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Abstract
Although generally unknown, the age of a newly diagnosed tumor encodes valuable etiologic and
prognostic information. Here, we estimate the age of breast cancers, de�ned as the time from the start
of growth to detection, using a measure of epigenetic entropy derived from genome-wide methylation
arrays. Based on an ensemble of neutrally �uctuating CpG (fCpG) sites, this stochastic epigenetic clock
differs from conventional clocks that measure age-related increases in methylation. We show that
younger tumors exhibit hallmarks of aggressiveness, such as increased proliferation and genomic
instability, whereas older tumors are characterized by elevated immune in�ltration, indicative of
enhanced immune surveillance. These �ndings suggest that the clock captures a tumor's effective
growth rate resulting from the evolutionary-ecological competition between intrinsic growth potential
and external systemic pressures. Because of the clock’s ability to delineate old and stable from young
and aggressive tumors, it has potential applications in risk strati�cation of early-stage breast cancers
and guiding early detection efforts.

INTRODUCTION
When a woman is diagnosed with breast cancer, it is generally not possible to ascertain how long the
tumor has been growing. Yet knowledge about a tumor’s age at diagnosis could provide important
prognostic clues: older indolent tumors that are less likely to progress may require less invasive
treatment, whereas younger fast-growing tumors require more urgent and aggressive treatment. While
there is a rich literature on the estimation of the mean sojourn time of breast cancer1–5—the average
time tumors spend in a detectable but asymptomatic, pre-clinical state—there is a paucity of tools to
assess the age of individual tumors at the time of detection.

Epigenetic clocks provide a promising approach to estimate individual tumor age. Originally developed to
quantify the biologic aging process in humans, epigenetic clocks leverage speci�c patterns of DNA
methylation that are strongly correlated with biologic tissue age.6,7 Broadly, these clocks focus on the
methylation status of CpG sites across the genome that are unmethylated at birth and become
methylated with increasing tissue age due to the accumulation of stochastic replication errors. Due to a
low error rate, such clocks are well suited to resolve processes that evolve over time scales on the order
of decades, such as normal tissue aging and pre-neoplastic transformations.8–12 They are, however, less
useful for estimating the age of invasive cancers, which take mere months to years to become
symptomatic or reach a screen detectable size.

In contrast to "one-way" clocks that measure age-related increases of methylation, "two-way" epigenetic
clocks leverage CpG sites that �uctuate between the unmethylated and methylated states on a relatively
fast time scale (Fig. 1A). Originally introduced in the context of homeostatic intestinal stem cell
dynamics,13 such stochastic epigenetic clocks have also been applied to hematologic malignancies.14

Here we follow similar design principles to develop a breast cancer-speci�c two-way epigenetic clock to
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measure individual tumor age at diagnosis based on average methylation levels ( -values) of select
CpG sites included in standard methylation arrays.

The proposed stochastic clock measures the entropy of an ensemble of �uctuating CpG (fCpG) sites. In
the tumor's most recent common ancestor cell, each fCpG was either unmethylated ), hemi-
methylated ), or methylated ). As the tumor expands, replication errors produce a
mixture of cells with different methylation states (Fig. 1B), thus progressively increasing the tumor's
epigenetic entropy.15 In the special case of unbiased fCpG sites—whose methylation and demethylation
rates are in balance—the bulk-level methylation converges to  with increasing tumor age,
regardless of the �rst tumor cell’s state (Fig. 1C). Thus, by measuring the distribution of unbiased fCpG
sites, we can derive an estimate of the age of a given tumor cell population relative to the start of the
most recent clonal expansion.

The combination of tumor-speci�c age estimates and gene expression pro�les further provides a unique
opportunity to characterize the evolutionary and ecological pressures that shape the temporal landscape
of breast cancer. Notably, aggressive tumors that evolve in a weakly suppressive immune
microenvironment are expected to reach a detectable size faster than indolent, slow-growing tumors in a
strongly suppressive immune microenvironment (Fig. 1D).

The manuscript is structured as follows. Combining DNA methylation and gene expression data from
several hundred breast cancer and normal breast tissue samples, we �rst identify a set of unbiased fCpG
sites and introduce the epigenetic clock index as a proxy measure of tumor mitotic age. We then
evaluate the face validity of the index by examining its relationship with established prognostic markers,
and we combine methylation and gene expression data to identify tumor- and microenvironment-speci�c
factors that modulate tumor age. Finally, we validate key properties of the clock index in independent
cohorts of patients with paired primary-metastasis samples, and we derive quantitative estimates of
individual breast cancers’ mitotic and calendar ages.

RESULTS

Selection of unbiased fCpG sites
To identify a set of unbiased fCpG sites in breast cancer, we used 450K methylation array data from 634
invasive breast cancers in The Cancer Genome Atlas16 (TCGA) and 79 normal breast tissue samples.17

Using a three-step selection process, we identi�ed an ensemble of fCpG sites with balanced
(de-)methylation rates as follows.

In the �rst step, we eliminated regulatory and genic loci due to their increased likelihood of being under
selection during tumor growth. This choice contrasts with the majority of cancer epigenomic studies
focused on functional CpG sites located in or around promoter regions.17–19 Next, we identi�ed CpG
sites with an average -value close to 0.5 in both normal breast tissue and breast cancers, thus
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excluding sites with an inherent bias toward methylation or de-methylation, and sites that are subject to
systematic selection during homeostasis and/or tumorigenesis (Fig. 2A). In the third step, we ordered
the set of unbiased CpG sites by between-tumor variability and included only the 500 most �uctuating
sites in the �nal clock set of unbiased fCpGs (Fig. 2B). Importantly, this �nal step excludes non-
informative sites that either do not �uctuate at all (i.e., imprinted hemi-methylated state) or �uctuate too
fast (i.e., steady-state methylation of  reached on time scales much shorter than the average
mitotic tumor age at diagnosis).

