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Abstract

To transform continuous speech into words, the human brain must resolve variability across

utterances in intonation, speech rate, volume, accents and so on. A promising approach to

explaining this process has been to model electroencephalogram (EEG) recordings of brain

responses to speech. Contemporary models typically invoke context invariant speech cate-

gories (e.g. phonemes) as an intermediary representational stage between sounds and

words. However, such models may not capture the complete picture because they do not

model the brain mechanism that categorizes sounds and consequently may overlook asso-

ciated neural representations. By providing end-to-end accounts of speech-to-text transfor-

mation, new deep-learning systems could enable more complete brain models. We model

EEG recordings of audiobook comprehension with the deep-learning speech recognition

system Whisper. We find that (1) Whisper provides a self-contained EEG model of an inter-

mediary representational stage that reflects elements of prelexical and lexical representa-

tion and prediction; (2) EEG modeling is more accurate when informed by 5-10s of speech

context, which traditional context invariant categorical models do not encode; (3) Deep

Whisper layers encoding linguistic structure were more accurate EEG models of selectively

attended speech in two-speaker “cocktail party” listening conditions than early layers encod-

ing acoustics. No such layer depth advantage was observed for unattended speech, consis-

tent with a more superficial level of linguistic processing in the brain.
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Author summary

Most people effortlessly can understand different speakers with distinct voices and

accents, no matter whether they whisper, shout or are happy or sad. This effortlessness

belies the remarkable computational challenge that our brains solve to transform such var-

iable speech sounds into words. It is believed that our brains deal with this variability by

categorizing speech sounds into a flow of phonemes and/or syllable units that are consis-

tent, no matter how a word is spoken. Compelling supporting evidence has come from

electrophysiological recordings of brain activity–colloquially known as brain waves—

taken as people listen to speech. Scientists have trained computational models to predict

brain wave fluctuations that correlate with sequences of phoneme categories. However,

modeling only phoneme categories may miss key stages in the recognition process,

including how sounds are mapped to phonemes, and phonemes to words. New deep

learning speech models that are trained to recognize a diverse range of speech and speak-

ers may offer new opportunities to provide more complete accounts of brain activity. This

article reveals that these models indeed predict hitherto unexplained fluctuations in

speech brain waves that reflect elements of sub-words and words, and shows that fluctua-

tions are context sensitive, which may reflect the brain anticipating upcoming speech.

Introduction

The apparent ease with which the human brain transforms speech sounds into words belies

the complexity of the task. This complexity is due in large part to speech variability—each time

a word is spoken, the sound is different. Speech variability is most striking in extreme cases

such as when people have unfamiliar accents, shout, whisper or sing, but is always present to

some degree, even when the same person repeats the same phrase [1,2]. How brains transform

such variable speech sounds into language is a key unresolved question in cognitive neurosci-

ence. By enabling temporally precise estimates of brain activity, electrophysiological measures

such as scalp EEG have provided evidence that the brain transforms natural continuous speech

into words as a cascading process with abstract categorical speech units such as phonemes or

their articulatory features serving as intermediary pre-lexical representations [3–6]. The trans-

formation to phoneme sequences prospectively enables the brain to distinguish word identity,

independent of the speaker, intonation, volume, word meaning and so on. To support this,

researchers have typically revealed how EEG models of speech comprehension are improved

when representing the speech stimulus as a time-series of categorical phoneme feature vectors

in addition to the audio signal (e.g. [3]). However, as observed by [7]: (1) The phoneme predic-

tive advantage revealed by [3] can more parsimoniously be explained by phoneme timing

rather than phoneme identity or articulatory structure, and phoneme timing can be approxi-

mated by estimating the derivative of speech energy. (2) As a broader issue, it is desirable to

produce more complete models of the speech recognition process, because categorical models

typically do not specify the computational mechanism that categorizes variable speech sounds,

nor how sub-word categories are derived from audio data. They therefore may overlook key

components of the speech recognition process in the brain.

By modeling speech recognition end-to-end from audio to words, with human-like accu-

racy, recent deep artificial neural networks such as Whisper [8] present new opportunities to

alleviate the second concern above and potentially provide a new window on speech compre-

hension in the brain. Critically, different to categorical speech models, intermediary represen-

tations within Whisper are a learned function of the audio spectrogram that has been
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optimized to reproduce word-level speech transcriptions made by human annotators. Thus,

Whisper might not only discover intermediary phoneme representations but also learn how to

exploit phonetic and lexical context in service of speech recognition, which in turn might

model new and/or known electrophysiological correlates of natural speech comprehension

(e.g. [3,7,9,10,11,12]). Indeed, recent empirical studies [13,14] of the self-supervised speech

model Wav2Vec2 [15] have demonstrated its sensitivity to phonological context and lexical

knowledge, and a range of different speech models have been observed to encode phonemes

[16], syntax and semantics to some degree [17].

Operationally, Whisper turns continuous audio speech into categorical word units via a

succession of intermediary transformations that take place within an “Encoder-Decoder”

Transformer architecture [18]. The Encoder module prepares input speech spectrograms for

word decoding. This is achieved by re-representing each spectrogram timeframe as a “contex-

tualized” weighted average of itself and all other time frames within a 30s window. The contex-

tualization process is repeated across multiple intermediate layers, each feeding forward into

the next. The output of the final layer, which is the output of the entire Encoder module is a

time-series of contextualized speech vectors that are fed as one 30s chunk into the Decoder.

The Decoder is also a multilayer feed-forward Transformer network, which then transcribes

the encoded speech into a series of discrete word units in the same or a different language.

This proceeds as an iterative process, with the decoder predicting the identity of the next word

based on the encoded speech and any words it has previously decoded. Thus, the decoder

closely resembles next-word-prediction language models such as GPT-2 [19], but with the

additional access to contextually encoded speech.

Here, we model audiobook speech EEG recordings with Whisper’s Encoder module, with

an eye to identifying whether Whisper affords a predictive advantage over traditional acoustic

and phoneme measures, which we find, and then characterizing what underpins this advan-

tage. We based our EEG analyses solely on Whisper’s Encoder on the assumption that it plays

the key role in transforming audio speech into a linguistic form to help the Decoder to predict

word identity, otherwise the Encoder would be redundant. We further assumed that Encoder

representations would become more linguistic with layer depth due to the feedforward archi-

tecture and contextualization process (see Methods for more details on these assumptions).

However, the degree to which the learned linguistic forms reflect sub-words, words, or even

semantics to successfully interface with the word decoder, and which of these features contrib-

ute to EEG models requires further investigation to estimate, which we undertook. To ease

descriptions in the forthcoming text, we refer to the transformation performed by Whisper’s

Encoder as a speech-to-language transformation–with the proviso that language is ambigu-

ously defined–and the conclusion we finally reach is that Whisper learns a mixture of sub-

word and word structure, in part reflecting lexical predictions, and this helps to model EEG.

