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Abstract 36 

Altered affect and cognitive dysfunction are transdiagnostic, burdensome, and 37 
pervasive features of many psychiatric conditions which remain poorly understood and 38 
have few efficacious treatments. Research on the genetic architecture of these 39 
phenotypes and causal relationships between them may provide insight into their 40 
aetiology and comorbidity. Using data from the Lifelines Cohort Study, we conducted 41 
genome-wide association studies (GWAS) on positive and negative affect and four 42 
cognitive domains (working memory, reaction time, visual learning and memory, 43 
executive function). Using publicly available large GWAS on related - albeit distinct- 44 
phenotypes (depression, anxiety, wellbeing, general cognitive ability [GCA]) we 45 
conducted genetic correlation and Mendelian randomization (MR) analyses to examine 46 
genetic overlap and causal relationships. We identified one genome-wide hit (p<5x10-8) 47 
for reaction time, and many loci with suggestive associations (p<5x10-6; N range= 11-20 48 
independent hits) for other phenotypes.  For most phenotypes, gene mapping and 49 
tissue expression analysis of suggestive hits from the GWAS showed increased gene 50 
expression in brain tissue compared to other tissues. As predicted, negative affect is 51 
genetically correlated with mental health phenotypes (depression rg=0.51; anxiety 52 
rg=0.70; wellbeing rg = -0.71) and cognitive domains are genetically correlated with GCA 53 
and brain volume (rg ≤ 0.66). Genetic correlations between negative and positive affect 54 
suggest that they are dissociable constructs (rg = -0.18) with negative affect having 55 
higher genetic overlap with GCA than positive affect (rg =-0.19 vs -0.06). This could 56 
indicate that negative affect has a higher shared neural basis with GCA than positive 57 
affect and/or GCA and negative affect may exhibit causal relationships. MR analyses 58 
suggest potential causal effects of higher GCA on reduced negative affect, reduced risk 59 
of depression and anxiety, and higher wellbeing, but little impact on positive affect. We 60 
also report evidence for potential causal effects of depression and lower wellbeing on 61 
reduced GCA. Taken together, these results suggests that GCA may be a valid target for 62 
negative affect (but not positive affect) and depression and wellbeing may be valid 63 
targets for GCA. 64 

 65 
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1. Introduction  67 

Positive and negative affect reflect the extent to which a person feels positive or 68 
negative emotions (e.g., excited, interested; nervous, distressed), respectively. Positive 69 
and negative affect can be experienced in a state (temporary) or trait (stable) manner 70 
(Watson et al., 1988) and are distinct transdiagnostic features of many health 71 
conditions, particularly depression and anxiety. Another critical yet often overlooked 72 
transdiagnostic feature of many health conditions is cognitive dysfunction (Colwell et 73 
al., 2022; Hilton et al., 2024). Despite altered affect and cognitive dysfunction being 74 
burdensome and pervasive features of many conditions, they remain poorly understood 75 
and have few efficacious treatments (Colwell et al., 2022; Rush et al., 2006).  76 

Understanding the genetic architecture of mental health and cognitive 77 
phenotypes, and their relation to each other, can provide aetiological and biological 78 
insights which may facilitate identification of novel treatment targets (Carey et al., 2021; 79 
Minikel et al., 2024). Although observational studies have found associations between 80 
mental health and cognition (Dam et al., 2021; Rock et al., 2014; Zainal & Newman, 81 
2021; although see Ball et al., 2024;), causality remains unclear (Suddell et al., 2023). 82 
Reported associations may reflect: (1) poorer mental health causing poorer cognition, 83 
(2) poorer cognition causing poorer mental health, (3) confounding via shared risk 84 
factors (e.g., stress, sedentary behaviour) (Mac Giollabhui, 2021). Crucially, studies 85 
testing causal relationships between more narrowly defined mental health phenotypes 86 
(e.g., affect) and cognitive domains (e.g., memory, attention) are needed (Chavez-87 
Baldini et al., 2023). Evidence of bidirectional causality would strengthen the case that 88 
targeting poor mental health (either diagnostic conditions or transdiagnostic 89 
phenotypes) may prevent and treat cognitive dysfunction, and vice versa. Two 90 
approaches that can shed light on the aetiology, comorbidity, and/or causal 91 
relationships between phenotypes are genetic correlations (using all genome-wide 92 
variants) (Bulik-Sullivan, Finucane, et al., 2015) and Mendelian randomization (MR) 93 
(typically using genome-wide association study hits) (Davey Smith & Ebrahim, 2003). 94 
MR can test for causality given certain assumptions are met (see Supplementary 95 
Methods). It does this by using genetic variants robustly associated with the exposure 96 
as a proxy for it. The properties of genetic variants (random assignment from parents, 97 
fixed at conception) mean that they are less likely to be associated with confounders 98 
and overcome issues of reverse causality (Davey Smith & Ebrahim, 2003; Sanderson et 99 
al., 2022). These methods provide powerful tools given the availability of large genome-100 
wide association studies (GWAS) on well-defined phenotypes. 101 

