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Abstract  

Stable and flexible neural representations of space in the hippocampus are crucial for 

navigating complex environments. However, how these distinct representations emerge 

from the underlying local circuit architecture remains unknown. Using two-photon imaging 

of CA3 subareas during active behavior, we reveal opposing coding strategies within 

specific CA3 subregions, with proximal neurons demonstrating stable and generalized 

representations and distal neurons showing dynamic and context-specific activity. We 

show in artificial neural network models that varying the recurrence level causes these 

differences in coding properties to emerge. We confirmed the contribution of recurrent 

connectivity to functional heterogeneity by characterizing the representational geometry 

of neural recordings and comparing it with theoretical predictions of neural manifold 

dimensionality. Our results indicate that local circuit organization, particularly recurrent 

connectivity among excitatory neurons, plays a key role in shaping complementary spatial 

representations within the hippocampus. 
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Introduction 

Recurrent connectivity among excitatory neurons is a critical feature of the cortical 

microcircuit that underlies functions such as sensory processing, working memory, and 

decision-making1-6. In the hippocampus, strong recurrent excitatory connections among 

pyramidal neurons within the CA3 region are thought to provide a basis for memory-

guided behaviors7-10. This circuitry is believed to endow CA3 with the ability to rapidly 

store patterns of integrated sensory information for the initial encoding of contextual 

representations, and to retrieve them later from partial or degraded inputs11,12. However, 

the density of recurrent collaterals changes on a gradient along the transverse axis, from 

low recurrence in proximal CA3 (pCA3; close to the dentate gyrus) to higher recurrence 

in distal CA3 (dCA3; close to CA2)13,14 , mirroring distinct molecular and physiological 

gradients recognized along this axis15,16. Given these differences, it is natural to ask 

whether CA3 subregions hold different roles in encoding and retrieving spatial 

information, and how these roles translate more broadly to learning and memory 

functions17-25.  

To address this question, we performed a detailed functional characterization of pCA3 

and dCA3 neurons in mice performing a spatial navigation task in virtual reality (VR)26. 

We characterized the dynamics of neural representations over time and across contexts, 

revealing prominent differences between the two subregions. Using recurrent neural 

network (RNN) and Hopfield network models, we confirmed that varying the level of 

recurrent connectivity between excitatory neurons is sufficient to explain these 

differences, demonstrating that distinct connectivity patterns in pCA3 and dCA3 lead to 

differential mechanisms of information processing.  

We conclude that distinct subregions of CA3, shaped by their respective levels of 

recurrent connectivity, play complementary roles in spatial memory: dCA3 may be more 

involved in the flexible encoding of new contexts, while pCA3 may contribute to the stable 
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retrieval of established memories, thus balancing adaptability and consistency in 

memory-guided behaviors27-29. 

 

Results 

Long-term dynamics of spatial representations 

To first characterize the functional dynamics of different recurrent connections within CA3 

in the dorsal hippocampus, we performed in vivo two-photon calcium imaging in a VR 

spatial navigation task30,31 (Fig. 1a-c, Supplementary Fig. 1a-b). We stereotactically 

injected Cre-dependent adeno-associated virus (AAV) into pCA3 and dCA3 regions of  

Grik4-Cre mice to selectively express GCaMP8s in CA3 pyramidal neurons, and 

implanted a chronic imaging window above the hippocampus. Mice were head-fixed and 

trained to perform a goal-oriented learning (GOL) task26,31, where a spatially fixed operant 

reward was given in a 2-m virtual linear environment with a 2-s inter-trial interval between 

laps. After two weeks of training, mice successfully learned the reward zone (RZ), as 

reflected by anticipatory changes in animal’s velocity and licking (Fig. 1d). On each day, 

we observed a subset of place cells (0.13 ± 0.01 for pCA3, 0.31 ± 0.02 for dCA3), whose 

responses reliably tiled the entire virtual track (Supplementary Fig. 1c, g). We quantified 

individual place cells’ specificity, sensitivity, and spatial information and found higher 

proportions of place cells with lower levels of spatial information and place field specificity 

in dCA3 compared to pCA3 (Supplementary Fig. 1c-f).  

To investigate the long-term spatial coding properties of CA3 PNs, we tracked the same 

field of view every other day (Fig. 1e) as mice achieved stable behavioral performance in 

the GOL task. Among cross-registered cells, a subset of neurons was identified as place 

cells over days (Fig. 1f, Supplementary Fig. 2a, b), and we assessed whether neurons 

stably encoded their location over the course of the week. We found that dCA3 place cells 

had a higher recurrence probability (Fig. 1g), defined as the probability that a given neuron 

displays a significant place field across two paired sessions, irrespective of its location on 
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the track. This result shows that dCA3 neurons overall remain more spatially selective 

with time compared to pCA3 neurons. To address whether place fields maintain their 

selectivity, we quantified the tuning curve correlations between sessions, and found that 

pCA3 place cells, though less numerous, are more stable over time than dCA3 place cells 

(Fig. 1h). At the population level, pCA3 population vectors remained highly correlated with 

each other across days compared to dCA3 population vectors (Fig. 1i, j, Supplementary 

Fig. 2c, d). In summary, these results imply that the dCA3 code is more dynamic and 

adaptable over time, while pCA3 implements a more stable, long-term code of spatial 

memory. 

 

Generalized vs context-discriminative neural representations 

Next, to investigate the neural dynamics of proximal and distal CA3 PNs in response to 

contextual changes, we performed a context-switching task in which animals were 

exposed to a (pretrained) Familiar (F) and a Novel (N) environment in 15-lap alternating 

blocks (Fig. 2a, b, Supplementary Fig. 3a, b) while recording from, either pCA3 or dCA3 

(Fig. 2c). To quantify how contextual information is differentially processed at the single-

cell level, we calculated a discrimination index (DI) of neural responses between familiar 

and novel contexts (Fig. 2d). We found that a significant proportion of neurons 

discriminated between contexts in both subregions, though a greater proportion did in 

dCA3 compared to pCA3 (Fig. 2e, f). Using a linear classifier with matched sample sizes, 

we also found that the information encoded in population activity in dCA3 discriminated 

between two different contexts with higher accuracy compared to that in pCA3 (Fig. 2g, 

h). We also evaluated the decoding performance of randomly chosen subsets of recorded 

neurons from pCA3 (Supplementary Fig. 3e). This analysis showed a correlation between 

the number of subsampled neurons and peak decoding accuracy, with the performance 

of the classifier being similar between all recorded pCA3 neurons and dCA3 neurons 

(Supplementary Fig. 3f).  
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In addition to contextual representations, we analyzed place cell dynamics within and 

between environments. While both pCA3 and dCA3 neurons exhibited spatially tuned 

responses across context blocks (Fig. 2i, j, Supplementary Fig. 4a), pCA3 place cells 

showed a higher level of correlation between familiar and novel environments (Fig. 2k). 

