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Abstract

Causal discovery algorithms have the potential to impact many fields of science. However, 

substantial foundational work on the statistical properties of causal discovery algorithms is still 

needed. This paper presents what is to our knowledge the first method for conducting power 

analysis for causal discovery algorithms. The power sample characteristics of causal discovery 

algorithms typically cannot be described by a closed formula, but we resolve this problem by 

developing a new power sample analysis method based on standardized in silico simulation 

experiments. Our procedure generates data with carefully controlled statistical effect sizes in order 

to enable an accurate numerical power sample analysis. We present that method, apply it to 

generate an initial power analysis table, provide a web interface for searching this table, and show 

how the table or web interface can be used to solve several types of real world power analysis 

problems, such as sample size planning, interpretation of results, and sensitivity analysis.
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1 Introduction

Causal discovery is a growing field that develops algorithms for deriving causal model 

structures from many kinds of data under weak assumptions[1–4]. It is most known for 

methods that can learn causal directionality from cross-sectional observational data[2, 

5, 6]. There is a large variety of methods within causal discovery, including methods 

that discover hidden variables and selection bias[2, 7–9], methods that orient causal 

directionality from mere variable pairs data[10–15], methods for analyzing data from 

controlled experiments[16, 17], and methods that guide the sequence of experimentation[18–

21]. Overall, the field has incredible potential to change the way that science is done.
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At present, the most widely accepted scientific process for uncovering causal knowledge 

relies on experimentation, but this has numerous drawbacks such as being costly, lacking 

scalability, and often being unethical or impossible for many topics[22]. In the future, as 

high quantities of data become available with increasingly varied modalities, dimensions, 

sample sizes, measurement technologies, temporality, levels of control or intervention, 

background knowledge, and so on, data driven causal analysis methods are likely to have 

a rapidly growing role in science. Unlike experimentation, this data driven approach is 

inexpensive, far more scalable, and can be applied to topics where experimentation is 

unethical or impossible.

This new paradigm requires foundational work about the properties of existing and future 

causal discovery algorithms. In order for these methods to be more widely deployed, and 

in order for the findings of the algorithms to be translated into future work, researchers 

need to be able to know (A) what kind of performance they can expect from using a 

particular causal discovery algorithm on a particular data set, and (B) the reliability of 

published findings where causal discovery discovery algorithms were used. Power analysis 

is the standard framework for addressing both of these questions[23–26], however no power 

analysis method has previously been developed for causal discovery algorithms. This is not 

due to lack of interest, but rather because (1) the statistical power sample characteristics of 

causal discovery algorithms are not readily described in a closed formula expression, and 

(2) traditional power analysis only considers one model structure at a time, while in causal 

discovery the model structure is considered unknown and is the learning goal of the causal 

discovery procedure. For both reasons, a different kind of power analysis method is required.

In this paper, we present a simulation-based power analysis method for answering these and 

other questions about causal discovery algorithms. For the same reasons mentioned above, 

power analysis has largely been supplanted by simulation studies in the causal discovery 

literature. All previous simulations have been severely limited, however, and thus do not 

serve as an adequate replacement for power analysis. Most importantly, previous simulations 

have not carefully controlled the causal effect sizes in their data generating models. For 

example, some studies ensured that effect sizes were varied to be larger or smaller[27], but 

no studies calculated the specific values of those effect sizes. Effect size can dramatically 

alter the power of an estimator, and so without knowing the effect sizes of the edges in the 

data generating models, we can not make reliable inferences about the method’s real world 

performance.

One reason for not precisely controlling or examining effect sizes in causal discovery 

simulation studies is that those studies were only evaluating algorithm performance relative 

to other algorithms. Under such circumstances, although which methods perform better than 

others might depend on the effect sizes, the specific effect sizes in the data generating 

model are not needed for determining that one method is performing better than another. A 

second reason is that traditional power analysis operates in a hypothesis testing framework. 

In such a framework, the goal is to determine the power of a particular statistical test for 

rejecting a predefined null hypothesis. For causal discovery, however, there is no obvious 

null hypothesis to use. Causal discovery aims to identify a potentially large and complex 

model structure, and there is a finite, but extremely large, set of alternative structures to 
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consider. In this paper we resolve this issue by only considering questions about edges, 

specifically whether the correct edge adjacencies and edge orientations are identified, rather 

than questions about the entire model structure.

1.1 Our contributions

Our novel contributions presented in this paper include:

1. We provide the background theory mapping the causal discovery problem into 

appropriate power analysis concepts. This is necessary to understand what power 

analysis for causal discovery means. No previous simulation studies address this 

issue.

2. We provide a novel and nontrivial method for quickly generating linear Gaussian 

structural equation models with fixed standardized edge effect sizes and marginal 

variances. By construction our models also prevent statistical artifacts such 

as “varsortability” that some causal discovery methods can use to artificially 

elevate their performance[28]. Prior DAG simulation methods suffer from these 

statistical artifacts, so our method is the first to provide a fair standard for 

method comparison studies.

3. We provide the results from a large simulation study, which used our model 

generation method to simulate data. This is only an initial exploration of an 

extremely large space, but it is the first ever reported power analysis results for 

causal discovery. These results are navigable through the shared Shiny app or the 

shared table. They can be used as benchmarks for anyone unwilling or unable to 

use our method to evaluate the specific algorithm and type of data (number of 

variables, sample size, etc.) that would be relevant for their own studies.