Next, we sought to validate the unbiased and �uctuating nature of the clock set in two independent
cohorts. In a cohort of 146 breast cancer patients (Lund cohort),20 we found signi�cantly higher inter-
tumor variability in -values among the CpG sites in the clock set, as compared to the CpG sites not
included in the clock set (Fig. 2C). Similarly, in a small cohort of 5 patients with multiple samples from
their primary tumors,21 we found elevated intra-tumor variability in clock set vs non-clock set sites
(Fig. 2D). Together, these patterns corroborate the unbiased and �uctuating nature of the clock set of
CpG sites.

Interestingly, the fCpG sites in the clock set were more tightly concentrated around  in normal
breast tissue, as compared to breast cancers (Fig. 2E), with a median standard deviation of -values in
normal samples of 0.09, compared to 0.21 in tumors (P = 2x10− 45, Wilcoxon rank sum test). Consistent
with the underlying dynamic model of the clock (Fig. 1A), this suggests that over decades of breast
development and maintenance, the fCpGs had converged to the stationary methylation state of

 (Fig. 1C).

Epigenetic clock index
At the level of individual tumors, the 500 fCpG sites in the clock set exhibited primarily unimodal or
bimodal distributions of -values (Fig. 3A). We explored how these tumor-speci�c distributions of -
values could be used to estimate tumor mitotic age. In the founding tumor cell, each fCpG starts in either
the unmethylated ( ), hemi-methylated ( ), or methylated (  state (Fig. 1A).
Although the trajectories of individual sites are subject to stochastic �uctuations (Fig. 1C), an ensemble
of sites starting in the same initial con�guration collectively drift toward the steady state of 
(Fig. 3B).

By considering the histograms of -value distributions at different mitotic ages, we can track the
evolution of the three “peaks” corresponding to the subsets of initially unmethylated, hemi-methylated,
and methylated clock sites (Fig. 3C). As the tumor’s mitotic age increases, the left peak of the histogram
(consisting of originally unmethylated clock sites) starts moving to the right, whereas the right peak
(originally methylated sites) moves to the left; the middle peak (originally hemi-methylated sites) remains
stationary. By measuring the extent to which the three peaks have converged to the stationary value of

, we can thus estimate the mitotic age of individual tumors.
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Concretely, we used the standard deviation of the -values, denoted by , to quantify the relationship
between mitotic tumor age and the evolving clock set pro�le (Fig. 3C). Because  is highest at time 0,
when the -value distribution exhibits three sharp peaks, and then monotonically decreases over time
(Fig. 3D), we introduced the epigenetic clock index  as a proxy measure of mitotic tumor
age (Fig. 3E).

In the next two sections, we characterize the relationship between a tumor’s mitotic age, as quanti�ed by
the epigenetic clock index , and its evolutionary-ecological context as determined by its intrinsic
growth potential and external pressures from the microenvironment. Because there is a pronounced
difference in  between ductal carcinomas (median, 0.79) and lobular carcinomas (median, 0.82; P = 
2x10− 16, Wilcoxon rank-sum test), we restricted subsequent analyses to the more common ductal
carcinomas to avoid unnecessary confounding.

Younger tumors have more aggressive phenotypes
As a breast tumor grows, its likelihood of detection on the basis of imaging or symptoms increases.
Because fast growing tumors are expected to reach a detectable size sooner than slow growing ones,
we hypothesized that younger tumor mitotic age would correlate with established markers of tumor
aggressiveness. To test this hypothesis, we correlated the epigenetic clock index with several
established features of tumor aggressiveness, including molecular subtype,22,23 genomic instability,24,25

grade,26 and size.27

There was a clear relationship between mitotic age and molecular subtype: luminal A tumors, which have
a more favorable prognosis, were older than luminal B and basal tumors (Figs. 4A-B; Suppl. Table S1).
Similarly, there was a strong correlation between genomic instability and younger tumor age (Figs. 4C-D),
and younger tumors were of higher histopathologic grade (Fig. 4E). In contrast, there was only a weak
relationship between mitotic age and summary stage (Fig. 4F)

Another prognostic factor in breast cancer is tumor size, with larger lesions having worse outcomes. We
found that smaller tumors were of older mitotic age compared to larger tumors (Figs. 4G-H), presumably
because slow growing tumors spend more time at the smaller end of the detectable size range, and are,
therefore, more likely to be detected at a smaller size.

Finally, the relationship between tumor mitotic age and patient age at diagnosis was inconclusive, with a
weak negative correlation in TCGA (R=-0.18) and no correlation in the Lund cohort (R=-0.06; Suppl. Table
S1). This is consistent with the notion that the fCpG clock measures the age of the tumor—starting with
the most recent common ancestor cell—and not the age of the patient.

Identifying modulators of mitotic tumor age
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The time it takes for a tumor to grow from a single cell to a detectable mass depends on its effective
growth rate, that is the difference between cell proliferation and cell death (Fig. 5A). Cell proliferation
primarily re�ects the tumor’s intrinsic growth potential and aggressiveness, whereas cell death is often
the result of extrinsic selective pressures applied by the tumor microenvironment, such as immune
surveillance and resource constraints due to limited vascularization.28,29

To explore putative modulators of effective tumor growth and mitotic age at diagnosis, we performed
genome-wide correlation analyses of the epigenetic clock index  against gene expression. As
predicted, mitotically younger tumors exhibited increased expression of proliferation-related genes such
as Ki67 and MCM2 (Fig. 5B, Suppl. Table S1). The signal was further augmented when considering the
average expression across a set of genes involved in M-phase and mitotic checkpoint regulation
(Fig. 5C-D) and the fraction of cells in S-phase (Fig. 5E).