To date, GWAS on mental health phenotypes have largely been conducted on 102 
diagnostic categories such as depression and anxiety (Carey et al., 2021). However, 103 
these conditions are heterogeneous, with diagnosed individuals showing diverse 104 
symptom profiles. For example, a diagnosis of depression requires ≥5/9 diverse 105 
symptoms to be present within a two-week period, one of which must be low mood or 106 
anhedonia (Regier et al., 2013). In addition, symptoms are often not specific to a 107 
condition, meaning that GWAS on a condition may in reality capture a broader 108 
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phenotype. One potential approach to reducing phenotypic heterogeneity while 109 
addressing the overlap with other conditions, is to focus on more narrowly defined traits 110 
that more closely map onto biological systems (positive and negative affect, specific 111 
cognitive domains) (Wendt et al., 2020). In line with the Research Domain Criteria 112 
framework (Cuthbert, 2014; Insel et al., 2010), these are often transdiagnostic. GWAS 113 
on these more narrowly defined transdiagnostic traits may potentially facilitate insights 114 
into aetiology, comorbidity, and novel therapeutics.  115 

In this study, we first conducted GWAS of negative and positive affect (assessed 116 
using the Positive and Negative Affect Schedule [PANAS]) and cognitive task 117 
performance in several domains (executive function, working memory, visual learning 118 
and memory, and reaction time). Second, we conducted gene mapping and tissue 119 
expression analysis to gain greater insight into associated genetic variants. Third, we 120 
investigated genetic overlap between mental health (negative affect, positive affect, 121 
depression, anxiety, wellbeing) and cognitive (general cognitive ability [GCA], specific 122 
cognitive domains) phenotypes using genetic correlations. Fourth, we tested evidence 123 
of potential causality between mental health and cognitive phenotypes using MR 124 
analyses. This is the first GWAS conducted on positive and negative affect using well-125 
validated measures of these phenotypes. To achieve this, we use a large Dutch 126 
population-based cohort, the Lifelines Cohort. The application of MR to test evidence of 127 
causal relationships between affect and cognition is critical for improving our 128 
conceptual understanding of these phenotypes. 129 

We hypothesised that: (i) follow-up analyses on all GWAS show increased gene 130 
expression in brain tissue compared to other tissues; (ii) affect and cognitive measures 131 
in the Lifelines Cohort genetically correlate with related (albeit distinct) phenotypes 132 
from external GWAS. Specifically, negative affect positively correlates with 133 
depression/anxiety and negatively correlates with wellbeing (reverse direction for 134 
positive affect), and higher cognitive performance on all domains correlates with GCA; 135 
(iii) there are bidirectional causal relationships between mental health and cognitive 136 
phenotypes.  137 

 138 
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Figure 1. Study Objectives.  147 

 148 

2. Methods and Materials  149 
 150 

2.1. Description of the Lifelines Cohort  151 

Lifelines is a multi-disciplinary prospective population-based cohort study 152 
examining in a unique three-generation design the health and health-related behaviours 153 
of 167,729 persons living in the north of the Netherlands. It employs a broad range of 154 
investigative procedures in assessing the biomedical, socio-demographic, behavioural, 155 
physical and psychological factors which contribute to the health and disease of the 156 
general population, with a special focus on multi-morbidity and complex genetics. 157 
Participants were recruited between 2006-2013 via their GP (49%), participating family 158 
members (38%), and self-registration on the Lifelines website (13%) (Scholtens et al., 159 
2015). Exclusion criteria for GP recruitment were: insufficient knowledge of Dutch 160 
language, severe psychiatric or physical illness, limited life expectancy (<5 years) 161 
(Scholtens et al., 2015). Baseline data included approximately: 15,000 children (0-17 162 
years), 140,000 adults (18-65 years), 12,000 elderly individuals (65+ years). Following 163 
baseline, participants completed follow-up questionnaires every 1.5 years and study 164 
visits every 5 years (1st follow-up visit [2014-2017], 2nd follow-up visit [2019-2023]) 165 
(Scholtens et al., 2015; Sijtsma et al., 2022). In this study, we included participants ≥18 166 
years who were genotyped on a GWAS array and excluded participants who have 167 
conditions with a significant cognitive sequel: Alzheimer’s disease, other dementia, 168 
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epilepsy, multiple sclerosis, Parkinson’s disease, and stroke. 169 
 170 

2.2. Assessment of Positive and Negative Affect 171 

The Positive and Negative Affect Scale (PANAS) was used. PANAS assesses 172 
positive and negative affect using two separate sub-scales, each containing 10 items 173 
(example items: excited, upset, nervous) (Crawford & Henry, 2004; Watson et al., 1988). 174 
Participants rate the extent they experienced each item during the last four weeks on a 175 
five-point scale (ranging from ‘not at all’ to ‘extremely’). The outcome is the summed 176 
score on each subscale, which ranges from 10-50 (higher values reflect higher positive 177 
or negative affect). The scales have high internal consistency (a=.87) and moderate test-178 
retest reliability over 8-weeks (positive r=.58; negative r=.48) (Watson et al., 1988). 179 
 180 

2.3. Assessment of Cognitive Performance 181 

Ruff Figural Fluency Test (RFFT) was used, which is a valid and reliable measure 182 
of executive functioning (Ross, 2014). The task consists of five parts, each containing 35 183 
identical five-dot patterns. Participants draw as many unique designs as possible within 184 
one minute by connecting dots in different patterns (Kuiper et al., 2017). The primary 185 
outcome is total number of unique designs.  186 