2 Background

This section covers background material on causal models, causal discovery, and power 

analysis.

2.1 Causal models

Causal models represent the causal relationships amongst a set of variables[1]. As a 

consequence, an accurate causal model can be used to solve problems that require causal 

information, such as predicting the outcome of an intervention, or identifying a promising 

treatment target. While there are a number of different types of causal models, this 

paper focuses on causal models that take the form of linear Gaussian structural equation 

models (SEMs). Let G V, Γ, E, Φ  be a linear Gaussian SEM with variables V each with an 

independent noise ϵV ∈ Γ, and set of edges E each with a corresponding real number βE ∈ Φ
representing its linear effect size or “weight”. Let each V ∈ V be distributed according to 

V ϵV + ∑X s . t . X V ∈ E βX V X.

Note that each ϵV  can have different mean μ and variance σ2. As such, the values of the 

weights βs  do not directly correspond to standardized statistical effect sizes. This is a 

hurdle to directly applying power analysis to SEMs, since effect size is a key component 
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of power analysis. We show how we resolve this problem in Section 3, by choosing the 

σ2 of each ϵX to ensure that ∀X, σ2 X = 1. This ensures that βY X = σ2 βY XY /σ2 X , the 

standardized statistical effect size r.

2.2 Causal discovery

Many different learning problems fall under the umbrella of causal discovery, but this paper 

focuses on the following: given data D generated from a model M, which is a linear SEM 

with a directed acyclic graph (DAG) structure, learn the structure of M from D. Let A D
be a function (embodied in an algorithm) that outputs a set of directed and undirected edges 

E′ from a data set D sampled from G V, Γ, E, Φ . The presence of undirected edges in E′ is 

due to the existence of Markov Equivalence Classes [3, 29], where the directionality of some 

edges in E cannot be identified. Then the specific causal discovery problem that we consider 

is to minimize the difference between E and E′. Causal discovery algorithms are designed to 

solve this problem.

It is increasingly being recognized that many scientific fields struggle to infer cause-effect 

relationships in contexts with large numbers of interacting elements, such as interacting 

collections of gene expressions, proteins, neurons, or symptoms. Researchers have started 

to apply causal discovery methods to solve problems like these and successfully discovered 

important causal relationships [21, 30–38]. However, prior to the work presented here, 

there were no methods for computing the power sample characteristics for causal discovery 

analysis, which has limited the ability of researchers to plan projects and interpret results.

Previous work on the finite sample performance of causal discovery algorithms has 

been primarily about comparing different causal discovery algorithms according to their 

performance on different learning problems rather than assessing questions such as how 

many samples are required to get adequate performance [6, 39–41]. These evaluations have 

almost exclusively relied on simulation studies, with data generated in silico from either 

randomly generated causal models or expert-made causal models of real-world processes 

found in model repositories. There have been some exceptions however, such as using real-

world data measured from processes that have been heavily studied by domain scientists. 

In these cases, the “gold standard” causal graph is constructed from background knowledge 

on the topic, and the algorithm’s results on the real-world data are compared to this “gold 

standard” model rather than a known data-generating model.

The method we present in this paper differs most notably from previous simulation-based 

methods by having a more advanced simulation procedure. Specifically, this procedure 

allows us to exactly control the standardized effect size—the variance introduced by the 

edge relative to the variance of the variable being influenced—of the causal relationships in 

our data generating models. Effect size, or “signal to noise ratio”, is a critical value in power 

analysis, as finite-sample algorithm performance is drastically impacted by the effect sizes in 

the data generating model (see Section 4).
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2.3 Power analysis

Power analysis normally evaluates a specific statistical test of a given hypothesis [23–26]. 

The power of a binary hypothesis test is the probability that the statistical test correctly 

rejects the null hypothesis H0  when a specific alternative hypothesis H1  is true. In other 

words, power is 1-(type II error rate). The power of a statistical test is generally influenced 

by: (1) a significance threshold α, which is the acceptable type I error rate or false positive 

rate, that is, the probably of rejecting H0 when H1 is false; (2) effect size; and (3) sample 

size.

The power analysis for SEM is related to the power analysis for causal structure discovery. 

There two types of power analysis done for SEMs[42]. First, the power of rejecting the 

SEM model. This is typically done by examining the power of the χ-squared goodness of fit 

test, where the Null hypothesis states that the observed data is generated from the specified 

model [42–45]. Therefore, the power corresponds to the probability of discovering model 

mis-specification. It is worth noting that rejecting the Null does not indicate how exactly 

the model is mis-specified. The second type of power analysis for SEMs is the power of 

detecting a non-zero coefficient for a particular structural equation. This has some similarity 

to power analysis for causal structure discovery, however SEM power analysis assumes the 

entire structure is known (and specified via structural equations). Many prior methods for 

computing power for detecting non-zero coefficients additionally requires all other model 

coefficients to be known. A more recent study used simulations to make this process more 

adaptable and flexible [42].

In contrast to traditional power sample analysis, including that for the SEM, the problem 

of identifying the entire causal structure from observational data is generally not formulated 

as a single hypothesis test (although it can be conceptualized as a sequence of statistical 

tests). Therefore, the power analysis for this task needs to be defined differently from that of 

traditional hypothesis testing, while aiming to achieve similar goals.

Definition 1—α for Causal Structure Discovery: the probability of a causal discovery 

procedure Ω claiming the presence of a (directed) causal edge in error, given data D sampled 

from G V, Γ, E, Φ  with sample size N, effect size Θ, and type II error rate (1-power).

