

exogenous trigger molecules, including dsRNA
8
, piRNA

52
, and extrachromosomal array

25
. Here we 285 

investigated whether SET-32 and SET-21 are required for these silencing pathways.    286 

dsRNA. We fed WT, hrde-1, met-2 set25, and set-32;set-21 animals with oma-1 dsRNA-287 

expressing E. coli. Two different set-32;set-21 mutant strains were used, each carrying a different set-21 288 

mutant allele.  RT-qPCR analysis of oma-1 pre-mRNA indicated that the dsRNA feeding induced a 289 

strong transcriptional repression of oma-1 in WT, met-2 set25, and set-32;set-21 mutant animals (Fig. 290 

8B). The hrde-1 mutant was defective in the dsRNA-induced transcriptional repression at oma-1 as 291 

previously reported
24, 44

. These results indicate that SET-32 and SET-21 are not required for dsRNA-292 

induced transcriptional repression.  293 

To measure the heritable RNAi effect, we collected two generations of progeny (F1 and F2) after 294 

dsRNA feeding had been discontinued (Fig. 8A). Oma-1 silencing, measured by the pre-mRNA level, 295 

persisted in both F1 and F2 generations in the WT animals, but completely dissipated in the F1 296 

generation for the hrde-1 mutant (Fig. 8B) as expected 
24, 44, 52

. met-2 set-25 showed an enhanced 297 

heritable RNAi compared to WT, which is likely due to the antagonistic role of MET-2 in heritable 298 

RNAi as previously reported 
26

. In both set-32;set-21 mutant strains, oma-1 silencing occurred in the F1 299 

generation, but the degree of silencing was weaker than the WT animals (Fig. 8B). At the F2 generation, 300 

the heritable silencing effect was completely lost for the set-32;set-21 mutants. These results indicate 301 

that SET-21 and SET-32 are required for a robust heritable RNAi effect induced by dsRNA. 302 

piRNA. We performed piRNAi against oma-1 in WT and set-32;set-21 mutant animals. We 303 

examined the piRNAi transgene-containing animals, as well as the descendants that had lost the piRNAi 304 

transgene for one or several generations (Fig. 8C). This allowed us to examine the piRNA-induced 305 

heritable gene silencing effect. RT-qPCR was performed to measure the oma-1 mRNA expression. We 306 

found that oma-1 piRNAi silenced oma-1 mRNA expression in both WT and set-32;set-21 animals (Fig. 307 

8D). The heritable silencing profiles shown in the transgene-negative descendants were also similar 308 

between WT and set-32;set-21 mutant animals (Fig. 8D). These results indicate that SET-32 and SET-21 309 

are not required for exogenous piRNA-induced silencing, either at the piRNA(+) generation or the 310 

heritable silencing.  311 
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Cosuppression. In addition to dsRNA and piRNA, a germline gene in C. elegans can also be 312 

heritably silenced by a homologous extrachromosomal transgene, a phenomenon called cosuppression 313 
55-57

. DNA fragment injected into C. elegans syncytial germline forms DNA repeat structure called 314 

extrachromosomal array 
58

. The repetitive DNA nature of such transgene has been suggested as the 315 

triggering signal for silencing both the transgene and the homologous native gene in the germline 
59

. 316 

Cosuppression shares some of the mechanisms of RNAi, including secondary siRNAs and heritable 317 

silencing 
25, 55, 56

. Much of its mechanism, especially the early steps of the pathway, is not well 318 

understood.  319 

 We transformed worms with an extrachromosomal transgene array carrying a partial oma-1 320 

cDNA driven by the oma-1 promoter. The 492 nt oma-1 cDNA fragment covers exons 2-4 and contains 321 

a SNP every 30 nt. We found the oma-1 transgene caused a 10-fold reduction in oma-1 mRNA 322 

expression in WT animals (Fig. 8E). We also observed strong cosuppression effect in met-2 set-25 323 

double (11-fold) and set-21 mutant animals (5-fold). The cosuppression effect was defective in set-32, 324 

set-32;set-21, and hrde-1 mutant animals. These results indicate that the germline nuclear RNAi 325 

pathway and H3K23me3 is essential for cosuppression.  326 

 327 

Discussion 328 

In this study, we identified a novel H3K23 HMT, SET-21. Together with SET-32, these two 329 