Next, we examined the microenvironment's ability to decrease the effective growth rate of a tumor
through increased cell death. As hypothesized, the expression of immune cell markers such as CD3, CD4,
CD8 and FOX3 was elevated in mitotically older tumors (Fig. 5B; Suppl. Table S1). This suggests that
tumors which are subject to immune surveillance—e.g., through neo-antigen directed immune control by
CD8 + T-cells—have a lower effective growth rate and, thus, reach a detectable size at an older mitotic
age, as compared to tumors that successfully evade immune control and thus reach a detectable size at
a younger mitotic age.

To perform a systematic analysis of mitotic tumor age modulation, we performed a genome-wide gene
set enrichment analysis (GSEA) (Fig. 6A). Consistent with the univariate gene expression analyses,
mitotically younger tumors were enriched for pathways related to proliferation and cell cycle control.
Conversely, mitotically older tumors were enriched for immune pathways and immune-related signaling
pathways, again supporting the notion of effective immune control in older, slower growing lesions.

For a more in-depth analysis of the immune in�ltrate, we used the CIBERSORTx algorithm30 to estimate
the extent and composition of the immune compartment. As expected, the extent of the immune
compartment increased with mitotic tumor age (Fig. 6B). When decomposing each tumor’s immune
compartment into the major cell types, we found an increase in the fraction of T-cells in mitotically older
tumors (Fig. 6C, Suppl. Table S2), again suggestive of T-cell mediated immune surveillance.

Analysis of paired tumor samples validates epigenetic clock
Multiple tumor samples from the same patient provide a unique opportunity to assess the internal
validity of the epigenetic clock. Indeed, paired samples should be epigenetically more related—via their
most recent common ancestor cell—than samples from different patients. In a cohort of 8 women with
multi-focal breast cancer,31 we found that the within-patient correlations of the clock set fCpG sites were
higher (median, 0.72) than the between-patient correlations (median, 0.10; P = 3x10− 6, Wilcoxon rank-
sum test; Fig. 7A). The same held true for a cohort of 18 patients with paired primary tumors and lymph
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node metastases32 (median, 0.82 vs. 0.14, P = 5x10− 13; Fig. 7B) and a subset of 22 patients with paired
primary tumors and metastases (including lymph node and distant metastases) from the AURORA US
Metastasis Project33 (median, 0.73 vs. 0.08, P = 2x10− 26; Suppl. Figure S4).

The two cohorts of patients with paired primary and metastasis samples32,33 allowed us to test two
additional properties of the fCpG clock. First, assuming that each metastasis is seeded by a single cell
from the primary tumor, synchronous metastases should be younger than their matched primaries.
Indeed, the epigenetic clock measures the age of the metastasis relative to the seeding event, which
occurred after initiation of the primary tumor. Consistent with this prediction, in 36/40 patients, we found
the metastases to have a lower epigenetic clock index compared to their matched primaries (Fig. 7C).
This provides direct support for our interpretation of the epigenetic clock index as a proxy measure for
mitotic age.

Second, the timing of metastatic dissemination relative to the primary tumor's age is expected to impact
the epigenetic similarity of the two samples: if the metastasis is seeded early during primary tumor
growth (i.e., similar  values), the -values of the two samples are expected to be closely related
(Figs. 7D-E) because the metastasis seeding cell came from a mostly homogenous population;
conversely, if the metastasis is seeded late (i.e., different  values), the -values are expected to
differ more substantially (Fig. 7F) because the seeding cell came from a heterogenous population.
Corroborating this hypothesis, and consistent with a corresponding simulation of metastatic seeding
based on the oscillator model (Fig. 7G), we found a negative correlation between mitotic age difference
and -value similarity (Fig. 7H).

Quantifying mitotic tumor age
So far, we have used the epigenetic clock index  as a correlate of mitotic tumor age. To derive
quantitative estimates of each tumor's mitotic and calendar ages, we proceeded as follows (see
Methods for details). First, we invoked the mathematical oscillator model (Fig. 1A) to relate mitotic
tumor age to the measured -values of fCpG sites in the clock set. Next, we decomposed each tumor’s
empirical fCpG -value distribution into three groups (Fig. 8A): originally unmethylated fCpGs (left peak
in the histogram), originally hemi-methylated fCpGs (middle peak), and originally methylated fCpGs (right
peak). Finally, we combined the peak location in each group with the oscillator model to infer the
estimated mitotic age of the tumor (Fig. 8B).

Finally, we combined tumor-speci�c estimates of mitotic age (Fig. 8B) and proliferation rate (Figs. 8C-D)
to derive tumor-speci�c estimates of calendar age. Anchoring the median tumor age at a consensus
estimate of 3 years (see Methods), the distribution of calendar ages across the TCGA and Lund cohorts
ranged from 0.2 to 35.2 years, with an interquartile range of 1.5 to 5.6 years (Fig. 8E). There were notable
differences in median tumor calendar ages by molecular subtype, ranging from 1.0 years in basal
cancers to 6.5 years in Luminal A cancers (Suppl. Table S3).
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Adjusting for tumor purity
Bulk samples contain a mixture of tumor and stroma. Because the epigenetic clock index exhibited
correlations with tumor purity as measured by the consensus purity estimate34 (CPE; R=-0.67; Suppl.
Figure S1A), we restricted our analyses to samples of high tumor purity (CPE ≥ 0.6). Nevertheless, we
cannot rule out that the observed variability in -value distributions among the selected fCpG sites—
which are used to estimate mitotic tumor age—were at least partially driven by the methylation patterns
of admixed non-epithelial cells. If this is the case, then, e.g., the immune pathway enrichment of older
tumors (Fig. 6A) may be confounded by the presence of non-epithelial cells that alter the measured -
value distribution.