In dCA3, F-N similarity increased during the second switch compared to the first switch, 

whereas no significant change was observed in pCA3 (Supplementary Fig. 4b, c). 

Taken together, these findings suggest subregion-specific complementary roles for 

encoding dynamic environments, with pCA3 producing a general template for the context 

and dCA3 providing more specific responses (Supplementary Fig. 4d). Together, these 

populations might work in concert to balance flexibility and stability for encoding 

contextual information. 

 

Recurrence level interpolates opposing coding strategies 

Our functional imaging approach revealed dynamic and heterogeneous neural 

representations along the proximodistal axis of CA3 in relation to both time and context. 

How two subnetworks of the same hippocampal area implement opposing coding 

strategies remains an unanswered question. We hypothesized that these differences 

were driven by recurrence level as the most salient difference between these subregions. 

To test this hypothesis, we employed multi-level computational modeling.  

First, we constructed two distinct recurrent neural network (RNN) models of CA3: a 

sparsely connected RNN and a densely connected RNN (Fig. 3a). The differences in 

recurrent connectivity of the RNNs were chosen based on earlier studies that reported 

recurrence level heterogeneity across the proximodistal axis of CA313,14 (Supplementary 

Fig. 5a).  

Informed by biological evidence showing projections from speed-selective cells in the 

entorhinal cortex to the hippocampus32, we designed our RNN models to receive inputs 
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of speed and the initial location of the animal in a virtual arena (Fig. 3b). The number of 

training iterations was chosen to ensure both the sparse and dense RNN reached a 

plateau in their loss functions, ensuring a fair comparison of their performance (Fig. 3c, 

Supplementary Fig. 5b). Post-training analysis showed that the denser RNN model 

exhibited a higher proportion of place cells compared to the sparser model, consistent 

with our experimental observations (Fig. 1f, Fig. 3d, e).  

To further explore the adaptability of place cells in the RNNs to new environments, we 

simultaneously provided a visual context signal and the instantaneous speed of the 

animal as the inputs to both network models and trained the networks to identify both 

location and context (Fig. 3f). Given that animals utilize visual cues to identify the context 

of the VR track31, we added noise to the context signal, representing perceptual context 

evidence from the visual system, to the hippocampal network. We maintained the noise 

level high enough to avoid a trivial scenario for the network and accordingly reinforced 

the engagement of a higher proportion of cells in context discrimination. As a result, the 

RNN model successfully learned the context-switching task with low error rates 

(Supplementary Fig. 5d); analysis of the hidden layer representations revealed the 

presence of multiple types of conjunctive and selective cells for context and place (Fig 

3.g-h). A greater number of neurons in the dense RNN discriminated between familiar 

and novel contexts (Fig. 3i), consistent with in vivo recording data that showed higher 

context selectivity in dCA3 (Fig. 2f, h).  

Finally, we investigated the effect of varying connectivity on memory generalization and 

discrimination using a Hopfield network model of CA3 subregions (Fig. 3j). Hopfield 

networks are widely used as models of content-addressable memory, but the classical 

Hopfield model requires full connectivity, which is not biologically plausible. However, we 

find that sparsely connected Hopfield networks, trained with the classic Hebbian rule (Fig. 

3k), retain the ability to store and retrieve memories. We also find differences between 

memory performance in sparsely and densely connected Hopfield networks that mirror 

differences between pCA3 and dCA3. The dense network exhibited higher memory 
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capacity, i.e., the ability to accurately discriminate a greater number of patterns compared 

to the sparse network (Fig. 3l). However, the sparse network was better at recovering 

patterns from significant distortions (Fig. 3m), suggesting fewer, deeper wells in its energy 

landscape that could aid generalization. Finally, we find that these abilities interpolate: 

intermediate levels of connectivity give rise to intermediate levels of discrimination and 

generalization (Fig. 3l, m; black line). 

 

Dimensionality of neural manifolds altered by recurrency 

Our modeling results suggest that the level of recurrence alone can account for the 

functional heterogeneities between pCA3 and dCA3 observed in vivo. Theoretical work 

has established a direct link between recurrency level and representational geometry of 

neurons, suggesting higher connectivity between neurons increases the mutual activity 

of cell populations33, thereby constraining their representational geometry in population 

space (Fig. 4a).  

We first examined this theoretical intuition in simulations of RNNs during the context-

switching task. Our simulations demonstrated that altering connectivity towards sparser 

networks increases the dimensionality of neural manifolds, as defined by the explained 

variance of cumulative principal components (Fig. 4b-d). We conducted a similar analysis 

on the neural activities recorded during the same task to examine the neural 

representation geometry of proximodistal CA3 neurons (Fig. 4e). As predicted, the 

manifold dimensionality of representations in dCA3 was lower than that in pCA3 (Fig. 4f, 

g), further supporting the role of recurrent connectivity in functional heterogeneity within 

the CA3 circuit. 

These findings underscore the critical role of recurrent connectivity in shaping the distinct 

functional properties of CA3 subregions. The gradient of generalization observed as a 

function of network sparsity highlights the importance of recurrent connectivity in the 

encoding and recalling of spatial and contextual information. Our computational modeling, 
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aligned with experimental data, provides deeper insight into the mechanisms by which 

CA3 PNs contribute to spatial navigation and context discrimination. 

 

Discussion 

Despite extensive evidence of anatomical, molecular, and physiological heterogeneity in 

the CA3 along the transverse axis13-16,34,35, the relationship between these differences 

and neural computations performed by CA3 subregions has remained largely unknown. 

While both stable and flexible dynamics as well as varying degrees of context 

generalization have been reported in CA3 using in vivo imaging36-39, these 

representational features have not been systematically investigated along the 

proximodistal axis, nor have they been linked to CA3 subregions. In this study, we bridged 

these gaps by combining in vivo two-photon calcium imaging of CA3 subregions with 

computational modeling at multiple levels of abstraction. Our findings provide significant 

insights into how distinct hippocampal subcircuits differentially contribute to memory 

functions36,40,41. 