HMTs deposit most if not all H3K23me3 specifically at the germline nuclear RNAi targets, and function 330 

in synergy to promote transgenerational RNAi and fertility. Our work deepens the understanding of 331 

nuclear RNAi, especially the complexity of chromatin regulation and its connection to transgenerational 332 

epigenetic inheritance.  333 

The relationship between SET-32 and SET-21 334 

SET-21 is the closest homolog of SET-32 in C. elegans. The two genes also have similar gene 335 

structures in terms of exon and intron organization (Fig. S1B), suggesting that they are likely to be 336 

evolved from a gene duplication event. However, the two genes are not completely redundant of each 337 

other, indicated by stronger phenotypes (e.g., H3K23me3 loss and Mrt) shown by the set-32 mutant than 338 

the set-21 mutant. On the other hand, SET-32 alone is not sufficient to replace SET-21 evidenced by a 339 

much enhanced phenotype of the set-32;set-21 double mutant compared to the set-32 single mutant. It is 340 

possible that the apparent synergy between SET-21 and SET-32 is due to their differential expression 341 

within the germline tissue: SET-21 expression is limited to oocytes while SET-32 is expressed 342 

throughout the different stages of adult germline. It is also possible that SET-21 and SET-32 have 343 

different biochemical activities. Future studies are needed to investigate these hypotheses. set-32 and 344 

set-21 have also been reported to extend the life span of daf-2 mutant animals. SET-32 and SET-21 345 

appear to function in the same pathway instead of synergistically for the life span phenotype
60

, 346 

suggesting their role in life span may be independent of their nuclear RNAi function.  347 

 348 

SET-32/21-dependent H3K23me3 is specific to the germline nuclear RNAi pathway 349 
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Our ChIP-seq analysis showing that HRDE-1- and SET-32/21-dependent H3K23me3 has very 350 

similar genomic profiles, which account only for approximately 10% of all H3K23me3-enriched regions 351 

in the genome. This probably explains why we were not able to detect H3K23me3 loss in the set-32;set-352 

21 mutant by either western blotting or mass spectrometry (data not shown).  353 

H3K23me3 in nuclear RNAi-independent heterochromatin is not affected in the set-32;set-21 354 

mutant, suggesting the existence of addition H3K23 HMTs.  Identifying the unknown H3K23 HMTs 355 

will be important to investigate the broader function of H3K23me3, which is abundant in C. elegans 
34

.  356 

We do not understand how SET-32 and SET-21 are recruited to the nuclear RNAi targets at this 357 

point.  Previous proteomic studies did not detect SET-32 or SET-21 in the HRDE-1 co-358 

immunoprecipitation experiment 
61

, suggesting that either HRDE-1 and SET-32/21 interactions are very 359 

weak, or SET-32/21 were indirectly recruited to chromatin targets by HRDE-1.  360 

 361 

The relationship between H3K23me3 and H3K9me3 362 

 A previous study reported that MET-2 and SET-25 are the sole H3K9 HMTs in the embryo
62

.   363 

We previously found that adult met-2 set-25 double mutant had only a partial loss of H3K9me3 at 364 

nuclear RNAi targets 
24

. In the met-2 set-25;set-32 triple mutant, the H3K9me3 level was reduced to the 365 

background level 
24

. A stronger loss of H3K9me3 was also reported in set-25;set-32 mutant germline 366 

compared with set-25 or set-32 single mutant 
36

. Interestingly, we also observed strong loss of 367 

H3K9me3 at germline nuclear RNAi targets in the set-32;set-21 mutant in this study. Based on these 368 

results, we suggest a model in which MET-2 and SET-25 only partially contribute to RNAi-dependent 369 

H3K9me3, and additional H3K9 HMTs also function in the nuclear RNAi pathway.  370 

  SET-32/21-dependent H3K9me3 and H3K23me3 profiles correlate well with each other. It is 371 

conceivable that the both H3K9me3 and H3K23me3 at nuclear RNAi targets are deposited by SET-21 372 

and SET-32, as mammalian EHMT1/GLP and EHMT2/G9a are known to deposit both H3K9me and 373 

H3K23me 
63-65

.  Our HMT assays argue against this possibility. However, we cannot rule out that SET-374 

32, SET-21, or both can deposit both H3K23me3 and H3K9me3 in vivo. It is also possible that an 375 

unknown HMT functions in a H3K23me3-dependent manner to deposit H3K9me3 at the nuclear RNAi 376 

targets. Future study is needed to test these hypotheses. 377 

 378 

The transcriptionally repressive role of H3K23me3 379 

 Our Pol II chip-seq analyses indicate that SET-32 and SET-21 promote transcriptional repression 380 

at germline nuclear RNAi targets. However, both H3K9me3 and H3K23me3 levels are reduced in the 381 

set-32;set-21 mutant. Which of the two histone modifications contribute to transcriptional repressive? 382 

We currently favor H3K23me3 for this role because (1) H3K23me3 is much more abundant than 383 