To adjust for possible confounding by tumor purity, we derived purity-adjusted -values for the tumor
cells by modeling the measured methylation as a mixture of tumor and stroma methylation, see Methods
for details. The resulting purity-adjusted epigenetic clock index  exhibited a lower correlation with

tumor purity (R=-0.22; Suppl. Figure S1B) and was lower than the unadjusted epigenetic clock index 
(Suppl. Figure S1C).

When replacing the unadjusted epigenetic clock index with the purity-adjusted version, the strength of
correlations between markers of tumor aggressiveness and younger mitotic age remained unaltered
(Suppl. Table S1, Suppl. Figure S2, Suppl. Figure S3). Individual immune genes and the extent of immune
in�ltration remained associated with older mitotic age, although the correlations were attenuated (Suppl.
Table S1, Suppl. Table S2). While the immune pathways were no longer enriched in older tumors (Suppl.
Figure S3), there was still a positive correlation between the fraction of T cells and mitotic age (Suppl
Table S2).

.

DISCUSSION
In this study, we developed an epigenetic clock to measure the age of newly diagnosed breast cancers.
Measuring epigenetic entropy among neutrally �uctuating CpG (fCpG) sites, the clock tracks mitotic
tissue age on a time scale of years and, thus, provides higher temporal resolution compared to previous
tissue clocks. Based on standard methylation arrays, it has the potential to be a novel marker of
aggressiveness and prognosis in early-stage breast cancer.

Once a patient is diagnosed with breast cancer, the tumor's mitotic age encodes valuable prognostic
information. Intuitively, a slow-growing tumor that takes a long time to reach the threshold of detection is
more likely to have a good prognosis compared to a fast-growing tumor that quickly expands into a
detectable mass. Our analyses corroborate this hypothesis by revealing that mitotically younger tumors
were enriched for features of tumor aggressiveness and predictors of poor outcome, including genomic
instability, higher grade, and basal molecular subtype.24,25 This property of the epigenetic clock is quite
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remarkable given that its constituent fCpG sites were selected from non-functional regions of the
genome, on the basis of simple statistical properties of their -value distributions.

Beyond prognostication, the clock holds promise in risk-strati�ed screening approaches. The e�cacy of
breast cancer screening critically depends on the sojourn time, that is the time window during which the
tumor is asymptomatic but mammographically detectable. If the sojourn time is short, early detection is
unlikely even under frequent screening; if it is long, some cancers will be overdiagnosed.35 Sojourn time
estimates are usually obtained by �tting natural history models to population data, yielding indirect,
population-averaged estimates. Our approach, in contrast, allows for direct and individual-level
characterization of tumor age, which provides a lower bound for the sojourn time. Assuming an overall
median time to detection of 3 years in our cohort, the time to detection in luminal A cancers (6.5 years)
was substantially longer compared to that in Luminal B (2.4 years) and basal (1.0 years) cancers. These
estimates are consistent with the observation that interval cancers are enriched for more aggressive
subtypes compared to screen-detected cancers,36 and highlight opportunities for data-driven
personalization of screening schedules.

The epigenetic clock also provides an opportunity to quantify the evolutionary-ecological pressures that
shape the temporal landscape of breast cancers. Indeed, because most tumors are of comparable size
at the time of diagnosis, mitotic age is related to the effective growth rate: tumors that reach the
detection threshold at a younger age have a higher effective growth rate compared to tumors that reach
the threshold at a higher mitotic age. Our analyses characterized the effective growth rate of breast
cancers as a competition between tumor-intrinsic growth potential (e.g., proliferation) and
microenvironmental pressures (e.g., surveillance by immune cells).37 According to this model, highly
proliferative tumors that successfully evade the immune system are detected at a younger age
compared to less proliferative lesions subject to continuous immune control.

Our study has several limitations. First, because tumor age is not observable in practice, a direct
validation of the clock is not possible. Nevertheless, we note that the clock correctly classi�ed the age
ordering of primary tumors and metastases in 36 of 40 patients. Second, the epigenetic clock index was
correlated with sample purity, which suggests the latter may be a confounder in our analyses. To
mitigate this risk of bias we systematically repeated all analyses using purity-adjusted methylation
values; while some of the associations were attenuated, the overall qualitative conclusions remained
unchanged. To address the potential confounding of age estimates by tumor purity, single cell
methylation data is needed. Third, estimation of mitotic tumor age was based on a simple mathematical
model of (de-)methylation dynamics. In future work, this approximation can be re�ned using more
sophisticated simulation-based models that account for the underlying population dynamics, including
cell proliferation and death, and possibly selection.

How long a newly diagnosed breast cancer has been growing is generally considered a known unknown.
Here we revisited this assumption and developed a new way to infer tumor age using standard
methylation arrays. While developed speci�cally for breast cancer, the approach can be generalized to

β
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any cancer type and, as such, provides a scalable technology to characterize the temporal landscape of
oncology.

METHODS
TCGA Cohort. Of the 1,085 invasive breast cancers from female patients in The Cancer Genome Atlas
(TCGA),38 774 had available methylation array data (In�nium HumanMethylation450 BeadChip, Illumina,
San Diego, CA, USA). After excluding 138 tumors of low tumor content (consensus purity estimate34

[CPE] < 0.6) and one sample each from two patients with two primary samples, the remaining 634
tumors were used to select the ensemble of 500 fCpG sites. Finally, after excluding 10 tumors with ≥ 5%
missing clock set fCpG measurements and 100 tumors with a histology code other than in�ltrating duct
carcinoma, the analytic cohort consisted of 400 tumors. The following variables were retrieved: patient
age at diagnosis; tumor histology; T stage (subsetted to T1, T2, T3, and T4); summary stage (subsetted
to stages I, II, or III). For all 400 patients with invasive ductal carcinoma, gene expression quanti�cation
(RNA-seq) and copy number segment data were available as well; when > 1 measurement was available,
one was selected at random. All clinical and sequencing data were retrieved from the Genomic Data
Commons (GDC; https://gdc.cancer.gov) using the R package TCGAbiolinks (version 2.25.3).