We found that dCA3 neurons are highly sensitive to contextual changes as well as tuned 

to different locations over days. This suggests that they are flexible and adaptive, possibly 

playing a role in learning and responding to new experiences or changes in the 

environment. In contrast, pCA3 neurons show more stability in their tuning over time, even 

though fewer neurons are tuned compared to dCA3. This stability suggests that they 

might be involved in encoding persistent or core aspects of the context that remain 

relevant across different experiences. These neurons may be essential for maintaining a 

stable representation of the environment, supporting consistent recall of key contextual 

features or stable memory traces, and could be rooted in how they integrate inputs at the 

subcellular level42-44. 

Consistent with recent reports on the rapid formation of place fields in the hippocampal 

CA1 and CA330,37,38,45, we also found that both pCA3 and dCA3 PNs exhibit spatially 
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tuned neural responses that rapidly formed when the mice are exposed to novel 

environments. Future studies will explore the synaptic plasticity rules governing the 

dynamics of place field formation in CA3 along the transverse axis46. We further observe 

that dCA3 PNs are more significantly tuned to novel environments compared to pCA3 

PNs. It is well known that hippocampal circuits are under neuromodulatory control related 

to the behavioral state of animals47-51. Correspondingly, the CA3 subregions may receive 

different levels of catecholaminergic input, such as dopamine and norepinephrine from 

the locus coeruleus, which facilitates memory formation in a new context52-54. 

It is striking that two subregions of the same hippocampal area, separated by less than a 

millimeter in the mouse brain and (notwithstanding the important differences we have 

highlighted) broadly similar in their anatomy, physiology, and development, can 

implement seemingly opposing computational functions. Our RNN modeling results, in 

which spatial and contextual representations by artificial cells corresponded closely to the 

empirical data in both single-cell and population level, underscore the critical role of local 

connectivity patterns in shaping the functional properties of neural networks. Furthermore, 

simulation results with dense, intermediate, and sparse Hopfield networks imply a smooth 

gradient between discrimination and generalization based on the level of recurrence in a 

subnetwork. Taken together, these findings emphasize the specific importance of 

recurrent connectivity in determining the computational features of neural circuits, 

supporting the idea that small variations in structural connectivity can lead to substantial 

differences in neuronal function and behavior. We further speculate that a gradient of 

connectivity implementing these intermediate levels exists between pCA3 and dCA3. 

Our findings show that recurrent connectivity shapes the dimensionality of neural 

manifolds in CA3, with sparser networks yielding higher-dimensional manifolds and 

denser networks producing lower-dimensional ones. While an increasing body of 

literature associates dimensionality in neural spaces with flexibility and generalization55-

58, dimensionality alone does not fully account for a network’s computational capacity. 

The geometry of neural representations—encompassing factors like curvature, 
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separation, and topology—plays a critical role in how information is processed59-63. To 

fully understand flexibility and generalization, it is necessary to study the precise 

geometry of these representations. Previous studies have shown divergent roles in task 

performance are observed in networks with varying neural trajectory geometries64,65. 

Recent studies have explored how structural connectivity within networks affects their 

representational space, often by examining constraints such as connectivity rank66,67. 

However, whether biological networks are inherently low-rank remains under debate. In 

our approach, we focus on binary (present-or-absent) connectivity, providing a clearer 

structural interpretation of how network architecture shapes representational 

dimensionality, complementing earlier studies that link structural biases to neuronal 

variability68,69. Theory predicts that low-dimensional activity remains possible in sparse 

networks through fine-tuning of synaptic weights70. Accordingly, the direct measurement 

of synaptic weights in vivo will be an important direction for future experimental work to 

dissect the synaptic basis for computational capacity.  

In addition to recurrent local connectivity, subregion-specific differences in afferent inputs 

to CA3 can contribute to the observed differences in context-related dynamics between 

pCA3 and dCA3. Recent reports have highlighted a generalized neural representation by 

dentate gyrus granule cells, one of the main input sources to CA336, which may contribute 

to the more generalized contextual and spatial dynamics we observe in pCA3 PNs 

compared to dCA3 PNs. Similarly, subregion-specific differences in afferent inputs from 

the entorhinal cortex, which is also implicated in context generalization and discrimination 

in the CA371,72, may also shape context processing in CA3. Finally, the role of inhibition 

and subtype-specific inhibitory control of feature representations and their stability 

remains unknown73-75. Future studies should investigate how external inputs modulate 

the cognitive flexibility of different subregions within CA3. Understanding local circuit76 

and long-range interactions will provide deeper insights into how the hippocampus 

supports complex behaviors, integrating contextual and spatial information to facilitate 

adaptive navigation and memory. 
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Figure 1. Dynamic and stable spatial representations by distal and proximal CA3. a. 

Schematic of in vivo two-photon imaging of proximodistal CA3 neurons. Grik4-cre transgenic mice 

were injected with a Cre-dependent GCaMP8s virus to record the neural activities of PNs in dorsal 

CA3. b. Schematic of a virtual reality navigation system combined with in vivo two-photon 

microscopy (left) and the task structure of a goal-oriented learning (GOL) task with a fixed reward 

zone in a 2m virtual environment (right). ITI, intertrial interval. c. Representative confocal image 

showing GCaMP8s expression along the transverse axis of the CA3 region in Grik4-cre 

transgenic mice. Blue: DAPI, Green: GCaMP8s, Magenta: PCP4. Scale bar: 200um. d. Examples 

of velocity (top) and licking responses (bottom) before and after operant conditioning of the GOL 

task. e. Longitudinal and repetitive imaging of individual cells in proximal (top) and distal (bottom) 

CA3 subregions. Scale bar: 50 𝜇m. f. Examples of cross-day registered place cells and their 

heatmaps of spatial tuning curves with stable place fields in pCA3 (top) and dCA3 (bottom). g. 