To characterize the correlation between EEG and Whisper we first examined how EEG pre-

dictions vary across model layers, as has been examined with language models in fMRI, MEG

or ECoG [20–29], and more recently speech models [29,30–33]). We analyzed both audiobook

comprehension EEG recordings made in: (1) single-speaker listening conditions, and (2) an

experimental “cocktail-party” scenario where participants listened to two concurrent audio-

books but paid attention to only one [34]. Extrapolating from [9]’s finding that correlates of

lexical processing selectively reflect only the attended audiobook, we hypothesized the same

would be true for deeper-more linguistic Whisper layers, whereas correlates of lower-level

acoustics would remain for both attended and unattended speech, albeit to different degrees

[34–37]. To estimate which features of Whisper drove EEG prediction we performed compara-

tive analyses with a pure language model (GPT-2 [19]) and also two self-supervised speech

models (Wav2Vec2 [15] and HuBERT [38]) which appear to induce aspects of lexical
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semantics without access to text annotations [31,39]. To probe for EEG correlates of sub-word

representation we tested whether shuffling the order of Whisper vectors within words dis-

rupted modeling accuracy. To establish that EEG responses reflect Whisper’s contextualized

speech transformations, we tested whether limiting Whisper’s access to context compromised

modeling accuracy, as has been studied in language and fMRI [20].

Results: overview

We first reanalyzed a dataset of publicly available Electroencephalographic (EEG) recordings

[40] taken from 19 subjects as they listened to ~1hour of an audiobook (The Old Man and the

Sea [41]). We hypothesized that the internal representations of Whisper–which reflect a

graded transformation of spectral speech input into a linguistic form–would more accurately

predict EEG responses than spectral features of the speech, or derivatives thereof. This was

because Whisper, like the human brain, is adapted to transform speech to language. Because it

is well established from N400 studies that EEG is sensitive to language [42–43] and in particu-

lar word expectation [12,44], we ran a battery of control analyses to gain confidence that Whis-

per was not re-explaining established correlates of language processing. These control tests

were primarily based on estimates of lexical (word) surprisal (how unexpected a word is based

on prior context), though we later reference findings to the internal states of the language

model used to generate next word expectations (GPT-2 [19]).

Natural speech EEG recordings reflect the linguistic transformation of

acoustic speech

To establish how accurately different Whisper layers predicted EEG and determine if they

complemented acoustic and lexical models of speech, we ran a series of cross-validated multi-

ple regression analyses (see Fig 1 and Methods for details). In each analysis, a model to EEG

mapping was fit to each individual’s data. To estimate the complementary predictive value of

different models, EEG prediction accuracies derived from model combinations were con-

trasted with those from constituent models. Model combinations are referred to as Unions in

forthcoming text and/or completely specified as [Whisper LX Control], where LX corresponds

to Layer number X and the square brackets indicate concatenation of Whisper features with

coincident control model features. Control models were: (a) The audiobook speech envelope

concatenated with its first half wave rectified derivative (abbreviated as Env&Dv). (b) An 80

channel Log-Mel Spectrogram corresponding to Whisper’s input and computed by Whisper’s

preprocessing module. (c) Lexical Surprisal–a measure of how unexpected each word is. Sur-

prisal values were computed using GPT-2 to anticipate the identity of each forthcoming word

based on up to 1024 prior words, which is represented as a long vector of probability values

linked to each word in GPT-2’s dictionary. Lexical surprisal values for individual words were

computed as the negative log probability estimates associated with those words. A time-series

representation was then constructed by aligning lexical surprisal “spikes” to word onset times

(relative to the EEG time-line) and setting all other time-series values to zero.

To first establish whether Whisper complemented each individual control model, we evalu-

ated whether pairwise [Whisper LX Control] scalp-average EEG predictions were more accu-

rate than predictions derived from the Control alone. This evaluation used signed-ranks tests

(one-tail, 19 subjects), with p-values corrected across layers for multiple comparisons using

False Discovery Rate (FDR). There were two principal findings (both illustrated in Fig 2 Top

Row): (1) Whisper vectors from L1-L6 strongly complemented all Controls in prediction. For

example, [Whisper L6 Env&Dv] had an accuracy of Mean±SEM r = 0.056±0.004 which was

greater than Env&Dv with Mean±SEM r = 0.041±0.003 (please see Fig 2 for sign rank test
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statistics). (2) EEG prediction accuracies became successively stronger as a function of layer

depth. The Mean±SEM Spearman correlation coefficient between prediction accuracy and

layer depth (0 to 7) across participants was 0.77±0.07. The set of layer depth vs prediction accu-

racy correlation coefficients (for the 19 participants) were significantly greater than 0 (Signed-

rank Z = 3.7924, p = 1.5e-4, n = 19, 2-tail). This provided evidence that deeper and more lin-

guistic Whisper layers were the strongest EEG predictors.

Fig 1. Predicting Natural Speech EEG Recordings with a Contextualized Speech Model. EEG recordings of audiobook comprehension were analyzed. The

audiobook waveform was processed through a pre-trained deep-learning speech model (Whisper-base). A sliding window approach was applied to feed the

model up to 30s of prior speech audio waveform, which was then re-represented as an 80 channel Log-Mel Spectrogram. The Spectrogram is then fed-forward

through successive layers of a Transformer Encoder artificial neural network via an initial convolutional layer. This entire process can be considered to

implement a graded transformation of input speech to a contextualized more linguistic representation. At each transformer layer, input time-frames are

contextualized via a self-attention computation that re-represents input frames according to a weighted average of themselves and preceding frames. The

bottom row illustrates a summary of self-attention weightings computed at each layer for the first 3s of the audiobook stimulus. Attention weights (all positive

values) relating each time frame to each previous timeframe are illustrated as the colored shading on each matrix row. Specifically, points along the diagonal

correspond to attention weights at any timepoint t (from 0 to 3s) unrelated to preceding context. Meanwhile, points to the left of the diagonal correspond to the

attention weights applied to preceding frames to re-represent the current time frame. The wealth of color to the left of the diagonal in layers 3, 5, and 6

demonstrates the importance of prior context in Whisper’s operation. The range of values in each matrix is L1: [0 0.16], L2: [0 0.15], L3 [0 0.09], L4 [0 0.13], L5

[0 0.11], L6 [0 0.09], with color intensity reflecting weight strength. The self-attention computation is illustrated in detail in Fig A in S1 Text, and self-attention

weight maps computed in the eight attention heads that were averaged to generate the visualization above are in Figs B and C in S1 Text. Whisper layer

outputs were used to predict co-registered EEG data in a cross-validated multiple regression framework (this is illustrated above for only the final layer output).

To reduce computational burden, Whisper vectors were reduced to 10 dimensions by projection onto pre-derived PCA axes (computed from different

audiobook data, see also Fig D in S1 Text), and both EEG and model data were resampled at 32Hz.

https://doi.org/10.1371/journal.pcbi.1012537.g001
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To identify which Control models complemented Whisper, we evaluated whether Union

prediction accuracies were greater than constituent Whisper layers (Signed ranks tests, one-

tail, 19 subjects). This revealed that both Env&Dv and Lexical Surprisal (Fig 2 Top Left and

Top Right), but not the Spectrogram (Whisper’s input) uniquely predicted elements of the

EEG signal (Fig 2 Top Middle). In sum, these results provide evidence that EEG strongly

reflects the transformation of speech to language encoded by Whisper.