H3K9me3 in C. elegans 
34

, and (2) the near complete loss of H3K9me3 in the met-2 set-25;set-32 triple 384 

mutant did not exhibit transcriptional repression defect. However, we cannot rule out both H3K23me3 385 

and H3K9me3 are needed for the transcriptional repression. We note that not all nuclear RNAi targets 386 

that showed increased Pol II occupancy in the set-32;set-21 mutant. The hrde-1 mutant had more 387 

desilencing events, measured by mRNA levels, than the set-32;set-21 mutant. Based on these results, we 388 
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suggest the following model: SET-32/21-dependent H3K23me3 repress the chromatin access of Pol II. 389 

But this is not the sole silencing mechanism of nuclear RNAi. Other HRDE-1-guided activities may 390 

eliminate the transcripts through an unknown co-transcriptional silencing mechanism.  391 

 392 

SET-32 and SET-21 as regulators of siRNA homeostasis 393 

 Interestingly, mutations in set-32 and set-21 led to a much more extensive changes in global 394 

siRNA expression pattern than mRNA. We note that some genes showed decreased siRNA expression, 395 

while some other genes showed increased siRNA expression. This suggests that the impact of SET-32 396 

and SET-21 on siRNA expression is likely to be indirect. In some targets, the loss of siRNAs in the set-397 

32;set-21 mutant can potentially explain their silencing defects, evidenced by partial rescue of 398 

transcriptional silencing defect in the set-32;set-21 mutant by re-introducing corresponding siRNAs.  399 

 400 

SET-32 and SET-21 are required for TEI in gene silencing and transgenerational fertility  401 

 Previous studies showed that SET-32 promotes the establishment of transgenerational epigenetic 402 

silencing either at some native germline nuclear RNAi targets or exogenous dsRNA-induced heritable 403 

RNAi 
17, 48

. Here we showed that SET-32 and HRDE-1 are also essential for transgene-induced silencing 404 

(cosuppression) in C. elegans germline. Furthermore, SET-32 and SET-21 function together to promote 405 

exogenous dsRNA-induced heritable RNAi. Similar to other germline nuclear RNAi factors, loss of 406 

SET-32 and SET-21 leads to the mortal germline phenotype at an elevated temperature. These results 407 

indicate that SET-32 and SET-21 are key TEI factors in C. elegans. Further investigation of the 408 

molecular and developmental mechanisms of these two enzymes and H3K23me3 should provide insight 409 

of novel aspects of TEI in animals.   410 

 411 

 412 

Methods: 413 

Worm strains 414 

C. elegans strain N2 (PD1074) is a cloned population derived from the original “Bristol” variant of C. 415 

elegans 
66

 and was used as the standard WT strain. Alleles used in this study were LG I: set-32(red11), 416 

LG III: hrde-1(tm1200), met-2(n4256) set-25(n5021), LG IV: set-21(ok2320), set-21(red109).  417 

N2(PD1074), hrde-1(tm1200), met-2(n4256), set-25(n5021), and set-21(ok2320) strains were acquired 418 

from Caenorhabditis Genetics Center (CGC). We constructed the set-21(ok2320);set-32(red11) or set-419 

21(red109);set-32(red11) double mutant by CRISPR method as described in
67, 68

. C. elegans culture was 420 

as previously described
69

 in a temperature-controlled incubator. Worms were cultured at 20C for all 421 

experiments except the multigenerational fertility assay at 25C. 422 

Phylogenetic analysis of the 38 C. elegans SET-domain containing proteins were performed using 423 

the Clustal Omega program 
70

 with the default setting.  424 

GST-SET-21 protein purification 425 
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SET-21 cDNA was prepared by RT-PCR using C. elegans mRNA and cloned into the pGEX-p6-1 426 

vector. GST-SET-21 protein was obtained using a protein expression and purification procedure 427 

previously described in 
21

.  428 

In vitro HMT assay and mass spectrometry. 429 

The 75 µL HMT assay mixture contained 0.15 µM GST-SET-21, 213 µM S-adenosylmethionine, 2.5 430 

µM H3.1, in 1X HMT buffer (50 mM Tris-HCl, pH 8.0, 20 mM KCl, 10 mM MgCl2, 0.02% Triton X-431 

100, 1 mM DTT, 5% glycerol, and 1 mM PMSF). The reaction was incubated for 2 hours at 20C. The 432 

histone peptides were prepared and analyzed by mass spectrometry as described in 
21, 71

. 433 

Brood size analysis and multigenerational fertility assay 434 

Multigenerational brood size analysis was performed at 25°C (restrictive temperature). Worms were 435 

maintained at 20°C (permissive temperature) without starvation for at least 5-6 generations before the 436 

brood size analysis. Ten L2/L3 worms from each strain were transferred to one plate at 25°C. Their 437 

progeny, which grew at 25°C since 1-cell embryo, was considered as F1. When the F1 animals reached 438 

the L4 stage, ten worms from each strain were transferred to a new plate as the maintenance plate. 439 