Lund cohort. We retrieved publicly available methylation array data (In�nium HumanMethylation450
BeadChip) from 181 primary breast cancers in the Southern Sweden Breast Cancer Group tissue bank at
the Department of Oncology and Pathology, Skåne University Hospital (Lund, Sweden) and the
Department of Pathology, Landspitali University Hospital (Reykjavik, Iceland).20 The data were obtained
through the Gene Expression Omnibus (GSE75067). Because calculation of the purity metric CPE
requires gene expression, somatic copy-number, and immunohistochemistry in addition to methylation
data, we instead assessed tumor purity using the leukocyte unmethylation percentage (LUMP) value. A
tumor’s LUMP value is calculated as the average -value among 44 speci�c CpG sites, divided by 0.85;
we found the LUMP value to be strongly correlated with CPE (R = 0.86). After excluding samples of low
purity (LUMP < 0.6; n = 35), the remaining 146 samples all had ≤ 5% missing clock set fCpG
measurements. After exclusion of non-ductal histology (n = 48) we ended up with an analytic cohort of n 
= 98. The following variables were retrieved: patient age at diagnosis; tumor grade; tumor size; molecular
subtype (PAM50); fraction of genome altered (FGA); expression of a mitotic checkpoint gene module;39

fraction of cells in S-phase (�ow cytometry).

Normal breast tissue cohort. We obtained publicly available methylation array data (In�nium
HumanMethylation450 BeadChip) from 100 normal breast tissue samples in the Susan G. Komen Tissue
Bank 17,40 (GSE88883). We excluded samples of low purity (LUMP < 0.6), resulting in a cohort of 79
normal breast tissue samples used for identifying fCpG sites.

Multiple sample cohorts. We retrieved publicly available methylation array data (In�nium Human-
Methylation450 BeadChip) from four cohorts with paired tumor samples. The �rst cohort consisted of 8
breast cancer patients with multiple primary samples (GSE106360).21 Only samples from the 5 patients

β
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(2 patients with 5 samples each; 3 patients with 3 samples each) who had not received neoadjuvant
therapy were used. Because LUMP values were highly variable, we did not apply any purity �ltering. The
second cohort consisted of 10 patients diagnosed with multi-focal breast cancer (GSE39451).31 For
each patient, methylation array data from 2 foci were available, and we only included the 8 patients
where both samples were of su�cient purity (LUMP ≥ 0.6). The third cohort consisted of paired primary
and lymph node metastasis samples from 44 patients (GSE58999).32 Only patients where both samples
were of su�cient purity (LUMP ≥ 0.6) were included (n = 18). The fourth cohort, from the AURORA US
Metastasis Project, consisted of primary and metastasis samples taken from 55 patients with
metastatic breast cancer. In our analysis, we included only patients for whom at least one primary and
one metastasis sample of su�cient purity (LUMP ≥ 0.6) were available (n = 22) (GSE212370).33 Only
patients with at least one primary and one metastasis sample of su�cient purity (LUMP ≥ 0.6) were
included (n = 22). When more than one primary or metastasis sample was available, the one with the
highest LUMP value was selected.

Selection of �uctuating CpG (fCpG) sites. First, we identi�ed CpG sites on the HumanMethylation450
BeadChip that correspond to functional regions of the genome. To this end, we identi�ed sites that were
associated with regulatory features or genes in one or both of the o�cial annotation �les of the In�nium
HumanMethylation450 and MethylationEPIC bead chip arrays (https://support.illumina.com). After
exclusion of such functional sites, a total of 86,099 CpG sites without functional annotation remained.
Next, we sought to identify CpG sites with balanced methylation and demethylation rates, de�ned as
having an average methylation content ( -value) between 0.4 and 0.6 in both the TCGA cohort (N = 634)
and the normal breast tissue cohort (N = 79). CpG sites with ≥ 20 missing values in either cohort were
excluded from this selection process. In the last step, we ranked all balanced CpG sites by their -value
variance among tumors in the TCGA cohort and selected the 500 most variable fCpGs to de�ne the clock
set . Based on the clock set, each tumor was assigned an epigenetic clock index  where

 is the standard deviation of the β values in the clock set.

Gene expression analyses. For tumors in TCGA, relative gene expression levels were taken as the mean-
centered, log2(x + 1) transformation of the reported transcript per million (TPM) intensities. Among the
60,616 RNA transcripts recorded in TCGA, only those classi�ed as protein-coding genes by the HUGO
Gene Nomenclature Committee41 were included in subsequent analyses (n = 18,910). Expression of
MCM was calculated as the average relative expression in the 6-gene family MCM2-7, and expression of
a mitotic checkpoint gene module39 was calculated as the average relative expression of the genes

included in the module. Molecular subtyping was based on the PAM50 algorithm42 as implemented in R
package Genefu.43 For tumors in the Lund cohort, identical gene expression and molecular subtyping
analyses had previously been reported,39 thus enabling a direct comparison between tumors in the TCGA
and Lund cohorts.

Pathway enrichment analyses. For the TCGA cohort, we performed a gene set enrichment analysis
(GSEA) using the software package GSEA44,45 to identify Hallmark gene sets that are correlated with the
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epigenetic clock index . The analysis was performed using the Pearson correlation to rank individual
genes; phenotype-permutation-based P values and false-discovery rate (FDR) Q values were computed
using 1,000 permutations. All other inputs were kept at their defaults.