Definition 2—Power for Causal Structure Discovery: the probability of a causal discovery 

procedure Ω correctly identifying the presence of a (directed) causal edge given data 

sampled from G V, Γ, E, Φ  with sample size N, effect size Θ, and type I error rate α.

The power for Causal Structure Discovery corresponds to sensitivity. This definition 

mirrors that of power analysis for traditional statistical tests. However, because the causal 

structures we observe in many domains are sparse, α (1-Specificity) might not be very 

informative. Therefore, we recommend examining the precision in addition to α. The causal 

discovery procedure can be any procedure that aims to discover causal relationships, such 

as experimental methods or computational methods. Here we focus on computational causal 

discovery algorithm with a specific hyperparameter setting. According to this definition, 

after specifying its hyperparameter(s), each causal discovery procedure has a fixed α for 
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any given causal discovery task, G V, Γ, E, Φ  with sample size N. This is different from 

traditional power analysis, where one can choose an alpha level explicitly for a specific 

statistical test. However, α can be adjusted by choosing different hyperparameters for the 

causal discovery algorithm. For example, the hyperparameter for the PC algorithm is the 

significance threshold for its conditional independence tests. To avoid confusion, we will 

refer this hyperparameter as “alpha” instead of α. Increasing this threshold usually increases 

the sensitivity but decreases the positive predictive value for edge identification (see Section 

4). In general, there is no closed form solution for how the threshold relates to the overall 

discovery performance.

3 Methods of simulation and evaluation

Figure 1 shows the overall structure of the simulation procedure. The procedure is as 

follows:

1. Randomly select a directed acyclic graph (DAG), G

2. Assign weights to the graph edges (for this study we set all weights to the same 

value)

3. Compute the independent variance of each node

4. If the assigned weights prevent the computation of any independent variance 

value, return to step 1

5. Generate data from the model

6. Run a discovery algorithm on the data to generate an estimated graph structure, 

G′

7. Compare G′ to the original DAG G

3.1 Generation of random DAGs

Each structural equation model was generated by first creating a random Directed Acyclic 

Graph (DAG) with a fixed number of edges over a fixed set of nodes. Pseudocode for this 

procedure is shown in Algorithm 1.

First, a list of nodes x1, x2, …, xn  is shuffled into a random order. Let <T be the operator that 

indicates the order of the nodes, such that u <T v indicates u is prior to v in this ordering. 

This is used as a topological ordering for the DAG, restricting the possible DAGs that can 

be selected to those where no variable is a parent of another variable that is earlier than it 

in the ordering. The set of all possible edges, restricted by the topological ordering, is then 

constructed. Finally, the appropriate number of unique edges is randomly drawn from that 

set of possible edges.

3.2 Assign βY X weights

At present, we are assigning the same edge weight values to all edges in a single model. 

Once we assign the independent noise terms in a particular way, described in Section 3.3, 

these β weights will equal the r effect sizes of these edges. Each edge weight is represented 
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by a β from node i to node j, that is, βi j. For example, in the application we present later 

some models had all βi j ’s are set to 0.1, while others had all βi j = 0.3 or all βi j = 0.5. 

Different values could be used if desired. Letting edge weights vary within a single model is 

an extension left for future work.

3.3 Variance of independent noise

Each variable in the randomly generated SEMs has an independent noise term, ϵ. These are 

Normally distributed, with mean 0, and a variance that is computed from the structure of the 

DAG and the value of the edge weights. In order to have the edge weights correspond to 

r values, the total variance of each variable, including variance from its independent noise 

term, must be 1. As such, the variances of the independent noise terms are calculated so that 

they complete the difference between 1 and the variance introduced by the parents of each 

variable.

Let pa be a function that returns the direct parents of the variable given in its argument. For 

variable j, the variance due to its parents in the DAG is:

u ∈ pa j
βu j

2 V ar(u)

+2
u, v ∈ pa j :u <T v

βu jβv jCov(u, v) .

Since all β values are already determined at this stage, and all variance values are 1 

by design, the only unknown value in this formula is the covariance of u and v . u and 

v are linear functions of their parents and their independent noise terms, ϵu and ϵv. For 

compactness, let pae x = pa x ∪ ϵx , and let βϵx x = 1 for any variable x. We can then 

decompose the covariance of u and v further:

Cov(u, v) = Cov(
x ∈ pae(u)

βx ux,
y ∈ pae v

βy vy)

=
x, y , x ∈ pae u , y ∈ pae v

βx uβy vCov(x, y) .

This again contains covariance terms that we do not immediately know the value of, 

specifically the Cov x, y  terms. These terms are, however, for variables that are strictly 

prior to u or v in the topological ordering, since all x and y variables are parents of either u or 

v. As such, if we repeat this decomposition for the Cov x, y  terms, and assuming that there 

are a finite number of variables, we will eventually reach cases where either x or y has no 

parents, terminating the process.

It is thus possible to compute Cov u, v  using a recursive method, but we opted to implement 

a more efficient dynamic programming method instead. This procedure starts at the top of 

the topological order of the variables, computing and storing all covariance values in order. 