To next establish which electrodes reflected speech-to-language transformations, we ran a

series of post hoc electrode-wise prediction analyses that combined Whisper’s final most lin-

guistic layer (L6 –which as it turned out also generated the most accurate predictions of each

electrode) with both Env&Dv and Lexical Surprisal. Fig F in S1 Text presents supporting elec-

trode-wise analysis of all Whisper Layers, finding L6 coded almost all of the information that

was valuable for predicting EEG, and earlier layers predicted a similar array of electrodes with

lower accuracy. For completeness, Fig G in S1 Text presents a supporting analysis showing

Fig 2. EEG is more accurately predicted by a contextualized speech model than standard acoustic or lexical surprisal representations, with

accuracy increasing with model layer depth. Top row line plots: The speech model (Whisper) complemented Speech Envelope-based measures, a

Log-Mel Spectrogram (Whisper’s input) and lexical surprisal in predicting EEG data. Models were considered to be complementary if scalp-average

EEG prediction derived from concatenating model pairs (Union = [Whisper, Surprisal]) were more accurate than constituent models (signed-ranks

tests, Z and FDR corrected p-values are displayed at the top of each plot). Whisper Layers 1 to 6 complemented every competing predictor. Lexical

surprisal and the envelope-based predictors, but not the spectrogram also made independent contributions to prediction. Corresponding signed-rank

test statistics (Z, FDR(p)) are the red and black numbers at the top of each plot). Individual-level scalp-average results for Env&Dv, Log-Mel

Spectrogram and Word Surprisal are in Fig E in S1 Text. Bottom row scalp maps: Post hoc electrode-wise analyses mapped scalp-regions that were

sensitive to the speech-to-language model. Each electrode was predicted using the Union of Whisper Layer 6, the Envelope-based measures and

Lexical Surprisal (because all three had made independent predictive contributions in the primary scalp-average analyses, unlike the spectrogram

which was excluded). Whisper’s independent contribution was estimated by partitioning the variance predicted by the three-model union (including

Whisper) minus the variance predicted by a joint model excluding Whisper (Envelope and Surprisal). The square root of the resultant variance

partition was taken to provide a pseudo-correlation estimate on the same scale as other results, as is a common procedure [31,45]. Electrodes that are

typically associated with low-level acoustic processing were especially sensitive to Whisper. This is visible as the red band that straddles central scalp

from ear to ear in the leftmost scalp map.

https://doi.org/10.1371/journal.pcbi.1012537.g002
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that Whisper Layers 1–6 model EEG features predicted by a phoneme articulation model [3],

though these same EEG features may reflect acoustic measures [7]. The Log-Mel Spectrogram

was excluded from this and all further analyses because it had made no independent predictive

contribution in our initial analyses (Fig 2 Top Row).

To estimate whether Whisper uniquely contributed to predicting an individual electrode,

signed ranks tests (19 subjects, one-tail) were used to evaluate whether electrode predictions

derived from three model Union: [Whisper L6 Env&Dv Lexical Surprisal] were more accurate

than when Whisper was excluded (i.e., [Env&Dv Lexical Surprisal]). P-values across the 128

channels were FDR corrected for multiple comparisons. Analogous tests were deployed to

reveal each electrode’s unique sensitivity to Env&Dv (e.g. Union vs [Whisper Lexical Sur-

prisal]) as well as Lexical Surprisal (Union vs [Whisper Env&Dv]). To estimate the relative

contribution of each model to predicting each electrode we deployed a predicted-variance par-

titioning approach [31,45]. For instance, Whisper’s independent predictive contribution was

estimated as the variance predicted by the Union minus the variance predicted when Whisper

was excluded, i.e. r2
[Whisper Env&Dv Lexical Surprisal] —r2

[Env&Dv Lexical Surprisal]. The square root of

the resultant variance partition was taken to provide a pseudo-correlation estimate, as is a

common practice. In the instance of negative variance partitions (as can arise from overfitting

in regression, despite regularization), pseudo correlation estimates were zeroed. Scalp maps of

pseudo correlation variance partition estimates overlaid with the outcomes of the above signed

ranks tests are illustrated in Fig 2 Bottom Row.

The electrode-wise analyses revealed two principal findings: (1) Linguistic Whisper L6

dominated prediction in bilateral scalp electrodes that are traditionally associated with low-

level speech processing (and also captured here in part by Env&Dv). (2) EEG correlates of Lex-

ical Surprisal were distinct and observed in centroparietal electrodes that are traditionally asso-

ciated with the N400. In sum, these results link the new EEG correlates of speech-to-language

transformation in Whisper to bilateral scalp electrodes which are typically associated with pro-

cessing acoustic speech or speech units.

EEG correlates of speech-to-language transformation are attention-

dependent in cocktail-party environments

Given that Whisper accurately predicts scalp EEG in traditional speech processing regions, it

was possible that Whisper’s predictive advantage was gained by providing a high-quality

brain-like filter of concurrent surface-level spectral features. We reasoned that one compelling

test of this would be to modulate the depth of linguistic processing on the listener’s side, and

test whether the EEG data’s sensitivity to Whisper was likewise modulated.

One effective way of modulating a listener’s engagement to speech is via selective attention.

In so-called cocktail-party scenarios it is widely appreciated that listeners can hone in on a sin-

gle speaker whilst ignoring others [34–36]. Indeed, the electrophysiological bases of selective

attention in multi-talker environments have been thoroughly investigated and there is general

agreement that unattended speech is processed at a more superficial level than attended speech

[9,34–37]). For instance, listeners have low ability to accurately report on the unattended

speech content, and N400-like lexical expectation responses disappear for unattended speech

[9] whilst traces of low-level acoustic speech processing remain, albeit at a diminished level

[34]. We therefore hypothesized that correlates of Whisper observed in Fig 2 would be pro-

nounced for the attended speaker in deep layers, but would dwindle or disappear for unat-

tended speech, whereas acoustic correlates would remain to some degree. In particular, we

hypothesized that the predictive advantage associated with Whisper layer-depth (the slope

across layers in Fig 2) would flatten out for unattended speech.
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To test the above hypothesis, we reanalyzed a publicly available Cocktail Party EEG dataset

(https://doi.org/10.5061/dryad.070jc [40]) where EEG was recorded as listeners were played

30mins of two audiobooks presented simultaneously [34]. The two audiobooks–“20,000 Lea-

gues under the Sea” [46] and “Journey to the Center of the Earth” [47] were narrated by differ-

ent male speakers, and were presented via headphones, one to the left ear and the other the

right. Participants were tasked with selectively attending to one audiobook (in one ear) across

the entire experiment. We analyzed 15 participants who paid attention to “20,000 Leagues. . .”

and 12 who paid attention to “Journey. . .”. Audiobook presentation was split in thirty runs of

1 min each that were separated by brief breaks to mitigate participant fatigue. 6 participants in

the online data repository with incomplete EEG data sets were excluded from forthcoming

analyses. This enabled the analyses to be standardized to have exactly the same parameters for

each person to support precise comparisons.

To establish how speech-to-language correlates varied with listener attention, we repeated

the battery of analyses presented in Fig 2 whilst modelling either the attended or unattended

speech stream. Besides predicting the two speech streams, the only other difference to our first

analyses was that we discontinued using the Log-Mel spectrogram because it had previously

afforded no predictive benefit (Fig 2).

For attended speech, as is illustrated in Fig 3 Upper Left, the entire pattern of scalp-average

EEG prediction accuracies for the different pairwise model combinations broadly corrobo-

rated the earlier finding that the deeper more linguistic Whisper layers were more accurate

EEG predictors (Fig 2). Specifically, signed ranks comparisons of scalp-average prediction

accuracies revealed that combining Whisper L4-6 with Env&Dv elevated prediction accuracies

above Env&Dv, and all Whisper layers improved significantly over Lexical Surprisal (See Fig 3

for test statistics). For example, [Whisper L6 Env&Dv] had a Mean±SEM accuracy of r = 0.055

±0.003 comparative to Env&Dv (r = 0.041±0.003) where Env&Dv was the most accurate Con-

trol. Also echoing Fig 2, prediction accuracies increased with layer depth–and speech-to-lan-

guage transformation. The Mean±SEM Spearman correlation between prediction accuracy

and layer depth was 0.78±0.06, which was significantly greater than zero (Signed-rank Z = 4.4,

p = 1.2e-5, n = 27, 2-tail).