Another ten worms were individually placed onto new plates to count their brood size. These worms 440 

were transferred to a new plate each day during their egg-laying stage to facilitate counting. This 441 

procedure was repeated until at which set-21;set-32 double mutant animals became completely sterile.  442 

A single-generation brood size analysis was performed for 20°C. 443 

Germline fertility assay was performed at 25°C. At the first generation, 5 worms from 20C were 444 

transferred to a new plate, which was then incubated at 25°C. 10 plates total for each strain were started 445 

as 10 lines. After three days, if less than 5 progenies were observed, we consider the line to be 446 

terminated. Otherwise, the line is considered viable and 5 progenies were transferred to a new plate. At 447 

each generation, the percentage of viable lines were calculated and used to generate the survival plot. 448 

Immunofluorescence 449 

Adult worm gonads were dissected and fixed in 3% PFA in 100mM K2HPO4 for 5min and were wash 450 

three times in PBST (1xPBS with 0.1% Tween-20).  Then the samples were permeabilized in 100% 451 

methanol at –20°C for 5 mins, washed in PBST for three times, and blocked in 0.5%BSA in PBST for 452 

30 minutes at room temperature. The gonads were incubated in 1:200 mouse-anti-FLAG (Sigma) 453 

primary antibodies for two hours at room temperature, washed three times in 0.5% BSA in PBST, and 454 

then incubated in 1: 200 Donkey-anti-Mouse IgG-Alexa 488 (Jackson ImmunoResearch Laboratories) 455 

for one hour at room temperature.  After three washes in 0.5% BSA in PBST for ten minutes, the gonad 456 

was mounted to 2% agar pad for imaging.  457 

For embryo immunofluorescence staining, synchronized young adult worms (24 hours post-L4 stage, 458 

20°C) were dissected in water on a poly-L-Lysine slide to release embryos.   The slides were snap 459 

frozen in liquid nitrogen with coverslip on, and then were immediately incubated in -20°C methanol for 460 

5 minutes after the coverslip was popped off the slide.  After washing the slides three times in PBST 461 

(1xPBS with 0.1% Tween-20), the embryos on slides were blocked in blocking solution (0.5%BSA in 462 

PBST) for 20 minutes, incubated in 1:100 mouse anti-FLAG antibody (Sigma) for 1 hours, washed three 463 

times in PBST, and then incubated in 1:100 anti-mouse-IgG Alexa-488 (Jackson ImmunoResearch 464 
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Laboratories) for 30 minutes.  Slides were then stained with DAPI, washed three times in PBST, 465 

mounted with Slowfade (ThermoFisher Scientific) for imaging.  466 

Fluorescence images were obtained using an Epi-fluorescence microscope: Zeiss Oberver.Z1 467 

microscope equipped with ORCA-Flash4.0 LT Digital CMOS camera (Hamamatsu) and oil-immersion 468 

objective (40x).  Images were captured using Metamorph 7.10. as a 16-bit single-plane image (For 469 

gonads: exposure time 8000ms for Alexa-488, and 4000ms for DAPI, without saturating pixels. For 470 

embryos: exposure time 4000ms for Alexa-488, and 500ms for DAPI, without saturating pixels.).  471 

Gonad fluorescence was quantified using Fiji (ImageJ).  Only intact gonads were used for measurement.  472 

Whole gonad area was manually selected, then the florescence level was measured using he Analyze-473 

>Measure function of Fiji.   The mean grey-scale value in the measurement result was used for statistical 474 

calculation in Fig. 2C.  The images in Fig. 2 and Fig. S2 were presented using identical brightness and 475 

contrast.  476 

 477 

piRNAi 478 

The piRNAi transgene fragments were designed by using the wormbuilder webtool 479 

(www.wormbuilder.org/piRNAi) according to 
51

. The piRNAi target sites of piRNAi against C38D9.2 480 

and F15D4.5 were illustrated in Fig. 7. The piRNA sequences targeting C38D9.2 are 5’-481 

UCACAGGAGAUUCCUUUCGUG-3’, UCGGUGAGGAUUGAUUGGAAU, 482 

UCAGGAGGUUUGGUGUAAUCU, UCCGGUAAGUUUUUGCACAGC, 483 

UGGGCAGUUGGUAUGCAUUUG, and UCGGACGUUCUUGGGUAUUAU. The piRNA sequences 484 

targeting F15D4.5 are UCCGUUUCGCUUGCUGCGUUG, UGAGAGUUUGUCGUCUACCUU, 485 

UGGGCUUGUUCGACGCGGUUG, UAGCUUCUGCCAAGGUGGAAU, 486 

UGCAGGUAUUCUCGACUCCCU, and UGACGUCCUCCUCUGUUGGAA.  anti-oma-1 piRNAi 487 

fragment was designed by 
51

. piRNAi DNA fragments were ordered from Twist DNA. The piRNAi 488 

transgenic animals were constructed according to 
51

. 489 

Cosuppression: 490 

Worms were injected with 60 ng/ µL pSG32 (oma-1 suppression plasmid), 20 ng/ µL pPD93_97 (myo-491 