Four tasks from the CogState Test Battery were administered in Lifelines, which 187 
tap into specific cognitive domains: visual learning & memory (one card learning task), 188 
reaction time/attention (identification task and detection task) and working memory 189 
(one-back task). As the detection and identification task both assess reaction time, we 190 
include only the identification task in this study which has a larger sample size. We used 191 
the recommended primary outcomes for all tasks. All outcomes were transformed 192 
(reaction time [ms] on the identification task was log10 transformed, and accuracy on 193 
the one-back and one card learning task were arcsine transformed). On both memory 194 
tasks, higher values reflect better memory; on the reaction time task higher values 195 
reflect poorer performance (i.e., slower reaction time). See Supplementary Methods for 196 
further information on dataset preparation. 197 
 198 

2.4. Genetics Data and Quality Control 199 

Genotyping was conducted using three chip arrays in three subsets of the 200 
Lifelines cohort: (i) Illumina CytoSNP-12 Bead Chip v2 array (N=17,033), (ii) Infinium 201 
Global Screening Array (GSA) Beadchip-24 v1.0 (N=38,030), (iii) FinnGen Thermo Fisher 202 
Axiom® custom array (Affymetrix; N=29,166). See Supplementary for quality control 203 
(QC) and imputation procedures conducted by Lifelines. Following Lifelines QCs, 204 
73,086 participants were potentially eligible for this study (CytoSNP N=14,942; GSA 205 
N=31,810; Affymetrix N=26,334). We applied additional QCs, removing: (i) duplicates 206 
(individuals genotyped on >1 chip) and 1st-degree relatives between chips, (ii) non-207 
European individuals, and (iii) genetic outliers, see Supplementary Figure S1. Following 208 
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additional QCs, 58,713 participants with genetics data were included in this study 209 
(CytoSNP N=7,632; GSA N=24,975; Affymetrix N=26,106). 210 
 211 

2.5. GWAS Summary Statistics for Related Mental Health and Cognitive Phenotypes  212 

To examine genetic overlap and potential causality between affect and cognitive 213 
performance, we used summary statistics from large publicly available GWAS of 214 
depression (N Cases=294,322; N Controls=741,438) (Als et al., 2023), anxiety (N 215 
Cases=7,016; N Controls=14,745)(Otowa et al., 2016), wellbeing (N=2,370,390) 216 
(Baselmans et al., 2019), general cognitive ability (GCA; N=373,617)(Lam et al., 2021), 217 
and brain volume (N=47,316) (Jansen et al., 2020). See Supplementary Methods and 218 
Table S1-S2 for further details on these GWAS. 219 
 220 

2.6. Statistical Analyses 221 
2.6.1. GWAS of Negative Affect, Positive Affect, and Cognitive Performance in Lifelines 222 

We conducted GWAS (negative affect score, positive affect score, and cognitive 223 
performance score on each task) in each genotyped subset separately using REGENIE, 224 
which accounts for relatedness (Mbatchou et al., 2021). Prior to conducting GWAS, 225 
within each subset, we standardised all outcomes (mean=0; SD=1) and used PLINK 226 
(Purcell et al., 2007) to clean the genetics data for REGENIE Step 1. We included 227 
variants that met the following criteria: call rate (0.95), Hardy-Weinberg equilibrium (1e-228 
6), minor allele count (100), minor allele frequency (0.01), not multi-allelic; and 229 
restricted to individuals with low missingness (0.95). In each GWAS, covariates included 230 
age, sex, and top 10 genetic principal components. We excluded poorly imputed 231 
variants (INFO score <0.8). For each outcome, we meta-analysed GWAS across the 232 
three subsets using STDERR model in METAL and applied genomic corrections (Willer et 233 
al., 2010). GWAS quality was inspected using GWAS Inspector 1.6.4.0 (Ani et al., 2021). 234 
The standard p-value threshold of 5x10-8 was used to determine genome-wide 235 
significance (for suggestive significance: p-value <5x10-6). Variants with MAF < 0.01 were 236 
excluded from all follow-up analyses.  237 

2.6.2. Tissue Specificity of Prioritised Genes  238 

We used gene and tissue mapping to explore associated variants in each GWAS. 239 
We used an online platform (FUMA) which integrates resources to annotate, prioritize, 240 
and visualise the summary statistics (Watanabe et al., 2017). The SNP2GENE function 241 
was used to annotate SNPs and prioritise genes at each locus using positional 242 
mapping. Using these prioritised genes, we used GENE2FUNC to investigate tissue 243 
specificity of differentially expressed gene (DEG) sets using GTEx v8 data on 54 non-244 
diseased tissue types (N≤838 adults). For further details, see Supplementary Methods. 245 

2.6.3. Genetic Correlations 246 

Linkage Disequilibrium Score Regression (LDSR) (Bulik-Sullivan et al., 2015; 247 
Bulik-Sullivan et al., 2015) was used to estimate genetic correlations of mental health 248 
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and cognitive phenotypes. This included phenotypes from Lifelines (positive and 249 
negative affect, cognitive performance), and phenotypes from large external GWAS 250 
(depression, anxiety, wellbeing, GCA, brain volume). We used precomputed LD scores 251 
calculated using 1000G European data. As low imputation quality may confound LDSR 252 
we filtered to HapMap3 panel SNPs which tend to be well-imputed in most studies 253 
(Bulik-Sullivan, Finucane, et al., 2015). If GWAS did not have a sample size column for 254 
SNPs, we assumed the same sample size for all SNPs. We checked all phenotypes had 255 
heritability z-scores > 4 in line with standard procedure (Bulik-Sullivan et al., 2015). For 256 
LDSR cleaning filters applied, see (Bulik-Sullivan et al., 2015). 257 
 258 