CIBERSORTx. To assess the immune cell composition within the tumor microenvironment, we employed
CIBERSORTx using the LM22 signature matrix and batch correction.30 Brie�y, RNA-seq data from the
TCGA tumor samples were uploaded to the CIBERSORTx web portal, where gene expression pro�les
were deconvoluted to estimate the absolute scores for 22 distinct immune cell types. The analysis was
performed with the default parameters, including 100 permutations for statistical signi�cance
assessment. For reporting of results the 22 distinct cell types were then collapsed into six mutually
exclusive categories: B cells, macrophages, mast cells, myeloid cells, natural killer (NK) cells, and T cells.

Copy-number analyses. For tumors in TCGA, copy-number (CN) data consisted of speci�ed
chromosomal regions of equal CN, the -transformed CN, and the number of probes. We
converted these values to absolute copy numbers and determined each segment to have either a copy
number gain (segment mean ≥ 2.5), a copy number loss (segment mean ≤ 1.5), or no change (1.5 < 
segment mean < 2.5). The fraction of the genome altered by copy number gains and losses were each
calculated for every tumor by dividing the number of probes affected by gains and losses, respectively,
by the total number of probes. The total fraction of the genome altered by copy number alterations (FGA)
was then calculated as the sum of these two values. For tumors in the Lund cohort, the same approach
had previously been used to compute FGA,2 thus enabling direct comparison between tumors in the
TCGA and Lund cohorts.

In silico model of tumor growth and fCpG dynamics. To simulate the dynamics of fCpG sites in a growing
tumor, we used a discrete-time birth-death process. Starting with a single founding tumor cell, the
population is updated in time intervals of one day, at which time each cell either divides, dies, or remains
unchanged with probabilities , , and , respectively. Upon cell division, each allele in
each cell changes its methylation state with probability . We tracked an ensemble of 90 fCpG sites,
assuming independent (de-)methylation dynamics. Unless otherwise speci�ed, the following parameters
were used:  (the estimated mean proliferation rate in the TCGA-Lund combined cohort, see
below for details),  (to reach a population of 109 cells in 3 years, or,

), and  (the estimated �ip rate in the combined cohort, see
below for details).

Tumor speci�c proliferation rates. For tumors in the Lund cohort, tumor speci�c proliferation rates 
were estimated based on the reported fraction  of cells in S-phase as , where  is the
average time spent in S-phase (see Supplementary Methods for details). We assumed  to equal 12.7
hours, based on an average across �ve cancer cell lines.46 Because  is not reported in the TCGA
cohort, we used the Lund data to develop a predictive model of S-phase fraction using an elastic net
model. As candidate predictors, we included FGA, LUMP value, and average gene expression levels
within each of the following gene modules:39 mitotic checkpoint (see above), immune response, stroma,

cβ

log2 ( )x

2

α λ 1 − α − λ

μ

α = 0.17

λ = 0.15

(1 + α − λ )3⋅ 365 ≈ 109 μ = 0.002
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mitotic progression, early response, steroid response, basal, and lipid. The model was �t to the Lund
cohort tumors using cross-validation for hyperparameter optimization, and then applied to TCGA tumors
to predict tumor-speci�c S-phase fractions  and proliferation rates .

Tumor age estimation. To estimate tumor mitotic and calendar ages from the empirical -value
distributions, we proceeded in two steps. In the �rst step, we decomposed each tumor’s empirical -
value distribution into three groups, or “peaks”, of fCpG sites: the originally unmethylated fCpG sites (left
peak), the originally hemi-methylated fCpG sites (middle peak), and the originally methylated fCpG sites
(right peak). We achieved this by �tting a mixture model of three Beta distributions to the -values of
the 500 fCpG sites in the clock set using the R package BetaModels (version 0.5.2). To improve
convergence of this method, sites with extreme -values (  or ) were removed
before �tting the mixture model (a total of 69 and 442 sites were thus removed in the TCGA and Lund
cohorts). In preparation of the next step, we determined the mode of each Beta component in the
mixture as the location of the corresponding peak. At this point we excluded tumors with a middle peak
location outside the interval [0.4, 0.6] because this suggests a bias in the (de-)methylation rates and thus
violates a basic assumption of the fCpG dynamics in the clock set (44 and 12 tumors were excluded in
the TCGA and Lund cohorts, respectively). In the second step, we used the stochastic oscillator model
(Fig. 1A) to relate the empirical peak location to the approximate age of the tumor. Because this step
requires knowledge about the unknown stochastic (de-)methylation rate, we constrained the overall
calendar age distribution across the Lund and TCGA cohorts to have a median of 3 years, which
corresponds to the mean sojourn time in breast cancer.4,47 See Supplementary Methods for details.

Purity adjusted analyses. Acknowledging the correlation between the epigenetic clock index  and
tumor purity, we derived a purity-adjusted epigenetic clock index  and repeated relevant correlation

analyses with  instead of . Because the epigenetic clock index was derived from the distribution

of -values of fCpG sites, we performed the purity adjustment at the level of -values. For this, we
assumed that the measured -value at site  ( ) could be decomposed as a weighted sum of -
values of the tumor ( ) and the immune component ( ),

1
where  is the sample purity as measured by CPE. To estimate  we combined the CIBERSORTx
decomposition of the stroma (see section CIBERSORTx) with -values of its constituent cells ( ) to
obtain

where is the fraction of cell type  (in the LM22 signature) in tumor sample . The  were
estimated using published cell-type speci�c methylation values.48 Finally, the purity adjusted -values
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were obtained by solving Eq. (1) for  and truncating values below 0 and above 1 (necessary for < 5.7%
of the adjusted -values).