Follow up electrode-wise analyses that partitioned how Whisper L6, Env&Dv and Lexical

Surprisal each contributed to predicting attended speech revealed scalp maps (Fig 3 Upper

Right) that again echoed Fig 2. Whisper L6 dominated responses in bilateral temporal elec-

trodes, Env&Dv also contributed to predicting electrodes in those same scalp locations, and

Lexical Surprisal made independent contributions to predicting centroparietal electrodes. The

most salient difference to Fig 2 was that the early Whisper layers (pre-L4) failed to improve

over Env&Dv predictions. This could reflect the more challenging listening conditions, or con-

tamination of the EEG signal with traces of acoustic processing of unattended speech.

Differently, and in line with the hypotheses that EEG correlates of speech-to-language

transformation would dwindle for unattended speech, no Whisper model of unattended

speech improved on the scalp-average prediction accuracies made by Env&Dv (Fig 3 Lower

Left). Whisper did however complement Lexical Surprisal and this effect was observed for all

Whisper layers. Based on our electrode-wise analyses, we are confident that this effect stems

from traces of speech acoustics that are residual in Whisper (which is derived directly from

spectral speech features) but absent from Lexical Surprisal time-series (which is divorced from

speech acoustics aside from tracking word onset times). Specifically, follow up electrode-wise

analyses comparing [Whisper L6 Env&Dv Lexical Surprisal] to two-model subsets (e.g. [Whis-

per L6 Lexical Surprisal]), revealed that Env&Dv was the only representation to uniquely con-

tribute to EEG prediction, and this effect was observed in frontocentral electrodes (Fig 3
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Bottom Right). Thus Env&Dv in isolation provided the most parsimonious EEG model of

unattended speech.

Our second selective-attention hypothesis was that when unattended speech was modelled,

Whisper layer depth would have little influence on prediction accuracy (the slope across layers

in Fig 2 would flatten). As it turned out, the Mean±SEM Spearman correlation between Whis-

per prediction accuracy and layer depth across participants was negative: -0.26±0.08, and sig-

nificantly beneath zero when tested across participants (Signed-rank Z = -2.6, p = 0.01, n = 27,

2-tail). Thus, rather than increasing with layer depth and the transformation from speech-to-

language (as for attended speech) EEG prediction accuracy decreased. To provide extra sup-

port for this claim, Table A in S1 Text presents a linear mixed model analysis of the entire

Selective-Attention data set of scalp-average prediction accuracies displayed in Fig 3.

In sum, the analyses of cocktail party selective-attention EEG data provide evidence that

when listeners disengage from speech–and traditional correlates of lexical surprisal diminish,

the predictive advantage afforded by deep rather than early Whisper layers also diminishes in

bilateral temporal electrodes. This is consistent with the claim that Whisper recovers

electrophysiological correlates of speech-to-language transformation (when speech is attended

to at least) rather than providing a brain-like filter of concurrent spectral features (which are

still present when speech is not attended).

Fig 3. EEG reflected the linguistic transformation of speech as a function of selective-attention in a two-speaker cocktail party scenario. Companion

results split by story speaker are in Figs H and I in S1 Text. Top Row Attended: EEG prediction accuracies derived from attended speech models resembled

the single audiobook data (Fig 2). Top Left Plots: Whisper complemented speech envelope-based measures and lexical surprisal in scalp-average EEG

prediction. Z and FDR corrected p-values at the top of each plot correspond to signed ranks tests comparing Union EEG prediction accuracies to constituent

models. Mirroring Fig 2, Whisper’s prediction accuracy increased with layer depth and latter layers complemented both the envelope measures and lexical

surprisal. Top Right Scalp Maps: Electrode-wise analyses and variance partitioning (see Fig 2 caption for details) revealed that Whisper L6 dominated

prediction in bilateral temporal scalp electrodes. Lexical surprisal was reflected in centroparietal electrodes. Bottom Row Unattended: EEG prediction

accuracies derived from unattended speech models revealed no linguistic contribution. Bottom Left Plots: Based on scalp-average measures, Whisper added

no predictive value to the envelope-based measures, and rather than increasing, prediction accuracy was weaker in later layers (see signed ranks Z and FDR

corrected p-values at the top of each plot). Whisper did however improve on lexical surprisal prediction accuracies (all layers), which is presumably because it

still encodes a residual of unattended speech acoustics. Bottom Right Scalp Maps: Consistent with the brain processing only superficial acoustic features of

unattended speech electrode-wise analyses and predicted variance partitioning echoed that envelope-based measures alone drove prediction over central scalp

electrodes.

https://doi.org/10.1371/journal.pcbi.1012537.g003
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Interpreting EEG correlates of speech-to-language transformation

Having consolidated evidence that EEG indexes linguistic transformations of speech, we

finally sought to probe the nature of the new EEG signal predicted and in particular estimate

the extent to which it reflected lexical processing and contextualization. We focused this inves-

tigation on the single audiobook EEG dataset (Fig 2), because EEG recordings were longer

and not contaminated with dual speech streams unlike the Cocktail Party data set.

Interpretation: EEG correlates of Whisper partially reflect predictive

lexical processing

Because Whisper’s last and putatively most linguistic layer was universally the most accurate

EEG predictor, we ran further tests to explore how strongly the EEG correlates reflected lexical

processing. To this end we first referenced Whisper’s EEG predictions to the internal states of

a pure language model (GPT-2). To recap, GPT-2 also underpinned the earlier lexical surprisal

analysis, and was chosen due to its excellent universal performance in predicting brain data

[12,22,24,26,28]. The current analysis differs in its basis on GPT-2’s internal states–or layer

activations–which are generally thought to encode a mixture of lexical semantics and syntax

that help GPT-2 to predict upcoming words. To contrast Lexical Surprisal (Figs 2 and 3)

reflects the inaccuracy of GPT-2’s next-word-predictions (which is the error signal used to

optimize GPT-2).

To establish commonalities and complementarities of GPT-2 with different Whisper layers,

we predicted EEG with pairwise combinations of GPT-2 L16 and each Whisper layer and then

examined how scalp-average prediction accuracy compared to the two isolated constituent

models. We selected L16 based on the outcomes of independent research studies computed on

fMRI [26], but nonetheless ran post hoc tests with different layers that corroborated the valid-

ity of this choice (Fig J in S1 Text).

Results are illustrated in Fig 4A. Signed ranks comparisons of prediction accuracies

revealed that combining GPT-2 with early (L0-4) but not late (L5-L6) Whisper layers boosted

accuracy above Whisper alone. Notably, there also were negligible differences in prediction

accuracy between Unions of GPT-2 L16 with early and late Whisper layers. For instance the

Mean±SEM Spearman Correlation coefficient between [GPT-2 L0-6] scalp-average prediction

accuracy and layer depth (L0-6) was 0.14±0.09, which was not significantly greater than zero

(Signed rank Z = 0.85, p = 0.4). This suggests that Whisper L5 and L6 share commonalities in

lexical representation with GPT-2 that are lacking from Whisper L0 to L4. Critically, this pro-

vides evidence that EEG correlates of Whisper L6 indeed partially reflect lexical transforma-

tions of speech and also support the notion that Whisper encodes a graded speech-to-language

transformation (which we had assumed prior to this analysis).