2.7. Bidirectional Mendelian Randomization  259 

MR was performed to investigate potential causal effect of mental health 260 
phenotypes on cognition and vice versa. This was done in R v4.2.2 using TwoSampleMR 261 
(Hemani et al., 2017) and CAUSE  v1.2.0.0335 (Morrison et al., 2020). 262 

We applied the following criteria to identify genetic instruments: (1) p<5x10-8 (if 263 
not available, a lenient p<5x10-6  threshold was used) (2) independent (r2 < 0.01, kb = 264 
1000; based on European clustering in the 1000 genomes reference panel using 265 
ld_clump() in the ieugwasr package (Hemani et al., 2024)), (3) minor allele frequency 266 
(MAF) ≥1%. Any SNPs not available in the outcome GWAS were excluded. For primary 267 
analyses, we used the Inverse-Variance Weighted method (>1 SNP available) or Wald 268 
ratio (if only 1 SNP was available). Where multiple genetic variants were available, we 269 
conducted sensitivity analyses using different MR methods which have different 270 
assumptions regarding the validity of the genetic instruments: MR-Egger (Bowden et al., 271 
2015), weighted median (Bowden et al., 2016), weighted mode (Hartwig et al., 2017).  272 

We also applied Steiger filtering to assess whether genetic variants have stronger 273 
associations with exposures than outcomes (Hemani et al., 2017). Given the possibility 274 
of correlated pleiotropy, we additionally applied causal analysis using summary effect 275 
estimates (CAUSE) which accounts for correlated and uncorrelated pleiotropy 276 
(Morrison et al., 2020). For CAUSE, we included genome-wide variants pruned using 277 
default criteria (r2=0.01, p-value=0.003) based on European 1000 genomes reference 278 
panel. Given the possibility of population-level confounding (e.g., dynastic effects), we 279 
also conducted within-sibship MR in the MR-base platform (Hemani et al., 2018) using 280 
publicly available within-sibship GWAS on wellbeing, depressive symptoms, and 281 
cognitive ability (Howe et al., 2022); see Supplementary methods for more detail. We 282 
also checked for heterogeneity (Cochran’s Q-statistic) and pleiotropy (Egger intercept). 283 
For further details on assumptions of different MR methods used here, see 284 
Supplementary methods. 285 

In our primary analysis, we included phenotypes which have well-powered 286 
GWAS as exposures (>1 SNP available: depression, wellbeing, GCA). In secondary 287 
analysis, we included phenotypes which have less well-powered GWAS as exposures (1 288 
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SNP or lenient p-value criteria: anxiety, negative affect, positive affect) to investigate 289 
whether similar patterns of effects are observed for these phenotypes.  290 

3. Results  291 
 292 

3.1. GWAS of Negative Affect, Positive Affect, and Cognitive Performance in the 293 
Lifelines Cohort  294 

No SNPs met genome-wide significance threshold (p<5x10-8), except one SNP for 295 
reaction time (rs2920287, MAF=0.04, p=1.907e-08). Visual inspection of the locus zoom 296 
plot of the region around rs2920287 shows many nearby genes, with PSCA being in 297 
closest proximity (Figure S4). Follow-up analyses of this SNP using the GWAS Catalog 298 
did not show associations with any traits. Lowering the threshold to p<5x10-6 yielded 299 
associated SNPs for all phenotypes (Table 1). For Manhattan plots, see Figures S2-S3. 300 

Table 1. GWAS Results of Positive Affect, Negative Affect, and Cognitive Performance in 301 
the Lifelines cohort.  302 

Phenotype N Hits 
 (p<5e-08) 

Hits Clumped 
(1000kb, r2=0.01) 

Hits  
(p<5e-06) 

Hits Clumped 
(1000kb, r2=0.01) 

Positive affect 57,946 0 0 67 20 

Negative affect 57,946 0 0 73 15 

Executive function 36,563 0 0 108 12 

Visual learning and 
memory 

36,783 0 0 139 12 

Reaction time 35,729 1 1 176 19 

Working memory 36,349 0 0 56 11 

Note: Variants with MAF < 0.01 excluded. 303 

 304 

3.2. Tissue Specificity of Prioritised Genes  305 

We used a lenient p-value threshold (p<5x10-6) to identify SNPs for follow-up 306 
analysis in FUMA. For all phenotype’s, prioritised genes were upregulated across 307 
multiple tissue types, particularly brain tissue (see Supplementary Figures S5-S6 and 308 
Tables S18-S23). Following FUMAs default Bonferroni corrections for multiple 309 
comparisons, there was significant upregulation in brain tissue for positive affect 310 
(substantia nigra) and visual learning and memory (cerebellum and cerebellar 311 
hemispheres) compared to other tissue types. For visualisation of tissue specificity of 312 
prioritised genes, see Figures S5-S6.  313 

 314 

 315 
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3.3. Genetic Correlations between Affect and Mental Health Phenotypes 316 
3.3.1. Negative Affect is Genetically Correlated with Mental Health Phenotypes 317 

Negative affect score was genetically correlated with depression (rg = 0.51 318 
[SE=0.05], p=2.80E-28), wellbeing (rg = -0.71 [SE=0.05], p=8.65E-41), and anxiety (rg = 319 
0.70 [SE=0.18], p=0.0002). Positive affect showed weaker genetic correlations with 320 
depression (rg = -0.11 [SE=0.04], p=0.005), wellbeing (rg = 0.30 [SE=0.05], p=2.38E-09), 321 
with little evidence for anxiety (rg = -0.16 [SE=0.17], p=0.33). 322 