3p:GFP), 20 ng/ µL IR98 (Hygromycin resistance). pSG32 was constructed by inserting a transgene 492 

fragment into the pCFJ350 vector. The transgene is driven by the oma-1 promoter and includes a 492 nt 493 

partial oma-1 cDNA fused with a 1646 nt partial smg-1 genomic DNA including the last five exons and 494 

intervening introns. The oma-1 cDNA fragment covers exons 2, 3, and 4 and contains SNPs every 30 nt 495 

to distinguish from the native WT oma-1. Transgene-carrying worms were selected by hygromycin and 496 

confirmed by GFP expression. Two independent transgenic lines were used for each genetic background. 497 

Synchronized young adult animals were used for RNA-seq analysis.  498 

 499 

Preparation of worm grinds 500 

Preparation of worm grinds has been described in 
22

.  Briefly, synchronized L1 worms were prepared 501 

using the hypochlorite bleaching method, and then were released on NGM containing E. coli OP50.  The 502 

synchronized worms reached young adult stage after 68 hours at 20°C and were harvested by washing 503 

off the plates by M9 buffer.  Bacteria were removed by centrifugation of worms in a clinical centrifuge 504 

in a M9 buffer with 10% sucrose.  Worms were then pulverized by grinding in liquid nitrogen with a 505 

mortar and pestle and were stored at −80°C. 506 
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RT-qPCR 507 

Total RNA was extracted from adult worm grind using Trizol reagents (ThermoFisher) according to 508 

manufacturer's instructions.  Total RNA was treated with DNase I (NEB) followed by phenol 509 

chloroform extraction.   Then cDNA synthesis was performed using Reverse transcriptase III 510 

(ThermoFisher) as described in the manufacture’s manual.  Quantitative PCR was performed using a 511 

QuantiStuido 3 real time PCR system using SYBR green master mix (ThermoFisher).  ∆∆CT method 512 

was used to calculate the relative transcript abundance.  tba-1 was used as endogenous control.    513 

RNA-seq library preparation 514 

Total RNA was first extracted from adult worm grind using Trizol reagents (ThermoFisher), then 515 

ribosomal RNA (rRNA) was depleted using RNaseH and PAGE-purified DNA oligos that are antisense 516 

to rRNA as described previously
72

. The rRNA-removed RNA was used to construct barcoded RNA-seq 517 

libraries using the SMARTer Stranded RNA-Seq Kit (Takara).   518 

sRNA-seq library preparation 519 

Small RNA was extracted using mirVana miRNA isolation kit (ThermoFisher).  The small RNA 520 

libraries were constructed using a 5’ - monophosphate independent, 3’ and 5’ linker ligation-based 521 

methods as previously described 
22

.   The stranded Hi-seq index was added to the primer at the PCR 522 

steps to allow multiplexing.  523 

ChIP-seq library preparation 524 

Chromatin immunoprecipitations were performed using the protocol described in 
21

.  Briefly, grind of 525 

approximately 5000 adult worms was corsslinked and then sonicated to 200-500bp.  526 

Immunoprecipitation was performed using the following antibodies: anti-H3K23me3 (61500, Active 527 

Motif), anti-H3K9me3 (ab8898, Abcam).  The pulled-down complexes were reversed crosslinked by 528 

proteinase K digestion and then purified by phenol chloroform extraction.  The yielded DNA was used 529 

to construct barcoded ChIP-seq libraries using the KAPA Hyper Pre Kit (Roche) according to the 530 

manufacturer’s instruction. 531 

High-throughput sequencing  532 

Uniquely barcoded RNA-seq, sRNA-seq, and ChIP-seq libraries were pooled and then sequenced on the 533 

Illumina HiSeq or Illumina NovaSeq X Plus instrument.  Library names and list are in supplemental 534 

table (Table 3).  535 

Bioinformatic analysis 536 

ChIP-seq data analysis: 537 

H3K23me3 peak calling. Regions enriched for H3K23me3 in WT animals were determined for each of 538 

two sets of WT H3K23me3 ChIP-seq experiments by using macs2 
47

. The command line is “macs2 539 

callpeak -t [ChIP bam file] -c [ChIP input bam file] -g ce --outdir [output folder] -n [experiment name] -540 