Statistical analyses. Correlations between two continuous variables were calculated using the Pearson
correlation coe�cient. The medians of continuous variables were compared using a two-sided Wilcoxon
rank-sum test at signi�cance level of 0.05. For each variable, tumors with missing values of that variable
were excluded. All analyses and visualizations were performed in Python (3.9.19) and R (version 4.3).

Declarations

COMPETING INTERESTS
The authors declare no competing interests.

DATA AND MATERIALS AVAILABILITY
All data used in this work are publicly available. Computer code used to generate the results is available
at https://github.com/danmonyak/EpiClockInvasiveBRCA (MIT License).

ACKNOWLEDGMENTS
We gratefully recognize our funders who provided support for this work: National Institutes of Health
(grant R01-CA271237 to M.D.R. and L.J.G.; grant U2C-CA233254 to E.S.H.; grant U54-CA217376 to D.S.),
and Breast Cancer Research Foundation (grant BCRF-19-074 to E.S.H).

Code availability.
All Python and R code used to produce the results in this paper are found on Github at
https://github.com/danmonyak/EpiClockInvasiveBRCA.

References
1. Duffy, S.W., Chen, H.H., Tabar, L., Day, N.E.: Estimation of mean sojourn time in breast cancer

screening using a Markov chain model of both entry to and exit from the preclinical detectable
phase. Stat. Med. 14, 1531–1543 (1995)

2. Michaelson, J., et al.: Estimates of breast cancer growth rate and sojourn time from screening
database information. J. Womens Imaging. 5, 11–19 (2003)

3. SHAPIRO, S., GOLDBERG, J. D., HUTCHISON, G.B., LEAD, TIME IN BREAST CANCER DETECTION AND
IMPLICATIONS FOR PERIODICITY OF SCREENING1: Am. J. Epidemiol. 100, 357–366 (1974).

β t
i

β



Page 15/26

https://doi.org:10.1093/oxfordjournals.aje.a112046

4. Shen, Y., Zelen, M.: Screening sensitivity and sojourn time from breast cancer early detection clinical
trials: mammograms and physical examinations. J. Clin. Oncol. 19, 3490–3499 (2001)

5. Weedon-Fekjær, H., Vatten, L.J., Aalen, O.O., Lindqvist, B., Tretli, S.: Estimating mean sojourn time and
screening test sensitivity in breast cancer mammography screening: new results. J. Med. Screen.
12, 172–178 (2005). https://doi.org:10.1258/096914105775220732

�. Hannum, G., et al.: Genome-wide methylation pro�les reveal quantitative views of human aging
rates. Mol. Cell. 49, 359–367 (2013)

7. Horvath, S.: DNA methylation age of human tissues and cell types. Genome Biol. 14, 1–20 (2013)

�. Yang, Z., et al.: Correlation of an epigenetic mitotic clock with cancer risk. Genome Biol. 17, 1–18
(2016)

9. Youn, A., Wang, S.: The MiAge Calculator: a DNA methylation-based mitotic age calculator of human
tissue types. Epigenetics. 13, 192–206 (2018). https://doi.org:10.1080/15592294.2017.1389361

10. Zhu, T., Tong, H., Du, Z., Beck, S., Teschendorff, A.E.: An improved epigenetic counter to track mitotic
age in normal and precancerous tissues. Nat. Commun. 15, 4211 (2024).
https://doi.org:10.1038/s41467-024-48649-8

11. Zhou, W., et al.: DNA methylation loss in late-replicating domains is linked to mitotic cell division.
Nat. Genet. 50, 591–602 (2018). https://doi.org:10.1038/s41588-018-0073-4

12. Teschendorff, A.E.: A comparison of epigenetic mitotic-like clocks for cancer risk prediction.
Genome Med. 12, 1–17 (2020)

13. Gabbutt, C., et al.: Fluctuating methylation clocks for cell lineage tracing at high temporal resolution
in human tissues. Nat. Biotechnol. 40, 720–730 (2022)

14. Gabbutt, C., et al.: Evolutionary dynamics of 1,976 lymphoid malignancies predict clinical outcome.
medRxiv, 2011. 2010.23298336 (2023). (2023)

15. Teschendorff, A.E.: On epigenetic stochasticity, entropy and cancer risk. Philosophical Trans. Royal
Soc. B. 379, 20230054 (2024)

1�. Koboldt, D.C., et al.: Comprehensive molecular portraits of human breast tumours. Nature. 490, 61–
70 (2012). https://doi.org:10.1038/nature11412

17. Johnson, K.C., Houseman, E.A., King, J.E., Christensen, B.C.: Normal breast tissue DNA methylation
differences at regulatory elements are associated with the cancer risk factor age. Breast Cancer
Res. 19, 1–11 (2017)

1�. Lewis, C.M., et al.: Promoter hypermethylation in benign breast epithelium in relation to predicted
breast cancer risk. Clin. Cancer Res. 11, 166–172 (2005)

19. Shames, D.S., et al.: A genome-wide screen for promoter methylation in lung cancer identi�es novel
methylation markers for multiple malignancies. PLoS Med. 3, e486 (2006)

20. Holm, K., et al.: An integrated genomics analysis of epigenetic subtypes in human breast tumors
links DNA methylation patterns to chromatin states in normal mammary cells. Breast Cancer Res.