As such, calculating each covariance value requires only querying covariance values that had 

already been computed. This procedure is described in Algorithm 2.
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Algorithm 1

Randomly Select Edges For DAG

Require:V ariables, NumEdges

 1: OrderedV ariables ⟵ RandSort(V ariables)

 2: fori ⟵ 1, |OrderedV ariables| — 1 do

 3:  for j ⟵ i + 1, |OrderedV ariables| do

 4:   EdgeSet.append((OrderedV ariables[i], OrderedV ariables[j]))

 5:  end for

 6: end for

 7: Edges ⟵ RandomSelection(EdgeSet, NumEdges)

 8: returnEdges

Algorithm 2

Computing the covariance matrix

Require:V , variables; E, directed edges over V ; β, numerical weights for the edges in E
 1: ℳ = I V

 2: V ′ = topologicalSort V , E
 3: fori ← 1, length (V ′) do

 4:  forj ← i + 1, length(V ′) do

 5:   x V i
′

 6:   y V j
′

 7:   for all nodes p s.t. p x ∈ Edo

 8:    ℳx, y + = βp xℳp, y

 9:    ℳy, x + = βp xℳp, y

 10:   end for

 11:  end for

 12: end for

 13: returnℳ

For example, in the simple case shown in Figure 2, neither u or v have parents, 

so Cov u, v = 0. The covariance between w and u is Cov u, w = βu w. The incoming 

variance to the child node w from u and v is βu w
2 V ar u + βv w

2 V ar v = βu w
2 + βv w

2 . If 

V ar u = V ar v = 1 and βu w = βv w = 0.3, then the total variance of w due to u and v would 

be 0.18

In Figure 3, u and v have a non-zero covariance because they have a common parent 

t . Cov u, v = βt uβt vCov t, t = βt uβt v. As such, the total variance of w due to u and v will 

be different than in Figure 2, since βu wβv wCov u, v  will be non-zero. In this case, if all the 

βs are equal to 0.3 and V ar t = V ar u = V ar v = 1, then the total variance of w due to u and 

v would be 0.36, twice that of the previous example.
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3.4 Testing model admissibility

Using the calculated covariance values, we calculate the variance due to a variable’s parents 

as described in section 3.3. For a standardized model, we assign the variance of that 

variable’s independent noise term a value equal to 1 minus the variance due to its parents. 

An error can be encountered here if the variance due to the parents is close to or greater than 

1. The independent noise term can not have negative variance, and to prevent determinism 

in the model, which could result in a sample covariance matrix that is not positive semi-

definite, its variance should be bounded away from 0. As such, if any node in a model would 

not be able to have an independent noise term with a variance of at least 0.1, then we discard 

that model and restart at the DAG selection step.

3.5 Generating data

For models that are not discarded, data is generated as follows: in topological order 

(beginning with nodes that have no parents) we set the value of each node as a sum 

of the weights βs  times the value of the parents, plus the independent noise term: 

V ∑X ∈ pa V βX V X + ϵV . This process is repeated for each independent sample. For our 

demonstration, we generated 102400 total samples from each model.

3.6 Apply causal discovery algorithm

The previous sections detailed the entire process of generating the data generating models 

and producing data from them. Causal discovery algorithms can then be applied directly to 

the generated data. Any causal discovery algorithm that operates on continuous data may 

be used. The results are stored and indexed according to the data generating model, sample 

size, causal discovery algorithm, and hyperparameters, for use in the evaluation step.

For our application, we used the PC algorithm[2], as implemented in Tetrad causal-

cmd-1.4.1-SNAPSHOT[46]. PC’s alpha value was the only hyperparameter that we varied. 

The generated data was subsampled at various smaller sample sizes, so that results were 

produced for sample sizes ranging from 50 to 102400.

3.7 Algorithm performance evaluation

We used common classification metrics of precision and power for evaluating the 

performance of the causal discovery algorithm with respect to (1) identification of edge 

adjacencies in the graph, more specifically, identifying which nodes are directly connected 

to which other nodes without considering directionality, and (2) identification of edge 

orientations in the graph, that is, identifying whether the exact relationships (for example 

A causes B rather than than B causes A) between variable pairs match those of the data 

generating graph. We cover adjacency and orientation performance separately. For brevity, 

let “true” demarcate features of the data generating model, for example “true edges” are 

the edges appearing in the data generating model. Figure 4 shows a table summarizing the 

evaluation of performance metrics for both adjacencies and orientations.

3.7.1 Adjacency performance—For each individual data set we construct a confusion 

matrix for the algorithm’s adjacency performance on that data set. Adjacency performance 
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reflects the algorithm’s ability to recover the correct adjacencies, ignoring the directionality 

information in each edge, without making errors. This confusion matrix consists of: (1) True 

Positives (TP), the number of true adjacencies also present in the algorithm’s output graph; 

(2) False Positives (FP), the number of adjacencies in the algorithm’s output that do not 

correspond to true adjacencies; (3) False Negatives (FN), the number of true adjacencies that 

are not found in the algorithm’s output; (4) True Negatives (TN), the number of absent true 

adjacencies that are also absent in the algorithm’s output.

All of the confusion matrices are stored, and can be used to calculate a number 

of performance measures, including but not limited to sensitivity (TP/[TP + FN]), 

specificity(TN/[TN + FP]), precision (TP/[TP + FP]), negative predictive value (NPV) 

(TN/[TN + FN]), and F1 statistic (2TP / [2TP + FP + FN]) for the algorithm, for each 

hyperparameter value used, data set, and sample size.