3.3.2. Cognitive Domains are Genetically Correlated with GCA 323 

Cognitive performance in Lifelines tasks were genetically correlated with the 324 
largest GWAS for GCA: executive function (rg=0.66 [SE=0.07], p=1.39E-23), visual 325 
learning & memory (rg=0.54 [SE=0.05], p=6.90E-29), working memory (rg=0.53 [SE=0.06], 326 
p=1.23E-18), and reaction time (rg= -0.39 [SE=0.06], p=1.48E-12). 327 

3.3.3. Compared to Positive Affect, Negative Affect has Stronger Genetic Correlation 328 
with GCA. 329 

There was a weak negative genetic correlation between positive and negative 330 
affect scores (rg = -0.18 [SE=0.08], p=0.016). There was stronger evidence of genetic 331 
correlations between GCA and negative affect (rg = -0.19 [SE=0.04], p=7.56E-06) 332 
compared to GCA and positive affect (rg = -0.06 [SE=0.04], p=0.18).  333 

For all results, see Figure 2 and Supplementary Table S3. 334 

 335 

Figure 2. Genetic correlations between Lifelines phenotypes (negative affect, positive 336 
affect, cognitive performance) and external phenotypes (depression, anxiety, wellbeing, 337 
GCA, brain volume) using LDSR. 338 

 339 
GCA=General Cognitive Ability; EF=Executive Functioning; Memory=Visual Learning and Memory; Neg Affect=Negative Affect (PANAS); Pos Affect=Positive Affect (PANAS). 340 

 341 
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3.4. Potential Causal Effects: Results from Mendelian Randomization 342 
3.4.1. Effect of Mental Health Phenotypes on Cognition 343 

In primary analyses, across all MR methods there was consistent evidence for a 344 
potential causal effect of depression on lower GCA (IVW estimate: -0.14 [95% CI= -0.19 345 
to -0.09], p=0.00000006) and of one SD increase in wellbeing on higher GCA (IVW 346 
estimate: 0.30 [95% CI= 0.13 to 0.46], p=0.0004) (Figure 3). These effects remained after 347 
applying Steiger Filtering (Figure 4; Supplementary Tables S6-S9) and were supported by 348 
MR CAUSE (Supplementary Table S24-S25). There was also evidence for a potential 349 
causal effect of one SD increase in wellbeing on better executive functioning (IVW 350 
estimate: 0.24 [95% CI= 0.03 to 0.44], p=0.024), and weak evidence of an effect on 351 
memory (IVW estimate: 0.19 [95% CI= -0.02 to 0.41], p=0.076). However, these effects 352 
were not consistent across MR methods and were not supported following Steiger 353 
filtering (Figure 4; Supplementary Tables S6-S9).  354 

In secondary analyses, there was evidence for a potential causal effect of one 355 
SD increase in negative affect on poorer memory (IVW estimate: -0.15 [95% CI= -0.27 to 356 
-0.03], p=0.012) and one SD increase in positive affect on better executive functioning 357 
(IVW estimate: 0.16 [95% CI= 0.02 to 0.30], p= 0.024). However, these effects were not 358 
consistent across MR methods, see Figures 4 and Supplementary Tables S10-S13.  359 

For other mental health and cognitive phenotypes, there was little evidence of 360 
causality based on IVW estimates (Figures 4; Supplementary Tables S6-S14). 361 
Confidence intervals (CIs) using within-sibship GWAS were very large with imprecise 362 
estimates (Figure S16). 363 

There was evidence of heterogeneity, with the strongest evidence in analyses of 364 
depression and wellbeing on GCA, see Supplementary Table S15. There was little 365 
evidence of horizontal pleiotropy (based on Egger Intercept; ps≥0.14), except for weak 366 
evidence in MR analyses of depression on GCA (p=0.084) and executive function 367 
(p=0.048); see Supplementary Table S16. 368 

 369 

3.4.2. Effect of GCA on Mental Health Phenotypes 370 

There was evidence for a potential causal effect of one SD increase in GCA on 371 
lower negative affect (IVW estimate: -0.11 [95% CI= -0.16 to -0.05], p=0.0002), reduced 372 
risk of depression (OR: 0.88 [95% CI=0.83 to 0.93], p=0.00003), and anxiety (OR: 0.64 373 
[95% CI=0.51 to 0.81], p= 0.0002), and higher wellbeing (IVW estimate: 0.02 [95% CI= 374 
0.01 to 0.04], p=0.011) (Figure 3; Supplementary Table S4). However, effects were not 375 
consistent across all MR methods: there was more consistent evidence for GCA on 376 
negative affect (3/4 methods provide evidence supporting causality) compared to 377 
depression (2/4), anxiety (2/4), and wellbeing (1/4).   378 

Following Steiger Filtering, there was still evidence for a potential causal effect of 379 
one SD increase in GCA on lower negative affect (IVW estimate: -0.07 [95% CI= -0.11 to 380 
-0.02], p=0.007) but weaker evidence for one SD increase in GCA on reduced risk of 381 
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anxiety (IVW estimate: -0.24 [95% CI= -0.50 to 0.02], p=0.072), although CIs were large 382 
(see Figure 4 and Supplementary Table S5). For GCA on depression and wellbeing, 383 
results were unaltered as no variants were removed in Steiger Filtering. MR CAUSE 384 
support that the data are consistent with a causal effect of GCA on negative affect, 385 
depression, and wellbeing (See Supplementary Tables S24-S25). Although MR CAUSE 386 
suggests the data for GCA on anxiety fit the causal model better than the null or sharing 387 
model, this did not meet conventional p-value criteria (p>0.05). In within-sibship MR, CI 388 
were very large with imprecise estimates (Figure S16). 389 