Probability of recurrence of place cells across days (mean ± SEM; two-sided unpaired t-test, p = 

0.037, 0.032 and 0.0042 for ∆Day 2, 4, and 6; n = 5 and 7 mice for pCA3 and dCA3, respectively). 

h. Average tuning curve correlations of place cells across days (mean ± SEM; two-sided unpaired 

t-test, p = 0.0092, 0.029, and 0.10 for ∆Day 2, 4, and 6; n = 5 and 7 mice for pCA3 and dCA3, 

respectively). i. Heatmaps of population vector (PV) correlation between all pairs of positions 

across days for pCA3 (top) and dCA3 (bottom) place cells. The interval between days was 2 (left), 

4 (middle), and 6 (right).  k. PV correlation between the same position across days for pCA3 and 

dCA3 place cells (mean ± SEM, two-sided unpaired t-test, p = 1.06 e-14, 7.17 e-09, and 2.80 e-

08 for ∆Day 2, 4, and 6, n = 5 and 7 mice for pCA3 and dCA3, respectively). Colors are matched 

with purple for pCA3 and orange for dCA3. n.s. = non-significant, *p < 0.05, **p < 0.01, *p < 0.001. 
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Figure 2. A generalized contextual- and spatial representation by proximal CA3 neurons. 

a-b. Schematic of the context-switching task (a) and behavioral responses from an example 

mouse (b). Each session consisted of 60 laps with alternating blocks between familiar (gray) and 

novel (red) contexts. Both environments were 2m in length with the same location of operant 

reward. Mice showed different velocity and licking responses in familiar and novel contexts. c, 

Mean calcium traces (top) and heatmaps of lap-by-lap activity (bottom) for example neurons from 

pCA3 (b) and dCA3 (c). d. Calculation of discrimination index (DI) from context-averaged tuning 
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curves (top) with the spatial distribution of context-discriminative PNs in pCA3 (middle) and dCA3 

(bottom). e. Histogram of DI and significant DI values (colored bars, shuffling test, two-sided, 

p < 0.05). Inset: The fraction of neurons with significant DI in familiar (gray) and novel (red) 

environments. pCA3 neurons are more significantly tuned for familiar environments (p = 0.035; 7 

mice), while dCA3 neurons are not significantly different between environments (p = 0.27; 7 mice). 

f. Proportion of neurons with significant DI value (mean ± SEM). dCA3 showed a higher level of 

context-discriminative neurons compared to pCA3 (p = 0.047; n = 7 mice for both pCA3 and 

dCA3). g. Schematic of the support vector machine (SVM) used to decode contextual information. 

Separate linear decoders were trained for subsampled pCA3 and dCA3 place matrices. h. SVM 

linear decoder performance on context discrimination (mean ± SEM). The peak decoding 

accuracies of dCA3 PNs in discriminating F-N contexts were higher compared to pCA3 PNs (0.61 

± 0.050 for pCA3, 0.85 ± 0.046 for dCA3; p = 0.0011; n = 7 mice for both pCA3 and dCA3). i. 

Proportion of place cells in familiar and novel environments. dCA3 showed a higher level of place 

cells in either familiar or novel environments compared to pCA3 (Kruskal-Wallis H-test, H = 16.40, 

p = 0.00093; post-hoc Dunn’s multiple comparison with Bonferroni correction, p = 0.015 and 

0.0012 for familiar and novel context, respectively; n = 7 mice for both pCA3 and dCA3). j. 

Heatmaps of spatial tuning curves for pCA3 (left) and dCA3 (right) PNs during context switching. 

Rows are average and normalized responses for all CA3 PNs, sorted by the position of peak 

activity during the F1 block. k. Spatial tuning curve similarities within (F1 vs F2, N1 vs N2) and 

between contexts (F vs N). The population of place cells in pCA3 showed a higher level of PV 

correlation across conditions (p = 6.80 e-29, 4.35 e-13, 6.25 e-19 for F1 vs F2, N1 vs N2, and F 

vs N, respectively, n = 7 mice for both pCA3 and dCA3). Mann-Whitney U tests were used to 

determine statistical significance unless otherwise stated. Colors are matched as follows: purple 

for pCA3, orange for dCA3, gray for familiar context, and red for novel context. n.s. = non-

significant, *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 3. Distinct spatial and memory properties in sparse and dense neural networks. a. 

Schematic representation of modeling proximal and distal CA3 with sparse and dense RNNs, 

respectively. b. Training of RNNs for a linear track navigation task using inputs of instantaneous 

speed and lap initiation to mimic mouse trajectory. Network connectivity and activation functions 

are updated during training, and post-training, activation patterns are analyzed for reverse 

engineering. c. Decoding accuracy of the RNNs before (gray) and after (black) training, shown by 

the position prediction error. d. Tuning curve evolution of RNNs with 100 cells pre- and post-

training, sorted by activity levels. The tuning curves cover the spatial scale of the virtual arena. e. 

Proportion of spatial-tuned artificial cells in RNNs with sparse versus dense recurrence. f. Training 

of RNNs for context-switching tasks, where task-relevant inputs are fed to RNNs. g. Examples of 

artificial cell activation post-training in the context-switching task. The left shows two cells with 

context modulation (familiar vs. novel), while the right shows a spatially tuned cell without context-

dependent activity. h. Histogram of DI and significant DI values (colored bars, shuffling test, two-

sided, p<0.05) for artificial cells. i. Dependence of context-discriminative cells on recurrence level. 

Box plots represent the fraction of context-tuned cells for RNNs with sparse versus dense 

recurrence. j. Sparse (left) and classical (right) Hopfield model of associative memory, 

corresponding to areas pCA3 and dCA3, respectively. k. Schematic of training (storage) and 

testing (recall). During storage, binary patterns are sequentially presented to the network and 

pairwise synaptic weights are updated according to a Hebbian plasticity rule. During retrieval, 

corrupted patterns are presented to the network, whose dynamics recover the closest previously 

stored pattern. l. Dense network (dCA3) has greater discrimination capacity than the sparse (10% 

connectivity) network (pCA3). In repeated trials, N patterns are stored in each network and then 

recalled (y axis: mean bit-recall accuracy; chance level 50%). Both networks achieve 100% 

accuracy for small N with accuracy decreasing as N increases, but the number of patterns the 

sparse network is able to discriminate is much smaller than the dense network. m. Sparse network 

(pCA3) has greater generalization capacity than the dense network (dCA3). Each network was 

trained to its maximum capacity while still achieving 100% accuracy in (l). To test generalization 

performance, increasingly different patterns were then presented to each network (number of 

corrupted bits). The sparse network was able to generalize more accurately from patterns with a 

larger distance to the original compared to the dense network. Colors are matched as follows: 

purple for pCA3, orange for dCA3, gray for familiar context, and red for novel context. n.s. = non-

significant, *p < 0.05, **p < 0.01, ***p < 0.001. 
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Figure 4. Neural manifold dimensionality in in vivo and in silico recurrent network. a. 

Illustration of a direct link between recurrency and neuronal manifold dimensionality. b. 