3.7.2 Orientation performance—Orientation performance is computed in a similar 

manner to adjacency performance, but takes directionality into account. The primary 

difference is that true negatives are not counted for edge orientation, as there is no true 

orientation that would correspond to a negative state: either A → B or B → A, there 

is no state in the data generating models where A is directly related to B without any 

directionality.

For orientations, we defined: (1) TP, the number of true edges that are present and oriented 

correctly in the output graph; (2) FP, the number of oriented edges in the output graph that 

are absent or given the opposite directionality in the true graph; (3) FN, the number of true 

edges that are not present or not oriented correctly in the output graph; (4) TN, the number 

of true edges that are present and oriented opposite of the incorrect orientation in the output 

graph (this is equal to TP).

Many causal discovery algorithms, including the PC algorithm that we used for 

demonstration purposes, produce edge types that are more vague than than directed arrows. 

For example, PC can produce undirected edges, where the algorithm does not commit to 

either the A → B or B → A orientation, instead indicating that both are possible. The 

definitions for orientation TP, FP, and FN reflect this. In particular, consider the case where 

the output graph contains an undirected edge that corresponds to a correct adjacency, that 

is it correctly identifies that A and B are directly related to each other but does not commit 

to either directionality for this relationship. For orientation performance, that edge will not 

count as a TP, since it is not oriented in the correct way, but will also not count as a FP, as 

it is not oriented in the opposite way. Instead it will contribute only to the orientation FN 

count, as it is not oriented correctly.

4 Power analysis simulation for three algorithms

We applied the procedure described above to establish the first ever power analysis results 

for the PC, FGES, and GRaSP algorithms [2, 47, 48]. Parameters were selected to strike 

a balance between completeness and computational cost. Simulations were run on graphs 

with 10, 20, 40, or 100 nodes, with structures sampled uniformly from those with an edge 
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density of 1, 1.5, or 2. In each graph, edges were fixed to have effect sizes of R = 0.1, 0.3, 

or 0.5. For each combination of parameters, the procedure attempted to randomly simulate 

500 models. In order to ensure the simulation concludes in a reasonable amount of time, the 

algorithm will halt after generating 10 invalid models for any given parameter combination. 

As a consequence in combinations with higher edge densities and R values, less than 500 

models were tested. All parameter combinations with less than 500 complete results were 

removed prior to forming our summary data. 102400 samples were drawn from each model 

after checking for model suitability, and smaller data sets were sub-sampled from this larger 

collection, producing data sets with 50, 100, 200, ..., 51200, 102400 samples. All algorithms 

were run using Tetrad causal-cmd-1.4.1-SNAPSHOT. PC has an “alpha” hyperparameter 

that was varied among 0.1, 0.05, 0.01, and 0.001, and otherwise used default settings. FGES 

and GRaSP have a “penaltydiscount” hyperparameter that was set to 2, and otherwise used 

default settings.

All of the above results were stored, and aggregated into a table, where each row stores the 

performance found for a particular combination of number of nodes, number of edges, R 

value, sample size, and alpha value for PC. For R=0.5, it was found that suitable models 

were extremely rare or nonexistent for edge density of 1.5 or greater, and so these parts of 

the table were left empty. Figure 5 shows a small portion of this table. The complete table is 

available at: https://osf.io/zmwyb/

In addition to the raw data table, we have also created and made public a Shiny App that can 

be used to filter and sort the table. With it, users can easily answer the most common power 

analysis questions. Figure 6 shows a screenshot of the Shiny App. It is available for anyone 

to access and use at: https://kummerfeldlab.shinyapps.io/PowerSim2023-1/

4.1 Power sample characteristics of PC, FGES, and GRaSP

We encourage interested readers to explore the table and Shiny App at the links provided 

above, but here we also visualize and evaluate PC’s power sample characteristics under 

various conditions. Figures 7, 8, 9, and 10 show multiple subplots each. In these figures, 

each column of plots shows errors for adjacency precision, adjacency sensitivity, orientation 

precision, and orientation sensitivity. While specificity was also calculated, adjacency 

specificity is universally high and plotting it is not very informative. Orientation specificity 

is equal to Orientation Precision. All of these can range in value from 0 to 1, with higher 

numbers being preferred because lower numbers indicate higher error rates. The rows show 

how these error rates change with number of nodes, density of edges, method, and effect size 

(r) respectively. Each subplot shows how mean error rates changes as sample size is varied 

from 50 to 102400. The shading in each subplot shows the range of error rates from the 5th 

percentile to the 95th percentile.

Figure 7 shows how FGES [47] responds to different numbers of nodes. It shows only 

results where the FGES algorithm was used, with density 1.5 and r of 0.3. We can see that 

increasing the number of nodes from 10 to 100 appears to reduce adjacency precision, while 

adjacency sensitivity, orientation sensitivity, and orientation precision are increased. There 

is also a strange behavior where adjacency precision peaks around 200 or 400 samples, 

depending on the number of nodes, but then decreases as the number of samples increases. 
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For all error types, the variability of the error rate appears to become smaller as the 

number of nodes increases. This can be explained by the increased number of edges and 

edge absences when density is fixed but the number of nodes increase, leading to a less 

noisy estimate of performance at the individual graph level. 100% adjacency sensitivity is 

achieved for all number of nodes with sufficient sample size, and perhaps counter-intuitively 

convergence is faster as the number of nodes increases. Orientation precision and sensitivity 

likewise appear to converge more slowly with fewer nodes than with more nodes. With a 

fixed hyperparameter, adjacency precision appears to be the only error rate where FGES 

does worse with higher numbers of nodes.