There was strong evidence of heterogeneity in MR analyses testing effects of 390 
GCA on mental health phenotypes, except for GCA on anxiety (p=0.34); see 391 
Supplementary Table S15. There was little evidence of horizontal pleiotropy based on 392 
MR Egger Intercept (ps ≥ .15) (Supplementary Table S16). 393 

 394 
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Figure 3. Mendelian Randomization Analyses Testing Evidence of Potential Causality 397 
between Mental Health and Cognition Phenotypes.   398 

 399 
Note: Bars reflect 95% CIs. Axes differ to ensure inclusion of CIs for all analyses. For binary phenotypes (anxiety, depression), beta reflects log(OR). 400 
 401 
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Figure 4. Steiger Filtered Mendelian Randomization Analyses Testing Evidence of 403 
Potential Causality between Mental Health and Cognition Phenotypes.   404 

 405 

Note: Bars reflect 95% CIs. Axes differ to increase visibility of results  in different analyses; CI of MR-Egger (cognition on anxiety) is absent on graph due to very 406 
large CI. For binary phenotypes (anxiety, depression), beta reflects log(OR). 407 

 408 

 409 
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4. Discussion 411 

We conducted genome-wide association studies (GWAS) on negative and 412 
positive affect using a well-validated scale (PANAS) and four cognitive domains 413 
(executive function, working memory, visual learning and memory, reaction time) in the 414 
Lifelines Cohort. We identified one genome-wide hit (p<5x10-8) for reaction time, and 415 
many loci with suggestive associations (p<5x10-6) for other phenotypes. As predicted, 416 
gene mapping and tissue expression analysis of suggestive hits show higher gene 417 
expression in brain tissue compared to other tissues for most phenotypes; negative 418 
affect is genetically correlated with mental health phenotypes (depression rg=0.51; 419 
anxiety rg=0.70; wellbeing rg = -0.71) and cognitive domains are genetically correlated 420 
with GCA and brain volume (rg ≤ 0.66). Genetic correlations between negative and 421 
positive affect suggest that they are dissociable constructs (rg = -0.18); with negative 422 
affect having higher genetic overlap with GCA than positive affect (rg =-0.19 vs -0.06). 423 
Importantly, MR results suggest evidence of potential causal effects of higher GCA on 424 
reduced negative affect, reduced risk of depression and anxiety, and higher wellbeing 425 
(with the most robust result being higher GCA on reduced negative affect), but little 426 
impact of GCA on positive affect. We also report evidence for potential causal effects of 427 
depression and lower wellbeing on reduced GCA. Taken together, these results suggests 428 
that GCA may be a valid target for reducing negative affect, but not for increasing 429 
positive affect; and depression and wellbeing may be valid targets for GCA.  430 

4.1. Potential Causality between Mental Health and Cognitive Phenotypes 431 

Across different MR methods, we found evidence of a potential causal effect of 432 
higher GCA on many mental health outcomes (reduced negative affect, reduced risk of 433 
depression and anxiety, increased wellbeing). There was also evidence of potential 434 
causal effects of depression and wellbeing on GCA. Whilst we did not observe evidence 435 
for negative affect and anxiety on GCA, given the consistent direction of effect, this may 436 
be due to these GWAS being smaller and having decreased statistical power when used 437 
as exposures. Our findings complement recent studies using MR analyses and 438 
complementary designs (e.g., within-sibship analyses) reporting evidence of causality 439 
between mental health phenotypes (depression, wellbeing, and/or anxiety) and 440 
constructs related to cognition [e.g., educational attainment (Demange et al., 2024), 441 
education duration (Van De Weijer et al., 2024)]). 442 

However, few studies have directly tested causality between mental health and 443 
cognition. Using MR analyses in the ALSPAC cohort, Suddell et al. (2023) tested 444 
causality between mental health conditions (depression, anxiety) and specific cognitive 445 
domains (response inhibition, working memory, emotion recognition) but reported that 446 
estimates were imprecise likely due to limited statistical power (Suddell et al., 2023).  447 
Marchi et al. (2024) used multivariable MR to test the causal effect of GCA and poverty 448 
on several mental health conditions (including depression and anxiety) (Marchi et al., 449 
2024). After adjusting for poverty, they found evidence that higher GCA may causally 450 
reduce risk of depression and anxiety. Through inclusion of additional GWAS (negative 451 
affect, positive affect, larger depression GWAS), our findings lend support to these 452 
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findings and additionally suggest: (1) higher GCA may also cause lower negative affect 453 
(but not influence positive affect), (2) evidence of bidirectional effects (i.e., higher risk of 454 
depression and lower wellbeing may also cause poorer GCA). Taken together, these MR 455 
findings suggest a potential bidirectional causal relationship between mental health 456 
and cognition. 457 