Distribution of recurrent weights in sparse and dense RNN models. c. Principal Component 

Analysis (PCA) of population activities from simulated sparse (left) and dense (right) RNNs, with 

projections onto the top three principal components shown. d. Cumulative explained variance as 
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a function of the number of principal components extracted from PCA with in silico simulated 

datasets. Dashed lines indicate the principal component at which 90% cumulative explained 

variance is reached. e. PCA of population activities in pCA3 and dCA3 during spatial navigation 

tasks, with projections onto the top three principal components shown. f. Cumulative explained 

variance as a function of the number of principal components extracted from PCA for in vivo 

neural activities. Dashed lines indicate the principal component at which 90% cumulative 

explained variance is reached. g. The average number of principal components required to reach 

90% cumulative explained variance, as indicated by the dashed lines in f (p = 0.009). Mann-

Whitney U tests were used to determine statistical significance unless otherwise stated. Colors 

are matched as follows: purple for pCA3 or sparse RNN, orange for dCA3 or dense RNN. n.s. = 

non-significant, *p < 0.05, **p < 0.01, ***p < 0.001.  
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Supplementary Figures 

 

Supplementary Figure 1. (Related to Figure 1) Spatial tuning of proximal and distal CA3 

during spatial navigation. a. Representative time average image (left) and ΔF/F traces (right) 

of proximal (top) and distal (bottom) CA3 neurons. Transient events in bold and start times 

indicated by circles above traces. b. Average number of detected ROI in proximal and distal CA3 

(p = 3.25 e-5). c. Proportion of place cells in each CA3 subregion (mean ± SEM; p = 0.0025; n = 

5 and 7 mice for pCA3 and dCA3, respectively). d. Spatial information (bits/event) of place cells 

in each subregion (p = 0.037) e. Place field specificity in each subregion (p = 0.0076). f. Place 

field sensitivity in each subregion (p = 0.58). g. Heatmaps of spatial tuning curves for pCA3 (left) 

and dCA3 (right) cells. Rows show average and normalized responses for all cells, sorted by the 

position of the peak activity. Mann-Whitney U tests were used to determine statistical significance 

unless otherwise stated. Colors are matched with purple for pCA3 and orange for dCA3. n.s. = 

non-significant, *p < 0.05, **p < 0.01, ***p < 0.001. 
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Supplementary Figure 2. (Related to Figure 1) Long-term stability of place cells in 

proximodistal CA3. a-b. Proportion of place cells across days in pCA3 (a) and dCA3 (b). No 

significant difference was observed across days in either region (Kruskal-Wallis H-test, pCA3: H 

= 2.69, p = 0.91; dCA3: H = 2.70, p = 0.72; post-hoc Dunn’s multiple comparison with Bonferroni 

correction). c-d. PV correlation between the same position across days of place cells from pCA3 

(c) and dCA3 (d).  Correlation values decreased as interval between days increased. (c) p = 0.015 

between intervals 2 and 4, p= 0.088 between intervals 4 and 6. (d) p = 6.81 e-06 between intervals 

2 and 4, p = 0.00014 between intervals 4 and 6. Two-sided unpaired t-tests were used to 

determine statistical significance. Colors are matched with purple for pCA3 and orange for dCA3. 

n.s. = non-significant, *p < 0.05, **p < 0.01, ***p < 0.001. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2024. ; https://doi.org/10.1101/2024.11.07.622379doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.07.622379
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 
 

 

Supplementary Figure 3. (Related to Figure 2) Context-discriminative neural activity in 

proximodistal CA3. a. Position of the animal in the familiar and novel environments from an 

example session. b-c. Comparison of mean velocity in the familiar and novel environments for 

pCA3 (b) (p = 0.53; n = 7mice) and dCA3 (c) (p = 0.32; n = 7mice) recording sessions. d. 

Proportion of neurons with significant DI value in familiar and novel environments (7 mice for both 

pCA3 and dCA3). The proportion of PNs significantly tuned to the familiar environment was similar 

between pCA3 and dCA3 (0.14 ± 0.23 for pCA3, 0.15 ± 0.03 for dCA3; p = 1.0), but dCA3 showed 

a higher level of novelty-tuned neural responses compared to pCA3 (0.078 ± 0.012 for pCA3, 

0.23 ± 0.055 for dCA3; p = 0.021). e. Peak decoding accuracy correlated with the number of 

randomly subsampled pCA3 neurons (Pearson's r = 0.98, p = 0.00015, 7 mice). The black line 

indicates the regression line. f. Performance of the linear decoder for context in pCA3 and dCA3 

without subsampling. No significant differences were found in peak decoding accuracies between 

pCA3 and dCA3 (0.86 ± 0.034 for pCA3, 0.85 ± 0.046 for dCA3, p = 0.85, 7 mice for both pCA3 

and dCA3). Mann-Whitney U tests were used to determine statistical significance unless 

otherwise stated. Colors are matched as follows: purple for pCA3, orange for dCA3, gray for 

familiar context, and red for novel context. n.s. = non-significant, *p < 0.05, **p < 0.01, ***p < 0.001. 
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Supplementary Figure 4. (Related to Figure 2) Place cell responses across blocks in a 

context-switching task. a. Proportion of place cells in each trial block in pCA3 (top) and dCA3 

(bottom). Familiar and novel blocks showed similar levels of place cells in both the first and second 

exposures (Kruskal-Wallis H-test, H = 1.43, p = 0.69 for pCA3, H = 0.73, p = 0.87 for dCA3). c-d. 

PV correlation between familiar and novel contexts for the first and second blocks. No significant 

difference was observed in pCA3 between the first and second blocks (p = 0.71), whereas a 

significant difference was found in dCA3 (p = 0.0003). d. Schematics showing gradients of 

generalization and discrimination of context and location by proximodistal CA3 with different levels 

of recurrent connection. Colors are matched as follows: purple for pCA3, orange for dCA3, gray 

for familiar context, and red for novel context. n.s. = non-significant, *p < 0.05, **p < 0.01, 

***p < 0.001. 
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Supplementary Figure 5. (Related to Figure 3) Spatial tuning properties of in silico place 

cells in RNN. a. Comparing sparsity level via functional connectivity matrices: sparsity is 

evaluated based on the functional connectivity matrix of neurons in each subregion, using a 20-

neuron window for both distal and proximal recordings. Results averaged across a recording 

session align with physiological studies, indicating greater recurrence in the dCA3 subregion. b. 

Training loss of multi-task RNN: the training loss curve for the multi-task RNN (referenced in Fig. 

3f) demonstrates the stability of the model's convergence. c. spatial RNN tuning curve with 

different neuron number: Example of tuning curves for a spatial RNN network, modeled with 

varying neuron counts (30 neurons), highlighting the network’s spatial encoding capabilities. d. 