Regarding edge density, Figure 8 shows how performance varies when the number of 

edges per node (density) increases from 1, to 1.5, to 2. Results are shown for both 

the PC algorithm with alpha=0.01 and for GRaSP [2, 48]. The plots in this figure are 

restricted to display results for simulations with 20 variables and edge effect size r=0.3. 

Figure 8 suggests that adjacency precision is relatively unresponsive to changes in density 

within this range, likely a ceiling effect due to performance being universally strong. For 

adjacency sensitivity, PC appears to converge more slowly as density increases, while 

GRaSP seems comparatively unaffected by density. This is consistent with previously 

published simulations that have compared GRaSP with other causal discovery methods at 

higher graph densities [48]. The orientation precision and sensitivity plots also reveals this 

distinction between the two methods, with PC converging more slowly than GRaSP. In terms 

of the shape of convergence, PC’s orientation precision shows a sharp sigmoidal shape at 

lower density that flattens out and becomes more convex at higher density. In comparison, 

GRaSP converges stably for all cases. Overall the plots in Figure 8 indicate that there can be 

complicated interactions between some causal discovery methods and the density of edges in 

the data generating model.

Figure 9 shows how performance varies with different methods. The top four rows of plots 

show PC’s performance with alpha set to 0.001, 0.01, 0.05, and 0.1, while the bottom 

two rows of plots show how FGES and GRaSP perform with penaltydiscount=2. All plots 

are based only on simulations with 20 nodes, density 1.5, and edge effect size r=0.3. It 

provides a more clear comparison of the convergence properties of the implementations 

of PC, FGES, and GRaSP found in the Tetrad causal-cmd-1.4.1-SNAPSHOT software 

package. We emphasize that this is only a comparison of these specific implementations, as 

implementing causal discovery algorithms is non-trivial and there are many known cases of 

causal discovery algorithm implementations that contain bugs or have unreasonable default 

settings.

The primary result of Figure 9 is that GRaSP appears to have superior convergence 

speed and shape. All of these methods are correct in the large sample limit, but the 

short-term performance has dramatic differences. For PC, depending on the selected alpha, 

there can be strange behavior in its orientation precision convergence. For FGES, we see 

strange behavior in its adjacency precision. GRaSP lacks these oddities, with adjacency 

precision and sensitivity performance that rival the best performance of either across the 

other algorithms, and orientation precision and sensitivity performance that converges more 

rapidly and smoothly than any of the other tested methods.
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Hyperparameter value also appears to play an important role for PC, both in terms of trading 

between adjacency precision and sensitivity, but also in terms of the shape of convergence 

for its orientation precision and to a lesser extent sensitivity. With a smaller alpha of 0.001, 

PC’s orientation precision surprisingly decreases steadily as sample size increases from 50 

samples to about 400 samples, where it hits a minimum just above the 50% mark. Following 

that it then increases. At 1600 samples it recovers the same orientation precision it started 

with at 50 samples, and it continues to converge towards 1 as the sample size increases 

further. This convex shape is still present but greatly weakened in the orientation precision 

for alpha=0.01, and becomes a more well behaved sigmoidal shape as alpha continues to 

increase to 0.05 and 0.1. A possibly related issue can be found in the adjacency sensitivity 

plots, where with alpha of 0.001 or 0.01, at 50 samples PC has adjacency sensitivity of only 

around 0.1 or 0.2. With 30 total true edges in the data generating models, this means that for 

these simulations PC typically only has about 3 or 6 edges across 20 nodes. This will make 

it very difficult for PC to discover true unshielded colliders, which is a required step for it 

to orient any edges. This could also explain the low orientation sensitivity of PC with small 

alpha.

A comparison of the performance of GRaSP for models with effect size of r=0.1, r=0.3, and 

r=0.5 can be found in Figure 10. The plots in this figure are restricted to models with 20 

variables and 20 edges (density = 1). r=0.1, 0.3, and 0.5 are considered to be the standard r 

values for weak, moderate, and strong effects, respectively. The impact of varying r across 

these values is striking.

For weaker edges at r=0.1, at sample sizes 400 or below GRaSP with penaltydiscount=2 

struggles to detect any edges at all. Its adjacency sensitivity begins to noticeably rise at 

sample size 800, passing 0.2, and it rapidly increases until sample size 3200 where its 

adjacency sensitivity approaches the ceiling of 1. This forms a sigmoidal curve with a high 

slope, sharply switching from nondetection to perfect detection of these weak edges. As 

r increases, performance at our minimum sample size of 50 already appears to be in the 

middle of the slope for r=0.3, and by r=0.5 convergence has already almost completed by 

sample size 50.

Adjacency precision also starts low, with sample size 50 and r=0.1 showing an adjacency 

precision of less than 30%, however there is also enormous variance, likely due to these 

values being estimated from a very small number of edges. But even for r=0.1, adjacency 

precision is near 100% by sample size 400. This is interesting since adjacency sensitivity is 

still below 10% at sample size 400 and r=0.1. For r=0.3 adjacency precision is already at 0.8 

for r=0.3, and approaches 1 at the next sample size of 100.