Interpretation: EEG preferentially reflects the encoding of 5-10s speech

contexts

Because long multi-word speech contexts would seem to be necessary for Whisper to have cap-

tured the EEG correlates lexical prediction above, we examined how valuable Whisper’s 30s

context was for modeling EEG data. To this end we generated Whisper L6 vectors using sliding

context windows that we constrained to different durations [.5s 1s 5s 10s 20s 30s] to restrict

Whisper’s access to linguistic context. As is illustrated in Fig 4B, the strongest prediction accu-

racies were observed for 10s of context, and these accuracies were significantly greater than all

other context window sizes shorter than 5s. However, although significant, the gain in predic-

tion accuracy between 0.5s (Mean r = 0.051) and 10s (Mean r = 0.056) was modest, equating to
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22% extra variance predicted (r2). A subsequent exploratory analysis of individual electrodes’

sensitivity to different context durations (Fig K in S1 Text) revealed that all electrodes were

preferentially predicted with 5s or more context, and some posterior scalp electrodes were sen-

sitive to lengthier Whisper contexts of 30s.

Critically, these results provide evidence that EEG signals are sensitive to multi-word

speech contexts that cannot be modeled by traditional context-invariant categorical

approaches. However future work will be necessary to pin down precisely what contextual

information was critical. Although speech models appear to encode elements of semantics and

syntax [17] that could support lexical and phonological predictions, it is also possible that the

contextual advantage draws from cross-speaker normalization, F0 normalization across utter-

ances within speaker, accent stabilization, or consistency of acoustic cues to word boundaries.

Interpretation: EEG and deep Whisper layers also partially reflect

sub-lexical structure

Because the bilateral scalp electrodes best captured by Whisper (Figs 2 and 3) are typically

considered to reflect low-level speech acoustics and/or categorical speech units [3], and Whis-

per’s current EEG predictions could be partly driven by sub-lexical structure residual in Whis-

per (as was already hinted by the strong predictions obtained when pairing shallow speech-like

whisper layers with GPT-2 in Fig 4A), we tested this further. To this end, we evaluated whether

Fig 4. Interpretation: EEG correlates of speech-to-language transformation reflect a blend of contextualized lexical and sub-lexical representation. (a):

To examine the linguistic nature of Whisper’s EEG predictions we referenced them to a pure language model (GPT-2-medium). We focused on GPT-2 L16

based on independent fMRI research ([26], see also Fig J in S1 Text for validation of this choice). Consistent with EEG reflecting traces of lexical processing we

found that late linguistic Whisper layers captured all variance predicted by GPT-2 (and more), because the Union model (with GPT-2 and Whisper) was no

more accurate than Whisper L5 or 6 alone. Differently earlier speech-like layers were complemented by GPT-2. (b): To examine whether Whisper’s accurate

EEG predictions were driven by contextualized representation, Whisper’s context window size was constrained to different durations [0.5s, 1s, 5s, 10s, 20s, 30s].

Accuracy was greatest at 5-10s, suggesting that intermediate contexts spanning multiple words were beneficial. Corresponding signed ranks test Z and FDR

corrected p-values are displayed on the plot. The dashed horizontal line reflects mean prediction accuracy with a 0.5s context. (c): To examine whether

Whisper L6’s accurate EEG predictions were part driven by sub-lexical structure residual in Whisper’s last layer, we disrupted within word structure by either

feature-wise averaging L6 vectors within word time boundaries or randomly reordering Whisper vectors within words. The outcome suggested that the EEG

data additionally reflected a sub-lexical transformational stage, because either shuffling vectors within words or averaging them compromised EEG prediction

in most participants. (d): To explore how the relative timing of EEG responses predicted by Whisper compared to the speech envelope and language model, we

ran a battery of “single time lag” regression analyses. Model features were offset by a single lag within the range [0 to 750ms in 1/32s steps] and model-to-EEG

mappings were fit on each lag separately (rather than all lags), as was repeated for each model in isolation. Whisper preferentially predicted a lag of 63ms, after

the speech envelope (31ms) and before both the language model (125ms) and word surprisal (406ms). Note that the illustrated profiles chart (single-lag)

prediction accuracies, and as such should not be confused with time-lagged regression beta-coefficients commonly used in the literature to estimate brain

temporal response functions.

https://doi.org/10.1371/journal.pcbi.1012537.g004
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Whisper L6’s predictive advantage was entirely driven by lexical representation. If this was the

case, we reasoned that either “lexicalizing” L6 by pointwise averaging vectors within word

time boundaries, or randomly shuffling the temporal order of vectors within words should

have negligible impact on EEG prediction accuracy.

To establish the effects of disrupting within word structure, we lexicalized or shuffled Whis-

per L6 vectors within words, as described above. We then ran comparative cross-validation

analyses, first predicting EEG data with the Union of [Whisper L6 Env&Dv Lexical Surprisal]

and then repeating analysis, but replacing Whisper L6 with either its shuffled or lexicalized

counterpart. To provide confidence that L6 words with shuffled temporal structure still had

some value for predicting EEG, we repeated analyses shuffling Whisper vectors across the

entire timeline, which ablated Whisper’s unique contribution to prediction altogether.

Consistent with the EEG data also reflecting sub-lexical structure, both experimental

manipulations of Whisper damaged prediction accuracy for most participants (Fig 4C). Spe-

cifically, signed ranks comparisons of scalp-average prediction accuracies between Whisper L6

and lexicalized Whisper L6 revealed a significant drop in the latter (Mean±SEM = 0.059±0.004

and 0.056±0.004 respectively, Z = 2.86, p = 0.0043, n = 19, 2-tailed). When Whisper L6 vectors

were randomly shuffled within words, and this process was repeated 20 times, the unshuffled

prediction accuracies (0.0534±0.0034, when averaging shuffles with participant) were found to

be greatest in 13/19 participants. The cumulative binomial probability of achieving this out-

come (p = 1/20) in 13 or more participants is 2.5e-13. We presume that EEG recordings in the

other 6 participants reflected correlates of lexical representation coded in Whisper. This could

be due to differences in cortical folding between human participants. More specifically, EEG

recordings from different people likely contain different relative contributions from different

functionally specialized cortical regions, meaning that the EEG of different people could reflect

different speech and language representations to varying degrees.

Ablating Whisper’s contribution to prediction altogether by shuffling Whisper vectors

across the entire timeline (without changing Env&Dv and Lexical Surprisal) produced Mean

±SEM scalp-average prediction accuracies of 0.0380±0.0034 (when repeated 10 times with dif-

ferent random shuffles and averaging within each participant). This was significantly less accu-

rate than predictions derived from within word shuffles (z = -3.8230, p = 1.32e-04, n = 19,

signed-rank) suggesting that Whisper still made a predictive contribution after within-word

shuffling.

In sum, these analyses suggest that the current EEG correlates of speech-to-language trans-

formation reflect a mixture of both lexical and sub-lexical structure in most participants.