Whilst our results could indicate a bidirectional causal effect, other explanations 458 
(which violate MR assumptions) may account for these results including: (1) correlated 459 
pleiotropy and (2) population-level confounding. Correlated pleiotropy occurs when 460 
genetic variants used in MR analyses affect both the exposure and outcome via a 461 
shared heritable factor (Morrison et al., 2020). An example of how this could occur here 462 
is through genetic variants impacting brain-related processes (e.g., synaptic plasticity) 463 
which directly affect both cognition and mental health. Whilst we did include several 464 
MR methods which allow for some correlated pleiotropy (e.g., weighted median, 465 
weighted mode, MR CAUSE) (Morrison et al., 2020), these methods could still give 466 
biased estimates (and lead to incorrect conclusions regarding causality) if the majority 467 
of instruments exhibit correlated pleiotropy. Another factor which may account for 468 
these results is population-level confounding (e.g., assortative mating, dynastic effects) 469 
(Brumpton et al., 2020). Whilst we are interested in direct effects from GWAS (i.e., 470 
genetic variants effect on phenotypic variation), for many phenotypes GWAS will also 471 
pick up indirect effects (e.g., dynastic effects: parental genotype affecting offspring 472 
phenotype via environmental factors). This is problematic as it violates MR assumptions 473 
and could lead to incorrect conclusions (Brumpton et al., 2020). One approach 474 
proposed to overcome this is to use within-family GWAS (Brumpton et al., 2020; Howe 475 
et al., 2022). Howe et al. (2022) found that GWAS estimates for some phenotypes, 476 
including cognitive ability and depressive symptoms, were attenuated when using 477 
within-sibship GWAS compared to population-level GWAS (Howe et al., 2022). To try to 478 
address this, we also conducted MR using within-sibship GWAS (depressive symptoms, 479 
wellbeing, and cognitive ability) to test whether this impacted our findings. 480 
Unfortunately, confidence intervals (CIs) were very large with imprecise estimates 481 
(Supplementary Methods and Figure S16). This is unsurprising given the much smaller 482 
sample size of within-sibship GWAS compared to population-level GWAS and highlights 483 
the need for larger within-family GWAS on complex phenotypes like cognitive ability and 484 
depressive symptoms.  485 

4.2. Additional Insights from Genetic Analyses on Negative and Positive Affect, and 486 
Cognitive Performance. 487 

Genetic correlation analyses reveal key insights into the genetic architecture of 488 
these phenotypes. First, as predicted, there was moderate genetic overlap between 489 
negative affect and mental health phenotypes (depression rg=0.51; anxiety rg=0.70; 490 
wellbeing rg = -0.71), and between cognitive domains and cognition-related phenotypes 491 
(GCA, brain volume; rg ≤ 0.66). This suggests that although these phenotypes are 492 
related, they are not interchangeable but rather have partly distinct genetic 493 
components. Second, as expected based on phenotypic correlations, genetic 494 
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correlation between negative and positive affect suggest they are dissociable 495 
constructs as opposed to being opposite ends of the same spectrum (rg = -0.18) 496 
(Watson et al., 1988). Third, compared to positive affect, negative affect has higher 497 
genetic overlap with GCA (rg =-0.19 vs -0.06). This could indicate that negative affect has 498 
a higher shared neural basis with GCA than positive affect and/or GCA and negative 499 
affect may exhibit causal relationships (as suggested by our MR results).  500 

Despite the negative affect GWAS having a much smaller sample size than the 501 
depression GWAS (N=57,946 versus N=1,035,760), when used as an outcome, we 502 
found more consistent evidence that GCA may play a causal role in negative affect 503 
across MR methods. Speculatively, this may be because the GWAS on negative affect 504 
consists of a more homogeneous phenotype which may increase statistical power and 505 
impact effect estimates (Manchia et al., 2013). This highlights the importance of future 506 
studies conducting GWAS on more homogeneous phenotypes (Nagel et al., 2018). 507 
Whilst we focused on transdiagnostic features of positive and negative affect and 508 
specific cognitive domains, there is a need for GWAS on other transdiagnostic features 509 
[e.g., sleep disturbances, anhedonia, hot cognition (Roiser & Sahakian, 2013)]. It is 510 
likely that advances will also be gained by parsing heterogeneity using other 511 
approaches. For example, GWAS on depressed patients with specific characteristics 512 
[e.g., immune-metabolic depression (Milaneschi et al., 2020)]. Research focusing on 513 
improving the validity of subtypes within and across psychiatric conditions will be 514 
necessary for advancing our understanding of these conditions (Hammen, 2018). 515 