With r=0.5 there are some unexpected findings. Adjacency precision and orientation 

sensitivity in particular indicate lower maximum values than we see for r=0.3, and adjacency 

precision for r=0.5 also shows elevated variance compared to lower r values. This requires 

further investigation, but we suspect this may be an artificial consequence of our simulation 

method that requires all edges to have the same r. At r=0.5, many model structures become 

excluded from consideration because they can not support all edges having such a strong 

effect. In particular, when a variable has multiple parents, and moreso when those parents 
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are positively correlated, the variance of that variable can easily be forced to exceed 1. Such 

models get removed at step 4 of our modeling process (see Figure 1). As a consequence, 

the r=0.5 model structures will in general have fewer colliders, resulting in the sharply 

decreased orientation sensitivity. This does not provide as clear an explanation for the the 

adjacency precision at r=0.5, but it is possibly that this procedure results an in increased 

overall likelihood of sampling unfaithful models. Since all edges have the precise same 

effect size, exact unfaithfulness is possible, and GRaSP may respond to unfaithfulness 

primarily by adding additional edges, resulting in its reduced precision even at sample size 

102400.

Orientation precision also shows a stark difference across r values. For weak r=0.1, there is 

enormous variance until the adjacency sensitivity reaches a sufficiently high value at 3200 

samples. For r=0.3, we see similar behavior, except that sensitivity is already sufficiently 

high by 200 samples. With r=0.5, orientation precision shows almost no change as sample 

size changes, but still retains substantial variance even at 102400, unlike how the variance 

vanishes at very high sample size with r=0.3. This is possibly also due to unfaithful models 

as discussed above.

5 Example applications

Similar to power sample analysis for traditional statistical analysis, the power sample 

analysis for causal discovery also requires knowledge or assumptions about the data to 

be analyzed and the statistical procedure to be applied. If the characteristics of the data 

specified for power sample calculation deviate from the actual data, the power sample 

calculation is likely to be inaccurate. The examples below use performance evaluated in 

terms of specificity and sensitivity (recall) to maintain consistency with how power analysis 

is traditionally performed. For simplicity, only adjacency performance is considered. Note 

that (i) causal discovery algorithms almost universally have very good specificity, as an 

artifact of the large number of absent edges in most models, and (ii) in many real world 

applications, precision may be considered no less important than specificity. Especially as 

the number of variables increases, causal discovery methods can have high specificity but 

poor precision. Both the table and the shiny app enable the user to limit the findings based 

on precision in addition to, or instead of, specificity.

5.1 A priori power analysis

In a priori power analysis, the goal is to identify what sample size would be required to 

obtain a predetermined level of statistical performance. For example, assume that we want 

to collect data with the intention of using causal discovery to produce a holistic model of 

how various psychiatric symptoms causally influence each other. We are considering the 

PC algorithm at various alpha values, or FGES or GRaSP with penaltydiscount=2. We want 

to have at least 95% specificity and 90% sensitivity for effect sizes of at least r=0.3. Our 

data will have 20 variables, and we anticipate an edge density of 2 (40 edges). How many 

samples do we need to collect for this analysis? By examining the table (or using the shiny 

app) we can quickly determine that using GRaSP, 400 samples is enough to achieve 0.994 

specificity and 0.947 sensitivity (recall). So, 400 samples would be sufficient.
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5.2 Post-hoc power analysis

In post-hoc power analysis, the goal is to identify the highest power (recall, sensitivity) that 

can be achieved for a specific sample size, while maintaining other statistical performance 

values at or better than a set of preselected values. For example, assume that we have a 

data set of the physical characteristics of newborn babies, along with medical information 

about the mother during pregnancy. In total, they amount to 40 variables. We anticipate an 

edge density of 1. We want to use either PC at various alpha values, or FGES or GRaSP 

with penaltydiscount=2. Our goal is to use one of these methods to identify which, if any, 

of the mother’s medical information might causally influence one or more of the physical 

characteristics of their newborn baby. We are using data from local birth centers totalling 

1600 newborns. We want at least 95% specificity for effect sizes above r=0.1. What’s the 

highest recall (power) that we can achieve on this data set (we can pick our hyperparameter 

to achieve this)? Using either the table or the shiny app, we see that using PC with an alpha 

of 0.05, PC can achieve 0.968 specificity and 0.966 recall (sensitivity) at sample size 1600, 

when there are 40 variables and edge density 1. So, 0.966 recall is possible for this data set.

5.3 Criterion power analysis

Criterion power analysis asks us to determine the highest possible precision when sample 

size and other statistical performance values are fixed. For example, assume that we have 

a small data set of gene expression values from yeast. We want to learn which gene 

expressions are most likely to causally influence cell size, as well as how the genes interact 

with each other. We plan to do knockout gene experiments to confirm any findings, so for 

us power is more important than precision. We have 200 samples from 40 genes, and expect 

an edge density of 1.5 (60 edges). In this setting, we want to get at least 90% power for 

effect sizes of r=0.3. Is this possible, and what hyperparameter value should we use to also 

maximize precision? With the table or the shiny app, we find that this it is possible to get 

recall (power) above 0.9 under these conditions. PC with an alpha value of 0.1 can achieve 

0.928 recall while still having 0.98 specificity.