Distribution of prediction error across all laps before (gray) and after (black) training RNN.  
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Supplementary Figure 6. (Related to Figure 3) RNN artificial cell responses during context-

switching task. Example heatmaps of lap-by-lap activity for RNN artificial cells are shown. 

Context-discriminative cells (a) and non-discriminative cells (b). Horizonal dashed lines indicate 

context changes, and vertical dashed lines indicate the reward location.  
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Methods  

All experiments were conducted in accordance with NIH guidelines and with the approval 

of the Columbia University Institutional Animal Care and Use Committee. No statistical 

methods were used to predetermine sample sizes. The experiments were not randomized, 

and the investigators were not blinded to allocation during experiments and outcome 

assessment. 

 

Animals 

Imaging experiments were performed with healthy, 2- to 4-month-old, heterozygous adult 

male and female Grik4-cre mice (Jackson Laboratory, 006474) on a C57BL/6J 

background. Mice were group-housed under normal lighting conditions in a 12-hour 

light/dark cycle. Ad libitum water was provided until the beginning of training for the spatial 

navigation task.  

 

Viruses 

CA3 pyramidal cell imaging experiments were performed by injecting a Cre-dependent 

rAAV expressing GCaMP8s under the control of the synapsin promoter (rAAV9-Syn-

FLEX-jGCaMP8s-WPRE-SV40; Addgene, 162377; titer, 2.3 × 1013 viral genomes per ml).  

 

Surgery 

All surgical procedures were performed on Grik4-cre mice (2-4 months old) under 

isoflurane anesthesia (4% induction, 1.5% maintenance in 95% oxygen). Mice were 

placed on a stereotaxic surgery instrument (Kopf Instruments), and their body 

temperature was maintained using a heating pad. Meloxicam and bupivacaine were 

administered subcutaneously to reduce discomfort. Following a skin incision, a 

craniotomy was performed over the right hippocampus using a drill. A sterile glass 

capillary loaded with rAAV was attached to a Nanoject syringe (Drummond Scientific) and 

slowly lowered into the right hippocampus. The proximal and distal CA3 were targeted 

with two x–y coordinates, each consisting of two different injection sites separated in z: 
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AP –1.46, ML –1.75, DV –2.1, –1.9 and AP –1.46, ML –1.3, DV –2.3, –2.1 relative to 

bregma, with 60 nl of virus injected at each DV location. The pipette was held for 5-10 

minutes after the last injection and then slowly retracted from the brain. The skin was 

sutured, and the mice were allowed to recover for 4 days before the window/headpost 

implant. 

 

For hippocampal window and headpost implantation, as described previously23,30,31, a 3-

mm craniotomy was performed over the right anterior hippocampus, centered between 

the two injection coordinates. We then slowly aspirated the cortex overlying the right 

dorsal hippocampus and implanted a 3-mm glass-bottomed stainless-steel cannula for 

optical access. Subsequently, a titanium headpost with layers of dental cement was 

attached to the skull. The mice received 1.0 ml of saline subcutaneously and recovered 

in their homecage on the heating pad. All mice were monitored for 3 days of post-

operative care until behavior training began. 

 

Behavioral paradigm 

After a 14-day recovery period from implant surgery, mice were water-restricted to 85-90% 

of their original body weight and habituated to handling and head fixation. They were then 

exposed to a 2-meter-long linear virtual reality (VR) corridor that remained consistent 

during training and recording26,31. At the end of the environment, an inter-trial interval of 

2 seconds with a blank screen was included, and the mouse was simply teleported to the 

next lap. 

 

For the next 10-14 days, mice were trained to run through the virtual environment and lick 

for a water reward. In the habituation phase, a drop of water was given in a non-operant 

manner when the subject mice entered the reward zone (RZ). Additional water droplets 

were provided as they continued licking within a 30 cm area. In the training phase, the 

reward was given in an operant manner where the correct lick within the RZ could trigger 

the first drop of reward and subsequent droplets with additional licking. Mice were trained 
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to run at least 30 laps in the environment. After recording during the GOL task, the 

context-switching task was performed the next day. 

 

For context-switch experiments, we used a completely distinct set of visual cues along 

the 200 cm track as a novel environment. Each recording session consisted of four blocks: 

15 laps in the Familiar context, 15 laps in the Novel context, 15 laps in the Familiar context, 

and 15 laps in the Novel context. The reward location remained fixed at 150 cm for both 

contexts. For subject mice used in both pCA3 and dCA3 imaging experiments, we used 

different visual cues for the novel environments, while the familiar context remained the 

same for both sequences. 

 

Histology 

After the completion of imaging experiments, mice were transcardially perfused with 40 ml 

of ice-cold PBS (Thermo Fisher), followed by 40 ml of ice-cold 4% paraformaldehyde 

(PFA; Electron Microscopy Sciences). The brain was then kept submerged in 4% PFA 

overnight at 4 °C. On the next day, coronal hippocampal sections (thickness: 100 μm) 

were obtained using a vibratome (VT1200-S, Leica, Germany). After brief washing with 

0.3% Triton X-100 dissolved in phosphate-buffered saline (PBST), brain slices were 

incubated in a blocking solution (5% normal donkey serum, 0.3% PBST) for two hours at 

room temperature. Subsequently, slices were incubated with the primary antibody (rabbit 

anti-PCP4 diluted 1:500; HPA005792; Sigma-Aldrich) in a blocking solution overnight at 

4 °C. After the sections were washed three times for 15 minutes with 0.3% PBST at room 

temperature, they were incubated with the secondary antibody (Alexa Fluor 647-

conjugated donkey anti-rabbit IgG antibody diluted 1:800; 711-605-152; Jackson 

ImmunoResearch) in the blocking solution for 2 hours. Slices were rinsed three times for 

15 minutes with 0.3% PBST, stained with DAPI (1:1000 dilution in 0.3% PBST), and then 

mounted on microscope slides. Fluorescence imaging was performed using a Nikon Ti-E 

A1R laser-scanning confocal microscope with ×10/0.45-NA Plan Apo (Nikon) or ×20/0.75-
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NA Plan Apo (Nikon) objective lens. 3 μm Z-stack images were processed using NIS 

Elements software (Nikon) or Fiji (ImageJ). 