-nomodel --extsize 147 -m 5 100 -q 0.1 --broad”.  The overlapping peaks from the two different WT 541 

experiments were identified using the “bedtools intersect” program 
73

. We did not merge nearby peaks 542 

because such merge reduces the sensitivity of calling differential regions.  543 
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Differential analysis of ChIP-seq. Differential H3K23me3 between WT and mutant animals were 544 

determined by using the BaySeq program
74

. Only the H3K23me3 peaks in the WT animals, as 545 

determined in the previous section, were used for this analysis. Two sets of experiments were performed 546 

for both WT and the mutant strain. Differential regions were separately determined for the H3K23me3 547 

ChIP libraries and input libraries. Fold of change >= 1.5 and FDR <=0.05 were used as cutoff to 548 

determine the differential regions. Differential regions that were found in both the input libraries and 549 

ChIP libraries were removed from the final list.  550 

RNA-seq analysis. For RNA-seq libraries prepared with the SMARTer Stranded RNA-Seq Kit (Takara), 551 

51 nt segment of the R1 reads were used for sequence alignment against the mRNA sequences of C. 552 

elegans protein-coding genes using bowtie 1.2.3 
75

. For RNA-seq libraries prepared with the 3’-linker 553 

ligation method, R1 reads with 5’-barcodes (4 nt) and 3’-linker sequence removed were used for the 554 

alignment. The number of perfectly aligned reads for protein-coding genes were used to determine the 555 

differentially expressed genes by using the BaySeq software 
74

 with default parameters. sRNA-seq 556 

libraries were similarly analyzed as RNA-seq libraries except that only 20-24 nt reads that were 557 

antisense to the mRNA sequences were used. 558 

 559 

Venn diagram, boxplot, MA plots, were generated using python.  560 

 561 

Data availability: High-throughput sequencing data associated with this study has been deposited in 562 

NCBI GEO database with accession numbers of GSE266182, GSE266183, and GSE266184. Mass 563 

spectrometry data has been deposited in ProteomeXchange (https://www.proteomexchange.org/) with 564 

accession number of PXD052034 (Username: reviewer_pxd052034@ebi.ac.uk ; Password: nvXjzFdr). 565 

 566 
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Figure legends 577 

Figure 1. SET-21 is a H3K23 histone methyltransferase. (A) Phylogenetic tree of SET-domain-578 

containing proteins in C. elegans 
39

 showing that SET-21 is the closest homolog of SET-32.  (B) SET-21 579 

methylates H3K23 in vitro. Mass spectrometry analysis of in vitro histone methyltransferase assay was 580 

performed by using recombinant GST-SET-21 or GST-3xFLAG (control) and recombinant C. elegans 581 

H3 proteins. The relative abundance of K23me1/2/3 for histone H3 peptide KQLATKAAR (aa 18–26) 582 

produced by GST-SET-21 or GST-3xFLAG were calculated and the ratios of the two (GST-SET-583 

21/GST-3xFLAG) were plotted. Error bar: SEM. N=2 biological repeats.  584 

 585 

Figure 2. SET-21 and SET-32 are expressed in the adult germline and required for 586 

transgenerational fertility at an elevated temperature. (A) Representative anti-FLAG 587 

immunofluorescent (IF) images for dissected hermaphrodite adult gonads of N2 (WT), or animals 588 

expressing SET-21(native)::3xFLAG or SET-32(native)::3xFLAG. The distal and proximal tips of 589 

gonads were indicated with arrows and asterisks, respectively.  Scale bar: 20m. (B) anti-FLAG IF and 590 

DAPI images of diakinesis oocytes of WT and set-21(native)::3xFLAG animals. (C) Boxplot comparing 591 

anti-FLAG fluorescent intensity, measured by ImageJ in an arbitrary unit, between WT and set-592 

32::3xFLAG gonads (N=5). The p-value is calculated by student’s t-test. (D) Transgenerational fertility 593 

assay was performed at 25C. 10 lines were started for each strain and their progeny were transferred to 594 

a new plate at each generation until the population became sterile (See Methods for detail). The 595 

percentage of lines with fertile population was plotted as a function of the generation number for each 596 

strain. N2, set-21(ok2320), and set-21(red109) exhibited 100% fertility throughout the assay. 597 

 598 

Figure 3. MA-plots of H3K23me1, me2, and me3 ChIP-seq comparing WT versus set-21(red109), 599 

set-32(red11), or set-32(red11);set-21(red109) mutant. Average RPM (reads per million sequenced 600 

tags) values from two replicates were calculated for each 1kb window throughout the whole genome. 601 

Regions with increased or decreased H3K23me in a mutant (highlighted in red) were determined by the 602 

BaySeq program 
74

 with a minimal 2-fold difference (FDR0.05), subtracting the regions that showed 603 

differential input signals (the top row). The numbers of regions with either increased or decreased 604 