4.3. Limitations  516 

Limitations of this study must be considered when interpreting the results. First, 517 
smaller sample sizes for some GWAS resulted in a lack of genome-wide significant 518 
variants (p<5x10-8) and/or larger CIs in MR analyses (positive and negative affect, 519 
specific cognitive domains, anxiety). Consortia combining data from several large 520 
datasets are necessary to provide well-powered GWAS on these phenotypes; our GWAS 521 
in the Lifelines Cohort will provide a useful contribution to this endeavour. Second, MR 522 
estimates lifetime effect of an exposure (e.g., depression) on an outcome (e.g., GCA) 523 
(Sanderson et al., 2022). Whilst this study is informative for understanding lifetime risk, 524 
it is unclear what time periods would be best to intervene on. This requires either a 525 
randomised controlled trial (RCT; which would be expensive and time consuming) or MR 526 
with large GWAS on exposures and outcomes at specific ages in the lifespan (Power et 527 
al., 2023). Third, cognitive performance is highly related to other socioeconomic 528 
phenotypes (e.g., education, socioeconomic status). Future studies testing 529 
independent effects and interactions between these phenotypes on mental health 530 
using other methods (e.g., multivariable MR) would be useful (see Marchi et al., 2024). 531 
Fourth, as discussed above, observed bidirectional causal relationships in MR analyses 532 
between mental health and GCA could instead be due to violation of MR assumptions. 533 
Triangulating results from standard MR analyses with other methods (e.g., within-534 
sibship MR) may help to increase confidence in conclusions drawn. Fifth, many GWAS 535 
use data from large population-based cohorts which are less representative of some 536 
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populations (e.g., less affluent people) which may hinder generalizability of the findings. 537 
Sixth, for continuous variables (e.g., GCA, negative affect, wellbeing), our study cannot 538 
shed light on whether these relationships are nonlinear. As currently available nonlinear 539 
MR approaches have provided implausible results (Wade et al., 2023), there is a need 540 
for other methods to be used to characterise the shape of these relationships (see 541 
Pines et al., 2024). Seventh, we focus on a subset of phenotypes, future studies should 542 
expand this to provide insight into other mental health and cognitive phenotypes which 543 
may show different relationships (e.g., schizophrenia, hot cognition) (Danhauer et al., 544 
2013). Finally, many GWAS on psychiatric conditions do not exclude people with 545 
comorbidities. For example, the depression GWAS includes UK Biobank which defines 546 
depression based on the following question: “Have you ever seen a general practitioner 547 
(or psychiatrist) for nerves, anxiety, tension, or depression?”. This may result in many 548 
individuals with anxiety being characterised as having depression and makes it 549 
challenging to conduct subsequent analyses testing genetic overlap/causality between 550 
different conditions. 551 

4.4. Implications 552 

Our GWAS on positive and negative affect and cognitive domains in the Lifelines 553 
Cohort provide valuable resources which may facilitate insights into aetiology, 554 
comorbidity, and causal risk factors for these phenotypes. We found evidence of 555 
potential causal relationships between mental health phenotypes (negative affect, 556 
depression, anxiety, wellbeing) and GCA. This may suggest that strategies targeting poor 557 
mental health may prevent/treat cognitive dysfunction, and vice versa. However, to 558 
increase confidence in this finding, triangulation using other methods which have 559 
different strengths/limitations to MR, and consideration of highly related phenotypes 560 
(e.g., education), are needed. Additionally, GWAS on other transdiagnostic phenotypes 561 
are necessary to enable clearer insights into potential causal relationships. If multiple 562 
lines of evidence support causality, careful consideration of potential interventions 563 
(e.g., age to intervene, length of intervention, whether interventions targeting 564 
depression to reduce poorer GCA [or vice versa] could also have their own direct effect 565 
of GCA)  would be necessary. This could have important implications for clinical 566 
practice (e.g., targeting depression may help prevent/treat cognitive impairments in 567 
health conditions such as dementia; cognitive remediation therapy may help 568 
prevent/treat depression). Considering the broader literature (Demange et al., 2024; 569 
Marchi et al., 2024), policy changes targeting factors impacting GCA [e.g., education 570 
(Anderson et al., 2020)] would potentially be promising for reducing future mental 571 
health challenges in the general population.  572 

Nevertheless, there is also evidence suggesting that cognitive impairments can 573 
persist in remitted depressed individuals (Semkovska et al., 2019). This may appear to 574 
contrast the idea that treating depression may help to prevent/treat cognitive 575 
impairments. Speculatively, this could be because: (1) once depressive symptoms have 576 
decreased, cognitive impairments reduce but require a longer time to observe effects 577 
(RCTs may not have long enough follow-up lengths), (2) reducing depression may help 578 
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to prevent cognitive impairments, but may not help treat them once they are already 579 
experienced (i.e., a ‘scar effect’), (3) treating depression may improve cognition in a 580 
subset of people (not all individuals), and/or (4) some symptoms of depression when 581 
treated may improve cognition (but not all symptoms when treated will improve 582 
cognition). There is a need for research testing these different theories to better 583 
understand the dynamic relationship between depression and cognition.  584 

4.5. Conclusions 585 

In summary, we conducted GWAS on transdiagnostic features of many health 586 
conditions (positive and negative affect, four specific cognitive domains). We identified 587 
one genome-wide hit (p<5x10-8) for reaction time, and many loci with suggestive 588 
associations (p<5x10-6) for other cognitive phenotypes. Follow-up gene mapping and 589 
tissue expression analyses of suggestive hits show higher gene expression in brain 590 
tissue compared to other tissues for most phenotypes. Genetic correlation analyses 591 
show that negative and positive affect are dissociable constructs, with negative affect 592 
having higher genetic overlap with GCA than positive affect. Importantly, in MR 593 
analyses, we found evidence of a potential causal effect of higher GCA on multiple 594 
mental health phenotypes (reduced negative affect, depression, and anxiety; and 595 
increased wellbeing), with little evidence on positive affect. We also report evidence of 596 
potential causal effects of depression and lower wellbeing on reduced GCA. Taken 597 
together, as the most robust evidence was for GCA on negative affect, with little effect 598 
on positive affect, this suggests that GCA may be a valid target for negative affect (but 599 
not positive affect) and depression and wellbeing may be valid targets for GCA. Further 600 
research testing the relationship between depression and cognition using 601 
complementary research designs is warranted, particularly there is a need for studies to 602 
test different theories we proposed in the discussion. 603 
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