Page 16/26

18, 1–20 (2016)

21. Luo, Y., et al.: Regional methylome pro�ling reveals dynamic epigenetic heterogeneity and
convergent hypomethylation of stem cell quiescence-associated genes in breast cancer following
neoadjuvant chemotherapy. Cell. Bioscience. 9, 16 (2019). https://doi.org:10.1186/s13578-019-
0278-y

22. Danielsen, H.E., Pradhan, M., Novelli, M.: Revisiting tumour aneuploidy — the place of ploidy
assessment in the molecular era. Nat. Reviews Clin. Oncol. 13, 291–304 (2016).
https://doi.org:10.1038/nrclinonc.2015.208

23. Ricke, R.M., van Ree, J.H., van Deursen, J.M.: Whole chromosome instability and cancer: a complex
relationship. Trends Genet. 24, 457–466 (2008)

24. Chia, S.K., et al.: A 50-gene intrinsic subtype classi�er for prognosis and prediction of bene�t from
adjuvant tamoxifen. Clin. Cancer Res. 18, 4465–4472 (2012)

25. Wallden, B., et al.: Development and veri�cation of the PAM50-based Prosigna breast cancer gene
signature assay. BMC Med. Genom. 8, 1–14 (2015)

2�. Rakha, E.A., et al.: Breast cancer prognostic classi�cation in the molecular era: the role of
histological grade. Breast Cancer Res. 12, 1–12 (2010)

27. Carter, C.L., Allen, C., Henson, D.E.: Relation of tumor size, lymph node status, and survival in 24,740
breast cancer cases. Cancer. 63, 181–187 (1989)

2�. Loftus, L.V., Amend, S.R., Pienta, K.J.: Interplay between Cell Death and Cell Proliferation Reveals
New Strategies for Cancer Therapy. Int. J. Mol. Sci. 23, 4723 (2022)

29. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. cell 144, 646–674 (2011)

30. Newman, A.M., et al.: Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat. Biotechnol. 37, 773–782 (2019)

31. Desmedt, C., et al.: Abstract S6-2: Characterization of different foci of multifocal breast cancer using
genomic, transcriptomic and epigenomic data. Cancer Res. 72, S6-2-S6-2 (2012)

32. Reyngold, M., et al.: Remodeling of the methylation landscape in breast cancer metastasis. PloS
one. 9, e103896 (2014)

33. Garcia-Recio, S., et al.: Multiomics in primary and metastatic breast tumors from the AURORA US
network �nds microenvironment and epigenetic drivers of metastasis. Nat. Cancer. 4, 128–147
(2023). https://doi.org:10.1038/s43018-022-00491-x

34. Aran, D., Sirota, M., Butte, A.J.: Systematic pan-cancer analysis of tumour purity. Nat. Commun. 6,
8971 (2015)

35. Welch, H.G., Black, W.C.: Overdiagnosis in cancer. J. Natl Cancer Inst. 102, 605–613 (2010)

3�. Li, J., et al.: Molecular differences between screen-detected and interval breast cancers are largely
explained by PAM50 subtypes. Clin. Cancer Res. 23, 2584–2592 (2017)

37. Maley, C.C., et al.: Classifying the evolutionary and ecological features of neoplasms. Nat. Rev.
Cancer. 17, 605–619 (2017)



Page 17/26

3�. Brigham, Hospital, W., 13, H.M.S.C.L., P. P. J. K., R., 25, G. d. a. B. C. o. M. C. C. J. D. L. A., Ilya, I.: f. S.
B. R. S. K. R. B. B. B. B. R. E. T. L. J. T. V. Z. W. S. Comprehensive molecular portraits of human breast
tumours. Nature 490, 61–70 (2012)

39. Fredlund, E., et al.: The gene expression landscape of breast cancer is shaped by tumor protein p53
status and epithelial-mesenchymal transition. Breast Cancer Res. 14, 1–13 (2012)

40. Sherman, M.E., et al.: The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center:
a unique resource for de�ning the molecular histology of the breast. Cancer Prev. Res. 5, 528–535
(2012)

41. Seal, R.L., et al.: Genenames. org: the HGNC resources in 2023. Nucleic Acids Res. 51, D1003–
D1009 (2023)

42. Parker, J.S., et al.: Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin.
Oncol. 27, 1160–1167 (2009)

43. Gendoo, D.M., et al.: Genefu: an R/Bioconductor package for computation of gene expression-based
signatures in breast cancer. Bioinformatics. 32, 1097–1099 (2016)

44. Mootha, V.K., et al.: PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately
downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003)

45. Subramanian, A., et al.: Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression pro�les. Proceedings of the National Academy of Sciences 102, 15545–
15550 (2005)

4�. Bialic, M., Al Ahmad Nachar, B., Koźlak, M., Coulon, V., Schwob, E.: Measuring S-Phase Duration from
Asynchronous Cells Using Dual EdU-BrdU Pulse-Chase Labeling Flow Cytometry. Genes. 13, 408
(2022)

47. Bhatt, R., et al.: Estimation of age of onset and progression of breast cancer by absolute risk
dependent on polygenic risk score and other risk factors. Cancer. 130, 1590–1599 (2024)

4�. Hannon, E., et al.: Assessing the co-variability of DNA methylation across peripheral cells and
tissues: Implications for the interpretation of �ndings in epigenetic epidemiology. PLoS Genet. 17,
e1009443 (2021)

Figures



Page 18/26

Figure 1

See image above for �gure legend



Page 19/26

Figure 2

See image above for �gure legend



Page 20/26

Figure 3

See image above for �gure legend



Page 21/26

Figure 4

See image above for �gure legend



Page 22/26

Figure 5

See image above for �gure legend



Page 23/26

Figure 6

See image above for �gure legend



Page 24/26

Figure 7

See image above for �gure legend



Page 25/26

Figure 8

See image above for �gure legend

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.



Page 26/26

MolClockSupplmentaryv3.docx

SupplementaryMethodsv3.pdf

https://assets-eu.researchsquare.com/files/rs-5119308/v1/194999816a2769222d3a20db.docx
https://assets-eu.researchsquare.com/files/rs-5119308/v1/7360eeb5cbb4d9606b5a5480.pdf