H3K23me in a mutant were indicated in each panel.  605 

 606 

Figure 4. SET-32 and SET-21 are required for H3K23me3 and H3K9me3 at germline nuclear 607 

RNAi targets. (A) Venn diagram of numbers of regions with HRDE-1 and SET-32/21-dependent 608 

H3K23me3 (H3K23me3 [mutant/WT]2/3, FDR0.05). (B) Box plot of H3K23me3 levels (relative to 609 

WT) for regions with SET-32/21-dependent H3K23me3 in different mutant strains. Mann-Whitney U 610 

tests (two-sided) were used to determine the statistical significance for the H3K23me3 differences 611 

between a mutant and WT (null hypothesis: no difference). (C-D) Venn diagram of numbers of regions 612 

of H3K23me3 and H3K9me3 that are dependent on (C) HRDE-1, (D) SET-32 and SET-21, and (E) 613 

MET-2 and SET-25 (H3K23me3 or H3K9me3 [mutant/WT]2/3, FDR0.05). Hypergeometric 614 
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distribution was used to calculate the p-values of the significance of the overlaps in the Venn diagrams 615 

(null hypothesis: no significant overlap).  616 

 617 

Figure 5. SET-32 and SET-21 are required for transcriptional repression and proper expression of 618 

siRNAs of germline nuclear RNAi targets. (A) Box plot of Pol II levels (relative to WT) for regions 619 

with SET-32/21-dependent H3K23me3 in hrde-1 and set-32;set-21 mutants. (B) Venn diagram of 620 

desilenced genes in hrde-1 and set-32;set-21 based on RNA-seq (cutoff: mutant/WT ≥ 3-fold, FDR ≤ 621 

0.02). (C-D) Venn diagram of genes with decreased (C) or increased (D) siRNA expression in hrde-1 or 622 

set-32;set-21 mutant animals compared to WT (minimal 3-fold change, FDR ≤ 0.02). (E-F) MA-plots 623 

comparing WT and set-32;set-21 mutant animals for (E) mRNA and (F) sRNA for all protein-coding 624 

genes.  625 

 626 

Figure 6. Coverage plots of various ChIP-seq, RNA-seq, and sRNA-seq for WT, hrde-1, set-32;set-627 

21, met-2 set-25 mutants at nuclear RNAi targets f15d4.5 (A) and timm-17b.2 (B), as well as a control 628 

euchromatin locus (glp-1) (C).  629 

 630 

Figure 7. Transcriptional silencing defect at native targets of nuclear RNAi in set-32;set-21 mutant 631 

can be partially rescued by piRNAi. (A) A piRNAi transgene targeting f15d4.5 and c38d9.2, two 632 

native targets of germline nuclear RNAi, was introduced into hrde-1 and set-21;set-32 mutant animals. 633 

The piRNAi target sites are indicated in the schematic. (B-D) siRNA, mRNA, Pol II levels of f15d4.5, 634 

c38d9.2, and Cer3 (an LTR retrotransposon not targeted by the piRNAi, as a control locus) in anti-635 

f15d4.5+c38d9.2 piRNAi and anti-random control piRNAi, (labeled as piRNA + and -, respectively, in 636 

the figure) in WT, hrde-1, and set-32;set-21 mutant backgrounds were shown. Two independent lines for 637 

each injection were used.  638 

 639 

Figure 8. The requirement of SET-32 and SET-21 for (A,B) RNAi, (C,D) piRNAi, and (E) 640 

cosuppression. (A and C) The schematics of heritable RNAi by dsRNA feeding (A) and heritable 641 

piRNAi (C), both against oma-1. (B) oma-1 pre-mRNA levels measured by RT-qPCR for heritable 642 

RNAi in WT and various mutants. (D) oma-1 mRNA levels measured by RT-qPCR for heritable 643 

piRNAi. The values were normalized to the tubulin gene tba-1 mRNA expression from the same sample 644 

and relative to the control samples.  (E) mRNA levels of the native oma-1 gene, measured by RNA-seq, 645 

for the cosuppression experiment in strains carrying the oma-1 transgene. The values were normalized to 646 

a germline expressed gene pie-1 mRNA levels.  647 

 648 

Figure 9. A model of germline nuclear RNAi-mediated heterochromatin pathway. 649 

 650 

Figure S1. (A) Pairwise alignment of SET-21 and SET-32 proteins. Motifs I-IV of the SET domain, pre-651 

SET zinc cluster, and post-SET zinc center were highlighted. The SET domain was marked by vertical 652 

lines. (B) Genome browser shots of set-21 and set-32 genes. (C-D) Tissue-specific and developmental 653 
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mRNA expression profiles for set-21, set-32, set-25, and met-2 using data generated by 
41, 42

