Skip to main content
[Preprint]. 2024 Nov 1:2024.06.24.24309380. [Version 3] doi: 10.1101/2024.06.24.24309380

Table 1:

Characteristics of study areas and samples

Country Study type Rationale Area name Urban %a Climate Survey dates Survey season Source Population Overall response rate % Sample informationb
n Male % age, years median (IQR)
Chile Reuse of population survey37 Proposed risk factors Molina 69 Mediterranean Oct22–Nov23 All year 45 976 92 476 41 53 (48, 57)
Ecuador CKD focused study38 DEGREE registered Miguelillo, Manabi Province 0 Tropical Jul21–Sep21 Dry 14 164 61 754 41 39 (28, 49)
England HSE 2016 – Reuse of population survey21 Reference England 83 Temperate 2016 All year 56 000 000 59 2135 42 44 (34, 52)
Guatemala CKD focused study39 DEGREE registered Tecpán, Chimaltenango 0 Temperate Highland Tropical Jun18–Oct19 All year 85 000 58 336 34 34 (24, 47)
San Antonio Suchitepequez 0 Tropical Wet Jun18–Oct19 All year 52 000 69 318 34 33 (25, 45)
India 1. CARRS - Reuse of population survey40 DEGREE registered Chennai 100 Tropical Oct10–Nov11 All year 4 680 000 92 5 366 43 39 (31, 47)
Delhi 100 Semi-arid Oct10–Nov11 All year 16 300 000 96 3 564 49 42 (35, 50)
2. ICMR-CHD – Reuse of population survey41 DEGREE registered Delhi 100 Semi-arid Aug11–Jan12 Rainy, autumn, winter 16 300 000 Not reported 1888 44 41 (35, 48)
Faridabad 0 Semi-arid Aug11–Jan12 Rainy, autumn, winter 90 000 Not reported 1413 45 42 (36, 49)
3. UDAY - Reuse of population survey42 DEGREE registered Sonipat 50 Semi-arid Jul14–Dec14 Rainy, autumn, winter 203 000 90c 4126 44 44 (37, 51)
Vizag 50 Tropical Jul14–Dec14 Rainy, autumn, winter 275 000 4 209 44 43 (35, 50)
4. Uddanam - CKD focused study43 Reported high CKDu area Kanchili 0 Hot Tropical Jun18– Dec19 Summer, winter 66 657 85c 317 47 43 (35, 51)
Kaviti 0 Hot Tropical Jun18–Dec19 Summer, winter 75 974 212 48 43 (35, 51)
Mandasa 0 Hot Tropical Jun18–Dec19 Summer, winter 82 699 200 48 42 (33, 50)
Palasa 0 Hot Tropical Jun18–Dec19 Summer, winter 97 551 362 51 44 (36, 51)
Sompeta 0 Hot Tropical Jun18–Dec19 Summer, winter 78 908 443 46 42 (33, 51)
V_kothuru 0 Hot Tropical Jun18–Dec19 Summer, winter 73 212 531 47 44 (35, 52)
5. Prakasam – CKD focused studyd DEGREE registered Kanigiri 0 Hot Tropical Dec21–Feb22 Winter 1780 84 1052 40 39 (30, 49)
Italy CKD focused study44 Reported high CKD area Barga 0 Temperate Jun21–Mar22 Summer, autumn, winter 9 574 92e (or 50f) 301 43 47 (33, 54)
Kenya CKD focused study45 DEGREE registered Muhoroni East 100 Sub-tropical Jul20–Nov20 Dry 3 740 85 260 53 34 (26, 43)
Owaga 0 Sub-tropical Jul20–Nov20 Dry 3 769 87 242 47 36 (26, 46)
Tonde 0 Sub-tropical Jul20–Nov20 Dry 3 045 98 233 49 36 (28, 45)
Malawi CKD focused study46 DEGREE registered Southern Karonga District 0 Sub-tropical Jan18–Aug18 Dry, rainy 40 000 66 646 42 33 (24, 41)
Lilongwe 100 Sub-tropical Jan18–Aug18 Dry, rainy 66 000 37 312 31 28 (22, 38)
Nepal Reuse of population survey47 Proposed risk factors Nepal 67 Sub-tropical to Arctic 2016–2018 All year 29 000 000 92 8 916 37 41 (33, 50)
Nicaragua 1. CKD focused study3 Reported high CKDu area Chinandega (banana/sugarcane) 0 Tropical Jul07–0ct07 Rainy 384 86 331 47 34 (26, 44)
Chinandega (service) 0 Tropical Jul07–0ct07 Rainy 177 79 140 36 32 (25, 43)
Leon (coffee) 0 Tropical Jul07–Oct07 Rainy 92 84 77 52 36 (27, 46)
Leon (fishing) 0 Tropical Jul07–Oct07 Rainy 216 77 166 46 32 (25, 44)
Leon (mining) 0 Tropical Jul07–Oct07 Rainy 445 86 382 41 33 (26, 43)
2. CKD focused study48 Reported high CKDu area Leon municipality 70 Tropical Jun14–Sep14 Rainy 204 000 97 1672 39 37 (28, 48)
Peru CKD focused study49 DEGREE registered Tumbes 94 Arid and Sub-tropical Nov17–May18 Spring, summer, autumn 224 863 83 1238 43 39 (30, 49)
Sri Lanka Anuradhapura District - CKD focused study6 DEGREE registered Halambagaswewa, Rambewa 0 Tropical Mar17–May17 Dry 1 188 90 739 33 41 (33, 49)
Lolugaswewa, Medawachchiya 0 Tropical Mar17–May17 Dry 1 262 86 790 28 41 (34, 50)
Pothana, Mihintale 0 Tropical Mar17–May17 Dry 1391 88 691 28 41 (33, 51)
Puhudivula, Medawachchiya 0 Tropical Mar17–May17 Dry 1362 91 798 28 41 (32, 50)
Sangilikandarawa, Rambewa 0 Tropical Mar17–May17 Dry 1 228 90 818 33 41 (33, 50)
Thailand Reuse of population survey50 Proposed risk factors Bangkok 100 Tropical Nov13–Aug14 Cool, hot, rainy 6 969 010g 81 1604 24 48 (40, 55)
Central 46 Tropical Nov13–Aug14 Cool, hot, rainy 14 424 785g 92 2 752 41 46 (35, 54)
North 35 Tropical Nov13–Aug14 Cool, hot, rainy 8 638 732g 83 2 447 45 47 (37, 54)
North East 29 Tropical Nov13–Aug14 Cool, hot, rainy 13 445 305g 80 2 315 46 46 (36, 53)
South 34 Tropical Nov13–Aug14 Cool, hot, rainy 6 442 937g 73 2 019 42 44 (34, 53)
USA NHANES 2017–8 – Reuse of population survey22 Reference USA 83 All types 2017–2018 All year 320 842 721 49 3373 47 39 (30, 49)
a

Proportion of the source population of the area living in an urban environment

b

includes ages 18–60 with complete data available;

c

overall response rate not area-specific;

d

personal communication Professor Prabhdeep Kaur (kprabhdeep@gmail.com);

e

denominator includes refusal/incomplete surveys but excludes mailing failures;

f

denominator includes mailing failures;

g

population over age 20;

HSE=Health Survey England; CARRS=Centre for cArdiometabolic Risk Reduction in South-Asia; ICMR-IHD=Indian Council of Medical Research International Health Division; UDAY=means dawn in Sanskrit; NHANES=National Health and Nutrition Examination Survey;