Interpretation: Whisper best predicts EEG responses that are intermediary

between speech acoustics and language

Given the current evidence that EEG responses captured by Whisper reflect lexical and sub-

lexical structure we further examined how their timing related to acoustic speech processing

and language with the expectation that Whisper would be either intermediary (reflecting a

sub-lexical/lexical feature mixture) or would separably reflect both. To explore this, we ran a

set of analyses where only a single time-lag of model features was used to predict EEG, rather

than all time-lags at once as in our other analyses. Single lags were within the range [0 to

750ms] in 1/32s steps. We reasoned that prediction accuracies derived from different lags

would provide an estimate of the EEG response time-delay associated with each model. We

were especially interested to see if such an analysis would show a single peak at intermediary

lags (indicating an intermediary sub-lexical/lexical feature mixture) or whether it would show

a double peak (suggesting separable indexing of sub-lexical and lexical features). Model-to-
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EEG mappings were fit on isolated models without variance partitioning to simplify analyses,

and because stimulus features that are shared across models might be encoded at different

stimulation latencies. In turn, this may exaggerate estimates of models’ unique predictive con-

tribution (NB the multi-lag regression analyses presented in the other results do account for

this issue). Therefore, for completeness we include a single-lag variance partitioning analysis

in Fig L in S1 Text.

Fig 4D illustrates the EEG response timings preferentially predicted by the different models

(scalp-average prediction accuracies). Whisper preferentially predicted EEG at a time delay of

63ms which was intermediary between the speech envelope (31ms) and the language model

(GPT-2 L16 activation, 125ms) and word surprisal (406ms), however Whisper’s prediction

accuracies were also comparatively high across the 400ms time span. This suggests different L6

features may have value for predicting different stages in conversion from sounds to words,

and in particular early prelexical representation. A secondary observation was that GPT-2

L16’s prediction accuracy profile was doubled humped across response lags, with the second

(weaker) peak at 563ms. We speculate the GPT-2 double hump reflects EEG responses associ-

ated with consecutive words e.g. the language model at word n both predicts the EEG response

to word n and also n+1 (albeit with reduced accuracy).

Interpretation: How Whisper differs from self-supervised speech models

that infer linguistic representations

To gain further insight into the nature of EEG predictions based on Whisper’s explicit trans-

formation of speech-to-text, we ran comparative analyses against two self-supervised speech

models, that are trained entirely on sound data, with no access to language. For this, we

selected Wav2Vec2 [15] and HuBERT [38] that in different studies have provided high accu-

racy fMRI models [30,31] and a strong basis for decoding model features from MEG and/or

EEG data [48,49].

Specifically, like Whisper, Wav2Vec2 and HuBERT deploy Transformer encoders to build

contextualized representations of speech, but different to Whisper they are pre-trained to infer

the identity of artificially masked speech sounds. As such, the way these models represent

speech and language should differ across their layers compared to Whisper. Specifically, past

modelling and fMRI research has suggested that the inner layers of self-supervised speech

models induce lexical semantic representations from speech [17,31,39]–which could help

them to infer contents of masked speech. However, the later layers focus on decoding back to

an acoustic speech representation. As such, one might expect a different profile of EEG predic-

tions across the layers of these models compared to the profile we have observed with Whis-

per–with any such differences adding to our understanding of the Whisper-based EEG

predictions. To enable the current results to be cross-referenced to [30,31], we undertook EEG

analyses with Wav2Vec2-base and HuBERT-base, which both have 12 layers, and compared

them to Whisper-small (which has 12 rather than 6 layers). All networks were run with 30s

sliding context widows, and all layer representations were projected onto ten corresponding

PCA axes derived from an external dataset (7M, 7F speakers as before).

We found that all three speech models yielded highly accurate scalp-average EEG predic-

tions (Fig 5). Whisper L12 was superficially the most accurate (Mean±SEM r = 0.057±0.004),

but when compared to the closest runner up Wav2Vec2 L7 (Mean±SEM r = 0.055±0.004),

there was no significant difference (Signed-rank Z = 0.55, p = 0.55, n = 19, 2-tail). From visual

inspection, the most salient difference between self-supervised models and Whisper was the

pattern of EEG prediction accuracies across layers. As expected, whereas Whisper was charac-

terized by an approximately monotonic increase in prediction accuracy tracking with layer
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depth, it was the intermediate layers of Wav2Vec2 and HuBERT (L7, L9 respectively) that

were most accurate. Wav2Vec2 and HuBERT’s inner layer predictive advantage observed here

on EEG closely mirrors the inner-layer advantages observed in fMRI research [30,31]. Because

comparative modelling analyses [39] have specifically linked the representational content of

Wav2Vec2 L7-8 to a lexical semantic model (GloVe [50]), we presume this information sup-

ports EEG prediction. We further presume that this lexical content diminishes in latter model

layers where it is back transformed to make predictions about masked sounds, and this

accounts for the associated drop in EEG prediction accuracy.

Finally, to explore for representational commonalities between Whisper L12 and Wav2Vec

L7, we predicted EEG with the Union of the two models, and then contrasted accuracies with

constituent models. Consistent with Whisper and Wav2Vec2 both contributing to prediction,

the Union yielded modestly stronger prediction accuracies (Mean±SEM r = 0.06±0.004,

n = 19) than both Wav2Vec2 L7 (Signed-Rank Z = 3.67, p = 2.5e-4, n = 19, 2-tail) and Whisper

L12 (Signed-rank Z = 2.37, p = 0.02, n = 19, 2-tail). A variance partitioning analysis suggested

Fig 5. To explore how Whisper’s accurate EEG predictions compared to self-supervised speech models trained

without direct access to language (on identifying masked speech sounds) we also repeated analyses with

Wav2Vec2 and HuBERT. To enable cross-referencing to comparative fMRI studies [30,31], we performed this

comparison on models comprising 12 layers. Wav2Vec2 and HuBERT both yielded highly accurate predictions but

unlike Whisper, the inner layers (L7 and L9 respectively) rather than the last layer were most accurate. Further tests

reported in the main text, suggest that Whisper predicted some different components of EEG signal to Wav2Vec2.

https://doi.org/10.1371/journal.pcbi.1012537.g005
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that ~75% of predicted variance was shared between models: r2
Shared = 100*(r2

Whisper+

r2
Wav2Vec2–r2

Union)/r2
Union), ~15% is added by Whisper L12: [100*(r2

Whisper–r2
Shared)/r2

Union]

and ~9% is contributed by Wav2Vec2 L7: 100*(r2
Wav2Vec2–r2

Shared)/r2
Union.

In sum, these findings reveal that EEG data is also accurately predicted by the more linguis-

tic inner-layers of self-supervised speech models, and inner layers appear to share representa-

tional content with Whisper’s final most linguistic layer. Whisper’s unique contribution to

EEG prediction may stem from its direct mapping to language in training. Collectively results

are consistent with EEG reflecting a contextualized transformation of speech-to-language.

Discussion

The current study has revealed electrophysiological correlates of the linguistic transformation

of heard speech using the end-to-end speech recognition model Whisper. This addresses a gap

in previous work that has typically relied upon hand-crafted context invariant categorical

speech units such as phonemes to capture an intermediary phase between sound and words,

without modeling the mechanism that maps sounds to categories, and potentially also the rep-

resentations invoked in this mapping. The current results suggest that: (1) EEG is better pre-

dicted with the more complete model provided by Whisper. (2) Whisper helps reveal neural

correlates of a contextualized speech transformation that reflects both prelexical and lexical

representation and predictive processing which cannot be modeled by context invariant cate-

gorical approaches (by definition). To strengthen the case that the newly predicted EEG signal

reflected a linguistic transformation as opposed to a brain-like filter of concurrent acoustic

speech, the study further demonstrated that Whisper correlates were sensitive to listener atten-

tion. Specifically, correlates of Whisper’s deeper more linguistic layers selectively diminished

comparative to early layers when listeners ignored one speaker in favor of listening to another

(for whom the correlates of deep layers were present). More generally, this study exemplifies

how deep-learning models can help tackle unresolved questions in human speech comprehen-

sion, and in so doing predict neurophysiological data with minimal experimenter

intervention.