. Plots were 654 

generated by https://ahringerlab.com/RegAtlas/. 655 

 656 

Figure S2. SET-21 and SET-32 are expressed in embryo. Anti-FLAG immunofluorescent microscopy 657 

was performed for different stages of N2, set-21(native)::3xFLAG, set-32(native)::3xFLAG embryos. 658 

Representative IF images were showed for each strain, together with DAPI and DIC images of the same 659 

embryo.  Scale bar: 10m. 660 

 661 

Figure S3. set-32;set-21 mutant animals show germline defects at 25°C. (A-B) Multigenerational 662 

brood size analysis. Worms were maintained at 20°C before shifting to 25°C for F1 and the subsequent 663 

generations.  Strains: WT (N2), set-32(red11), set-21(ok2320), and set-32(red11);set-21(ok2320) mutant 664 

animals in (A) and WT (N2), set-21(red109), and set-32(red11);set-21(red109) in (B). We note that the 665 

smaller brood size of set-21(ok2320) compared to set-21(red119) or set-32;set-21(ok2320) is likely due 666 

to some unknown background mutations. (C) Oocytes and sperm of set-32(red11);set-21(red109) young 667 

adults (F7 at 25°C) were examined by DAPI staining. Percentages of adult animals with both oocytes 668 

and sperm, only either oocyte or sperm, and neither gamete were indicated with representative DAPI-669 

staining images. 670 

 671 

Figure S4. Whole-genome coverage plots of H3K23me1, me2, and me3 comparing WT versus set-672 

21, set-32, or set-32;set-21 mutant. The coverage, averaged from two replicates, was normalized to the 673 

ChIP input signal and was calculated for each 10kb window.  674 

 675 

Figure S5.  (A) A scatter plot of whole-genome comparison of H3K9me3 and H3K23me3 levels (1 kb 676 

windows) in the WT animals. (B) A Venn diagram of HRDE-1-dependent H3K23me3 and MET-2 SET-677 

25-dependent H3K23me3. (C) A Venn diagram of HRDE-1-dependent H3K9me3 and MET-2 SET-25-678 

dependent H3K9me3. 679 

 680 

Figure S6. RNA-seq (A-C) and sRNA-seq (D-E) comparison of WT and set-32 or set-21 single 681 

mutant.  682 

 683 

Figure S7. MA-plots comparing hrde-1 and WT animals for (A) mRNA and (B) siRNA expressions of 684 

all protein-coding genes. 685 

 686 

Figure S8. Venn diagram of genes with decreased or increased siRNA expression (minimal 3-fold 687 

change, FDR ≤ 0.02) comparing set-21 or set-32 single mutant with set-32;set-21 double mutant.   688 

 689 

Figure S9. set-32;set-21 mutations cause more wide spread changes in siRNA expression than 690 

changes in mRNA expressions. (A) sRNA MA-plot comparing set-32;set-21 and WT with set-32/21-691 

sensitive genes (based on mRNA-seq) highlighted. (B-C) mRNA MA-plots comparing set-32;set-21 and 692 
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WT with genes that had increased (B) and decreased (C) siRNA expression in the set-32;set-21 693 

compared to WT highlighted. 694 

 695 

Figure S10. For genes of which mRNAs are desilenced in set-32;set-21, as well as genes of which 696 

siRNAs are differentially expressed in set-32;set-21 (either decreased or increased), their siRNAs 697 

tend to be bound by HRDE-1, instead of CSR-1. The same CSR-1 vs HRDE-1-coIP sRNA MA-plot 698 

was shown in all three panels with each highlighting a different set of genes (marked in blue): (A) 699 

desilenced genes (mRNA-seq) in set-32;set-21, (B-C) genes with decreased (B) or increased (C) siRNA 700 

expression in the set-32;set-21 mutant. CSR-1 vs HRDE-1-coIP sRNA data were from 
50

. Genes with a 701 

minimal of 3-fold difference in CSR-1-vs-HRDE-1-coIP siRNA (FDR≤0.02) were highlighted in red. 702 

 703 

Table 1. A list of H3K23me3-enriched regions in WT identified in WT adult animals, with H3K23me3 704 

ChIP-seq differential analysis outputs (log2 ratio, FDR and mean) for WT vs hrde-1 and WT vs set-705 

32;set-21 comparisons calculated by BaySeq.  706 

 707 

Table 2. Protein-coding gene differential analysis results of H3K23me3 ChIP-seq, Pol II ChIP-seq, 708 

RNA-seq, and sRNA-seq for the comparisons between WT and various mutant animals. Set-32/21-709 

sensitive genes, based on RNA-seq analysis, were indicated.  710 

 711 

Table 3. A list of high-throughput sequencing libraries used in this study.  712 
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