 

In vivo two-photon imaging 

All imaging was conducted using a 2-photon 8 kHz resonant scanner (Bruker) and high-

NA multiphoton objective (XLPLN25XWMP2, 25x/1-NA, Olympus). For excitation, we 

used a 920 nm femtosecond-pulsed laser (Chameleon Ultra II, Coherent). Pockels cells 

were used to regulate the power of the laser reaching the tissue. Green (GcaMP8s) 

fluorescence was collected through an emission cube filter set (HQ525/70 m-2p) to a 

GaAsP photomultiplier tube detector (Hamamatsu, 7422P-40). A custom dual-stage 

preamp (1.4 x 105 dB, Bruker) was used to amplify signals prior to digitization. All images 

were acquired with 512 x 512 pixel resolution at 30 Hz. 

 

Calcium imaging data preprocessing 

The preprocessing steps for the raw fluorescence signal have been described 

elsewhere51,77. Briefly, the imaging data was motion corrected using the SIMA software 

package78. The time average of each imaged cell was manually inspected, and an ROI 

was hand-drawn over each cell using a data visualization server program developed in 

the lab. The same CA3 PNs were transferred across sessions wherever possible, and 

identified with a unique ID, so that their activity across sessions could be tracked. 

Fluorescence was extracted from each ROI using the FISSA software79 package to 

correct for neuropil contamination using six patches of 50% the size of the original ROI. 

For each resulting raw fluorescence trace, a baseline F was calculated by taking the first 

percentile in a rolling window of 30 s, and a ∆F/F trace was calculated. The ∆F/F trace for 

each cell was smoothed using an exponential filter, and all further analyses were 

performed on the resulting ∆F/F traces. We detected statistically significant transients as 

described previously77 to use for place field calculations. All further analyses were 

implemented using Python using custom-written scripts. 

Spatial tuning analysis 
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The virtual environment was divided into 100 evenly spaced bins (2 cm), which were then 

utilized to bin a histogram of each cell’s neuronal activity. Neuronal activity was filtered to 

include activity from when the animal was running above 3 cm/s and to exclude activity 

during the 2-sec teleportation at the end of the 2-m track. The spatial tuning curves were 

normalized for the animal’s occupancy and then smoothed with a Gaussian kernel (α = 6 

cm) to obtain a smoothed activity estimate. 

To detect place fields, we generated a baseline distribution of spatial tuning curves for 

each neuron by randomly and independently shifting the activity on each lap a random 

distance in a circular manner. Following this, we recalculated the smoothed, lap-averaged 

tuning curve as detailed above. We repeated this process a thousand times, determining 

the 95th percentile of baseline tuning values at each spatial bin, which served as the 

threshold for significant spatial tuning (p < 0.05). Areas of space where the true spatial 

tuning curve surpassed this baseline threshold were identified as potential PFs. In order 

to be classified as a place cell, ROIs needed to have at least 3 consecutive significant 

bins (6cm), but less than 25 consecutive bins (50cm). Moreover, in order to avoid spurious 

detection of significant bins, we set an additional criterion that there must be activity within 

the PF boundaries for a minimum of 20% of laps. For place cell sensitivity, representing 

the proportion of laps that had active events within the significant field, the number of laps 

that had at least 1 binarized event within the significantly detected fields was divided by 

the total number of laps. For place cell specificity, the total number of events within the 

significant field was divided by the total number of events observed within the lap. Then, 

it was averaged across all laps to have a single value for each ROI. If multiple fields were 

detected, they were computed separately and averaged across fields to have a single 

value for each ROI. For spatial information, it was calculated as described previously80. 

 

Tuning-curve correlation 

To determine the level of similarity between spatial representations across different 

sessions for each place cell, we calculated the tuning curve correlation (Pearson 
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correlation) for each pair of sessions imaged on different days. Only tuning curves of cells 

with place fields on both days were included in the analysis. 

 

Population vector correlation 

To assess the stability of spatial representations over days, we calculated the population 

vector (PV) correlation (Pearson correlation) between two sessions imaged on different 

days. Only cells defined as place cells on both days were included in the analysis. The 

diagonal values of the correlation matrix represent the correlation between corresponding 

spatial bins across different sessions. Specifically, each diagonal value indicates the 

correlation between the PV in a given spatial bin in one session and the PV in the same 

bin in another session. We averaged these diagonal correlation values across all spatial 

bins. This process was repeated for all pairs of sessions, and the correlation coefficient 

was quantified as a function of the day interval between sessions. 

We also used PV correlations to quantify the similarity of the spatial code between and 

across contexts – F1 vs F2, N1 vs N2, and F vs N. Cells that were defined as place cells 

in at least one of the two blocks were included in this analysis. The same quantification 

process for correlation coefficients was applied 

 

Discrimination index 

As described previously81, the discrimination index (DI) was calculated for each cell to 

estimate the response preference toward a given context. The DI was defined by the 

following formula: 

𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑖𝑛𝑑𝑒𝑥 =  
𝜇1  −  𝜇2

√1
2 (𝜎1

2  +  𝜎2
2)
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where μ and σ represent mean and standard deviations of calcium response amplitudes 

across laps of each environment, respectively82. 

To test the significance of the DI value, we generated 1,000 surrogate data sets in which 

laps were randomly permuted and calculated the 95th percentile of the null value per cell. 

If the experimentally observed DI value surpassed the top or bottom 2.5% of the 

distribution of surrogate DI values, we considered it context-selective. Therefore, 5% of 

neurons were expected to have a significant DI value in a given session by chance. 

 

Support vector machine (SVM) analysis 

To assess whether neuronal population activity patterns convey contextual information, 

we utilized a linear classifier support vector machine (SVM) to classify neuronal activity 

patterns into familiar or novel environments. For each imaging session, independent 

SVMs were trained and tested at each time point using a leave-one-trial-out cross-

validation approach. Specifically, each decoder was trained with the neural population 

activity pattern from all laps except one withheld lap (n-1). We then evaluated whether 

the trained decoder accurately classified the held-out lap into the correct context. This 

process was repeated for each lap in the session, ensuring that every lap was utilized as 

a test lap at least once. Decoding accuracy was measured as the proportion of correct 

classifications. To compare the decoding efficacy between CA3 subregions, cells from 

proximal CA3 were subsampled to match the average detected ROI from distal CA3. The 

same SVM analysis procedures were then applied separately to the pCA3 and dCA3 

datasets.  

 

Neural manifold analysis 
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We employed Principal Component Analysis (PCA) to reduce the dimensionality of neural 

data and visualize neural trajectories in a low-dimensional subspace. Neural activity was 

represented as an N × T matrix, where N denotes the number of neurons, and T is the 

number of time points. To ensure comparability between pCA3 and dCA3 regions, we 

matched the number of recorded neurons across sessions. The data were mean-centered 

before PCA. The covariance matrix of the centered data, C, was calculated as: 

𝐶 =   
1

𝑇−1
𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑𝑋𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑

𝑇 , 

where Xcentered is the mean-centered data matrix. Eigenvalue decomposition was 

performed on C, yielding eigenvalues λi and corresponding eigenvectors (principal 

components). The neural data were projected onto the subspace spanned by the leading 

eigenvectors. 