The flipside of the EEG modelling benefits observed above is that interpreting deep-learn-

ing models and what they predict in brain data are both notoriously challenging, because inter-

nal representations require empirical investigation to interpret and may neatly not align with

spectro-temporal, phonological, lexical and combinatorial components of theoretical models

(e.g. [51]). Nonetheless, the inputs, outputs, architecture and training objective(s) of a deep

learning model provide initial clues to how information is coded and reshaped throughout the

network, and therefore what may drive EEG prediction. To recap Whisper is trained to trans-

late multilingual speech spectra into words in either the input language or English and to also

annotate word timing (see also Methods). The network architecture deploys a Transformer

Encoder to contextualize and transform speech spectrograms into time-aligned vector repre-

sentations (these vectors were the basis of the current study) and then a Transformer Decoder

to transcribe the Encoder output vectors (which we did not examine here, please see Methods

and Introduction). Thus, our starting assumption was that Whisper’s Encoder gradually

transforms speech into a contextualized linguistic representation–which may be language

invariant (perhaps even encoding semantics) because the Encoder output is optimized to pre-

pare speech for transcription either within or between languages. However, at this stage the

precise nature of network representations still remained ambiguous.

Having found that the final “most linguistic” layer of Whisper’s Encoder provided the most

accurate EEG predictions across both electrodes and experiments, it was essential to run fur-

ther interpretative tests to isolate what drove prediction (see also [29,31]). To probe for
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correlates of word processing we referenced Whisper’s EEG predictions to a pure language

model (GPT-2, Fig 4A)—itself a Transformer Decoder—that predicts next-word identity.

Consistent with the EEG data encoding features of predictive lexical processing there were

commonalities between Whisper and the language model, especially in Whisper’s final layer

which captured all the EEG variance predicted by the language model, and more. Interestingly,

when the language model was paired with the earlier more speech-like Whisper layers, it did

add complementary value, and generated EEG predictions on a par with latter Whisper layers.

This suggested that EEG both reflects elements of word prediction (as found in GPT-2) along-

side pre-lexical speech codes.

In light of the above, we examined the impact of limiting Whisper’s opportunity to form pre-

dictions, by limiting speech context. Despite our anticipation that EEG prediction accuracy

might monotonically improve or asymptote with longer contexts (up to the 30s max), we found

5-10s context to be most accurate (~20% extra variance predicted than .5s). Critically the 5-10s

contextual advantage provides evidence that EEG encodes information across multiword speech

contexts, and that contextualized models predict components of EEG that context invariant cat-

egorical models cannot capture. However, it remains unclear why 5-10s speech is advantageous

and future work will be needed to characterize EEG correlates of speech contextualization at

lexical and prelexical levels. One approach could be examining how representations in speech

models vary in the presence/absence of linguistic contexts that do/don’t make upcoming words

and sounds predictable (e.g. [14]) and then testing whether model differences capture corre-

sponding differences in electrophysiological responses to the predictable/unpredictable stimuli.

Another potentially revealing approach could be to examine how speech model transcription

performance varies when models are optimized on different context lengths, and how this relates

to EEG modeling accuracy. Although experimentally retraining Whisper was beyond the scope

and means of the current study, we note that [20] ran a comparative language modeling analysis

evaluated on fMRI data. In training an LSTM language model on next-word-prediction, they

observed negligible word prediction benefit to training with contexts of more than 20 words, and

that fMRI prediction accuracy also began to asymptote when models neared a 20-word context.

On face value, this 20 word context is consistent with 10s speech, given that one would expect at

least 20 words to be spoken in 10s (assuming 120–200 words are spoken per minute [1,52]. How-

ever, given that people don’t altogether forget what they heard 10s ago, and that large language

models now routinely exploit thousands of word contexts [53] and can improve fMRI modeling

accuracy [24,29], future work will be required to explore the nature of this correspondence.

To test EEG data for correlates of sub-word content we disrupted the within-word temporal

structure of Whisper’s final layer which we reasoned should have little effect on EEG predic-

tion if it was driven by single code word representations. The findings were consistent with

EEG additionally reflecting sub-word structure, as was evidenced by a modest reduction in

EEG prediction accuracy in most participants. However, because EEG has low anatomical res-

olution, the degree to which this word/sub-word composite reflects intermediary part-speech

part-language representational states in the brain, as opposed to a blurred sampling of distinct

speech and language-selective neural populations was unclear. More anatomically precise

fMRI [29,30,31] and ECoG [32–33] studies suggest that the current EEG correlates of prelexi-

cal representation may stem from auditory cortices and in particular Superior Temporal

Gyrus where intracranial electrodes are especially sensitive to contextualized phone and sylla-

ble representations from HuBERT L10 ([32], see also Fig 5). fMRI correlates of language mod-

els, and/or candidate lexical representations in speech models have typically been observed to

radiate out from auditory cortex over lateral and posterior temporal zones to parietal and infe-

rior frontal cortices [26,29,30,31]) and presumably some of these regions contribute to the cur-

rent predictive overlap between Whisper and GPT-2, and potentially also lexical surprisal.
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Given the availability of different speech models, one might wonder whether Whisper is

currently the “best” model of brain activity. We consider that the answer to this question must

in part be borne out experimentally through correlations between models and brain data.

However, besides this, a study’s aims may determine the appropriate model for use. For

instance, Whisper’s access to a preconfigured cross-lingual text vocabulary renders it an

unsuitable model of childhood language acquisition when the word vocabulary also must be

learnt (see also [30]). We initially chose to focus on Whisper because it provides an accurate

end-to-end transformation of audio to text and may therefore discover intermediary pre-lexi-

cal and/or lexical representations from audio data that could help predict brain responses.

However, the current analyses provide no clear answer on whether Whisper is the best EEG

model right now. When compared to two self-supervised speech models (Wav2Vec2 and

HuBERT)–which have no access to text in training but appear to induce lexical semantic rep-

resentations in inner layers [31,39]), the top EEG prediction accuracies across layers were

equivalent, albeit arising from the inner-layers of self-supervised models, rather than the last

layer of Whisper’s Encoder. In a variance partitioning analysis, Wav2Vec2 and Whisper over-

lapped in ~75% of EEG variance predicted. The ~15% extra variance contributed by Whisper

might reflect Whisper’s access to text in training. However, access to text in training appears

not to benefit intracranial electrophysiological models of STG [32]. Relatedly, the inner layers

of WavLM [54], a self-supervised extension of HuBERT, were found to mode fMRI data more

accurately than Whisper’s last layer, at least when accuracy was averaged across all brain voxels

[29]. Thus, different speech modeling frameworks recover common representations that pre-

dict brain responses and provide convergent evidence that EEG reflects early contextualized

linguistic transformation of speech, that are complemented by language models.

To close, we believe the current study helps advance understanding of the neurophysiologi-

cal processes underpinning speech comprehension and selective attention. This adds to a

growing body of research that has reaped the benefits of pre-trained deep-learning approaches

for interpreting language or speech [12,20–33]. The current study has helped to broaden this

horizon by identifying a self-contained EEG model of speech transformation that sensitively

reveals listener attention and suggests how the brain could encode prior speech context in

comprehension. Because EEG is both low-cost and widely available, and because the current

speech-to-language model is automated, we hope that the approach can also contribute to

applied research to help index the linguistic depth of speech processing in developmental and

disordered populations.