5.4 Sensitivity power analysis

In a sensitivity power analysis, the goal is to determine the lowest effect size for which we 

can achieve some desired level of statistical performance for a fixed effect size. For example, 

assume we have a health survey dataset of 20 variables, previously collected from 800 

participants. We expect many of these variables are related to each other, so we anticipate 

an edge density of 2 (40 edges). We are interested in a very accurate model of the causal 

relationships among physical, psychological, and lifestyle characteristics, and so we want to 

have at least 95% specificity and 95% recall. What is the minimum effect size for which 

we can satisfy our criterion? What algorithm and hyper-parameter should we use to achieve 

that? With the table or the shiny app, we can determine that it is possible to achieve this level 

of performance for r=0.3, using GRaSP with penaltydiscount=2, yielding 0.994 specificity 

and 0.980 recall.
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6 Conclusion

In this paper, we presented what is to our knowledge the first method for doing power 

analysis for causal discovery algorithms. This method uses simulation, a common technique 

for evaluating causal discovery algorithms. However, our method differs critically from 

previous methods due to our development of a random model generation procedure that 

allows the user to control the model’s standardized effect sizes, specifically r values. 

We used this new method to generate a large table of results (available at https://osf.io/

zmwyb/). Our analysis of the results in this table revealed some unexpected findings in 

the way that the PC and FGES algorithms converge, as well as other interactions between 

the algorithms, hyperparameters, and simulation settings that we evaluated. In addition, 

we created a Shiny app (https://kummerfeldlab.shinyapps.io/PowerSim2023-1/) that allows 

users to quickly answer the most common power analysis questions, and we provided 

examples of such solutions as well. The code, results table, and shiny app, are all freely 

available for researchers to use.

The method presented here has some limitations, which we hope to address in future work. 

All of the edges within each generated graph have the same r values, and this is unrealistic. 

Real world systems will almost universally have edge strengths that vary substantially. 

While we do not know whether incorporating this complexity into the models will change 

the power analysis results, nevertheless this is something that should be incorporated in 

future methods. The method currently also only samples from graphs uniformly for a fixed 

edge density, but other methods for sampling from the space of graphs may better simulate 

the distribution of graphs we would expect to find in the world, such as graphs with 

small world (scale-free) structure. This method also does not incorporate any unmeasured 

variables, and as such cannot be used to evaluate the impact of unmeasured variables 

on statistical performance. All of these modifications can be incorporated into our power 

analysis framework in the future, however, due to its modular design.

In terms of the table of results, while it is extensive there are still many gaps that we did not 

consider. For example, we do not have results for sample sizes below 50 or above 102400, 

and did not test PC with alpha values above 0.1, or FGES and GRaSP at penaltydiscount 

values other than 2. Similarly, the current table does not cover data with more than 100 

variables, or graphs with edge density below 1 or above 2. We also did not evaluate 

algorithms other than PC, FGES, and GRaSP.

Aside from improving upon the above limitations, we also hope to improve computational 

performance so that the method can be used more easily and with less computational 

resources. We also hope to extend these methods to work for algorithms that produce partial 

ancestral graphs instead of patterns, to allow the incorporation of background knowledge of 

varying amounts in the search algorithms, and to extend to other data types and distributions 

such as categorical variables, nonlinear relationships, and non-Gaussian noise.

In conclusion, the current study introduced a simulation-based power analysis framework for 

causal discovery that can be extended and customized to the need of different data types and 

research needs. This will make causal discovery more accessible to researchers who are not 

Kummerfeld et al. Page 16

Int J Data Sci Anal. Author manuscript; available in PMC 2024 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://osf.io/zmwyb/
https://osf.io/zmwyb/
https://kummerfeldlab.shinyapps.io/PowerSim2023-1/


familiar with the formal theory of causal modeling, enable researchers to perform sample 

size planning for projects where data will be collected specifically for causal discovery 

analysis, and improve the interpretation of causal discovery results.
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Fig. 1. 
Diagram showing the simulation procedure for one iteration. This procedure is repeated 

to produce empirical performance data. Many simulation parameters, like the value of the 

assigned weights, number of variables, and number of samples, can also be tuned to different 

values.
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Fig. 2. 
Parent nodes u and v are independent, hence their covariance is 0.
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Fig. 3. 
u and v have a common parent t and thus a non-zero covariance.
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Fig. 4. 
A table indicating how the elements of the confusion matrix for adjacency performance, 

and for orientation performance, are calculated. The two cells are empty in the lower right 

because they do not contribute to any of the orientation performance metrics.
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Fig. 5. 
A small portion of the example power analysis table. The complete table is available at: 

https://osf.io/zmwyb/
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Fig. 6. 
A screenshot of the Shiny app. The app is available at: https://kummerfeldlab.shinyapps.io/

PowerSim2023-1/
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Fig. 7. 
Comparison of performance of FGES across different numbers of nodes: 10, 20, 40, and 

100. All plots show only the performance of FGES under simulation settings where the 

model has 1.5 edges per node and all edges have effect size of r=0.3.
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Fig. 8. 
Comparison of performance of PC with alpha=0.01 and GRaSP with penaltydiscount=2 on 

models with edge density varying among 1, 1.5, and 2. All plots show only the performance 

of these methods under simulation settings where the model has 20 nodes and all edges have 

effect size r=0.3.
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Fig. 9. 
Comparison of performance of PC, FGES, and GRaSP. PC was run with varying alpha 

across 0.001, 0.01, 0.05, and 0.1, while FGES and GRaSP both have penaltydiscount=2. All 

plots in this figure are based on simulations with 20 nodes and 30 edges (density 1.5), and 

edge effect size r=0.3.
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Fig. 10. 
Comparison of performance of GRaSP with penaltydiscount=2 on models with effect sizes 

varying across r=0.1, 0.3, and 0.5. All plots in this figure are based only on data from 

simulations with 20 nodes and 20 edges (density 1).
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