To determine the dimensionality of the data, we identified the minimum number of 

principal components k needed to explain at least 90% of the cumulative variance, 

calculated as: 

∑
𝜆𝑖

∑ 𝜆𝑗
𝑁
𝑗=1

𝑘
𝑖=1 ≥ 0.90. 

The same manifold dimensionality quantification was applied to both neuronal recordings 

and sparse and dense recurrent neural networks (RNNs) from simulation. 

 

Modeling 

Recurrent neural network modeling 

Each subregion’s recurrent neural network (RNN) model consisted of a recurrent layer, 

alongside input and output layers. The network architecture and training method of our 

artificial neural networks was imitated from previous papers on path integrator artificial 
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networks83,84. The recurrent layer comprised 100 rate neurons with tanh activation 

functions and was implemented using the TensorFlow LSTM package85. The output layer 

is a single (path integration) / two (multi-tasking network) neurons with dense connection 

from the recurrent layer with a linear activation function. The inputs to both the spatial 

imitator network and the multitasking network were the instantaneous speed and the initial 

position of the mice on the linear track. The initial position inputs were held constant, 

serving as the trial initiation signal. The network's objective was to replicate the mice's 

momentary position during each trial by integrating momentary speed and internally 

generated temporal signals within the network. 

To stabilize network convergence, we introduced Gaussian noise as input to the network, 

a method shown to enhance convergence86. In the multitasking RNN (context switching 

+ path integration), we included a noisy input signal simulating the context visual signal 

encoded as a binary code, combined with Gaussian noise centered around zero with a 

standard deviation of 0.3. This perceptual noise was added to mimic the context-

dependent visual cue noise in the virtual arena. With a noiseless context signal, we 

anticipated a smaller neuronal population to be involved in context identification 

computations. The goal of the multitasking RNN was to minimize the Euclidean distance 

in a two-dimensional subspace between predicted location-context pairs and actual 

location-context pairs.  

To implement recurrent sparsity, an L1 regularization term was incorporated into the loss 

function, with different coefficients applied to promote either sparse (𝜆𝑠𝑝𝑎𝑟𝑠𝑒  = 0.1) or 

dense 𝜆𝑑𝑒𝑛𝑠𝑒 = 0.001) connectivity. The total loss 𝐿 is defined as: 

𝐿 =  ∑(𝑋 − 𝑋𝑃𝑟𝑒𝑑𝑖𝑐𝑡)2  +  𝜆 ∑ |𝑊𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡| 

Where 𝑋 denotes the vector of momentary location and context, 𝑋𝑃𝑟𝑒𝑑𝑖𝑐𝑡 is the network’s 

output, 𝑊𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 represents the recurrent weights across hidden layer neurons, and 𝜆 is 

the regularization coefficient. 
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Training was conducted using the Adam optimizer from the Keras package85, with a 

learning rate of 1e-4 and a minimum batch size of 8. We ensured the spatiality of training 

by verifying the saturation of the training loss function. 

To reverse-engineer network activity, we analyzed the response functions of individual 

neurons in the hidden layer during a feedforward epoch, where instantaneous speed and 

context signals were provided as inputs. Analysis of the artificial neurons, including cell 

selectivity and population activity, followed the same criteria used for biological neurons 

in this study. Additionally, we replicated the formation of place-selective cells using a 

network with a smaller hidden layer size (30 neurons). Population-level results were 

based on simulations involving 100 hidden neurons. 

 

Hopfield networks 

Hopfield networks were implemented in Python 3.8 in line with previous studies87. In brief, 

a network was initialized with N binary (±1) valued neurons. In the training phase, M 

patterns ξ are stored in the weight matrix according to the Hebbian rule 

𝑊 = ∑ 𝜉𝑗 𝜉𝑗
𝑇  

In the test phase, the trained network is initialized to a test pattern ξ’, constructed by 

flipping a predetermined fraction of the activities of a parent pattern ξ chosen from the M 

patterns the network was previously trained on. The network is then allowed to evolved 

according to the classical Hopfield dynamics  

𝑥(𝑡) = 𝑠𝑔𝑛(𝑊𝑥(𝑡 − 1)) 

where 𝑥(0) =  𝜉 until either convergence is reached (i.e., 𝑥(𝑡) =  𝑥(𝑡 − 1)) or a maximum 

number of iterations Tmax is reached. 
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To introduce sparsity into the Hopfield network, we choose a connection probability p and 

sample a structural connectivity matrix A where a connection exists between each pair of 

neurons i.i.d. with probability p (equivalently, a graph is drawn from the Erdős-Rényi 

process parameterized by p). The case p=1 reduces to the classical Hopfield network 

with full connectivity, while smaller p represents higher levels of sparsity. In sparse 

networks, weights between non-structurally connected neurons are not updated during 

training or used in the dynamics (which are otherwise unchanged), such that the effective 

weight matrix becomes 

𝑊𝑒𝑓𝑓 = 𝐴 ⊙ 𝑊 

where ⊙ is the elementwise (Hadamard) product.  

To model discrimination, we investigated how many distinct patterns networks at different 

levels of sparsity could store and accurately recall by drawing M random binary vectors 

for a range of M and storing them in the network. In the test phase, a fixed fraction of 

neurons were flipped and accuracy was read out as the similarity between the recovered 

pattern and the ground truth pattern. 

To model generalization, we investigated perturbations to a base pattern that could still 

be identified with the base pattern by networks at different levels of sparsity by fixing the 

number of patterns M and varying the fraction of flipped neurons. We again used similarity 

between the recovered pattern and the ground truth pattern as our accuracy metric. 

 

Statistics 

Statistical differences between means were determined by two-sided unpaired t-test and 

Mann-Whitney U test, Kruskal–Wallis tests with post hoc Dunn’s multiple comparison 

tests as mentioned in the text or figure legends. A p-value<0.05 was used as the criterion 

for statistical significance. Boxplots show the 25th, 50th (median), and 75th quartile 
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ranges with the whiskers extending to 1.5 interquartile ranges below or above the 25th or 

75th quartiles, respectively. All data analysis and visualization were done with custom 

software built on Python version 2.7.15, and 3.8.11. All data were expressed as mean ± 

SEM. 
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