Methods

EEG data and recording parameters

All EEG data analyzed in this study are publicly available and were downloaded from Dryad

([40], https://doi.org/10.5061/dryad.070jc). All EEG data were recorded from 128 scalp elec-

trodes, plus two mastoid channels at 512Hz with a BioSemi ActiveTwo system. To emphasize

the low frequency EEG signal that is commonly associated with prelexical and lexical represen-

tations ([3,9]), EEG was band-pass filtered between 0.5 and 8Hz using a 3rd order Butterworth

filter. Data were down-sampled to 32Hz to reduce the computational burden of forthcoming

analyses. In all analyses, EEG data were re-referenced to the average of the mastoid channels.

Single audiobook EEG experiment and participants

Analyses presented in Figs 2,4 and 5 were undertaken upon EEG data originally recorded in

[3] from 19 participants (aged 19–38 years, 13 male) as they listened to an audiobook record-

ing of The Old Man and the Sea [41] narrated by a male speaker. To mitigate participant
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fatigue, EEG recording was split into 20 runs, each of approximately 3mins duration, inter-

leaved with brief breaks. The story line was preserved across the 20 trials, and the first trial cor-

responded to the start of the story.

Cocktail party selective attention eeg experiment (Dual Audiobook) and

participants

Analyses presented in Fig 3 were undertaken upon EEG data originally recorded in [55] from

33 participants (aged 23–38 years; 27 male) who were played 30mins of two audiobooks pre-

sented simultaneously, but paid attention to only one book. The two audiobooks– 20,000 Lea-

gues under the Sea [46] and Journey to the Center of the Earth [47] were narrated by different

male speakers, and were presented via headphones, one to the left ear and the other the right.

Participants were requested to selectively attend to one audiobook (in one ear) across the

entire experiment. Audiobook presentation was split in thirty runs of 1 min each that were

separated by brief breaks to mitigate participant fatigue. We analyzed 15 participants who paid

attention to “20,000 Leagues. . .” and 12 who paid attention to “Journey. . .”. 6 Participants

with incomplete EEG datasets were excluded to enable standardization of all analyses within

the nested-cross validation procedure.

Whisper–A deep-learning model of speech-to-language transformation

Our probe for EEG correlates of speech-to-language transformation–Whisper (Web-scale

Supervised Pretraining for Speech Recognition or WSPSR/Whisper, [8])–deploys a Trans-

former Encoder-Decoder deep-learning architecture [18] that transforms spectral speech fea-

tures into word transcriptions. Whisper is publicly available and we downloaded the version

on Hugging Face [56]: https://huggingface.co/docs/transformers/model_doc/whisper) which

was pre-trained to transcribe speech in 99 languages, to translate non-English speech to

English words, and to annotate the timing of word boundaries.

Whisper’s Encoder and Decoder are both multilayer feedforward networks that each stack

multiple layers of so-called Transformer blocks (e.g. L1-6 in Whisper-base, Figs 2–4, L1-12 in

Whisper-small, Fig 5), where each block is itself a multilayer network. The Encoder receives a

30s speech spectrogram as input—an 80 channel Log-Mel Spectrogram, computed on 25ms

windows, with step 10ms. The spectrogram is projected into a 512 dimensional space, operat-

ing on 20ms time-slices via a convolutional network (L0). Because Transformer layers process

speech time-frames in parallel, a sinusoidal positional code is added to each time-frame to

indicate its relative position in the sequence. The Transformer layers then refine each 512

dimension time-frame across successive layers into a time-aligned output vector sequence

(also 512 dimensions). This output sequence is subsequently fed as a 30s whole into each

Decoder layer (as a 1500*512 matrix, with each time-slice corresponding to 20ms). The

Decoder iteratively predicts the sequence of words corresponding to the Encoder output, one-

by one, conditioned on the Encoder output, with each successive word prediction fed back as

new Decoder input. Predicted words are represented as long vectors of probability values, with

each entry corresponding to a single word.

The current EEG analyses were exclusively based on Whisper’s Encoder module, and we

excluded the Decoder to constrain the breadth of our analyses and circumvent the additionally

need to manage inaccuracies in Whisper’s transcription, especially as relates to word timing.

In lieu of this we ran comparative analyses with a pure language model (GPT-2, a Transformer

Decoder) of the manually aligned audio book transcript to capture elements of lexical predic-

tion. The only study [33] that we are aware of that has deployed Whisper’s Decoder to inter-

pret brain data (ECoG) decoupled the Decoder from the Encoder (such that the Decoder
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operated analogously to GPT-2 in processing manually transcribed words, without any access

to speech). Indeed, [33] observed no benefit to predicting ECoG data with the original coupled

Decoder running with access to contextualized speech data. On these grounds it is unclear

whether the Whisper’s Decoder would have afforded any predictive advantage over GPT-2 in

the current EEG analysis, but it may be a worthy topic of investigation in the future.

We primarily focused analyses on Whisper-base rather than larger Whisper models to

reduce the computational burden of our analyses. Larger networks may produce more accu-

rate EEG predictions (e.g. we observed predictions derived from Whisper-small to be more

accurate Whisper-base, Fig 2 vs Fig 5).

The current analyses were based on three key assumptions: that Whisper’s Encoder trans-

forms speech into representations that are (1) linguistic, (2) contextualized and (3) graded

across network layers. Thus, successfully referencing EEG to Whisper would provide evidence

that the brain signals reflect contextualized linguistic transformation of speech. Below we detail

the bases of these assumptions.

Our assumption that Whisper’s Encoder generates linguistic representations was grounded

on Whisper’s training objectives and architecture. Specifically, we assumed that the Encoder

produces linguistic vectors, because they are shaped through optimization to be transcribed

into words by the Decoder–optionally into a different language. Thus, Encoder vectors poten-

tially suppress within and between speaker variation in intonation, accents, volume, intonation

and so on to encode word identity in a language-invariant and possibly semantic format, at

least to the extent these acoustic factors don’t compromise the Decoder. However, ultimately

the precise linguistic nature of the Encoder vectors is an empirical question and one that we

picked up on in our latter Interpretative analyses with reference to a pure deep-learning lan-

guage model (Fig 4A).

The assumption that Whisper produces contextualized speech representations was drawn

from Whisper’s Encoder-Decoder architecture, which was first introduced to generate contex-

tualized language representations to support machine translation [18]. For instance, without

having some context to specify what the ambiguous English word “bat” refers to, the correct

French translation would be unclear because French disambiguates the flying mammal

(chauvre souris—bald mouse) from the sports tool (batte). In the case of modelling acoustic

speech, context could be helpful to disambiguate noisy or mispronounced sounds, either

within or across words. e.g. “television” might be inferred from the mispronunciation “televi-

siom” and in the case of the “the apple grew on the <noise>”, the obscured word/sound is

likely to be “tree”. Interestingly recent studies of Wav2Vec2 (that unlike Whisper was trained

without a language modelling objective) have revealed sensitivity to phonological context

[13,14] and lexical identity but not semantic context [14].

Whisper’s Encoder’s Self Attention mechanism explicitly contextualizes each time-frame,

by merging it with other time-frames via feature-wise weighted averaging (See Fig A in S1

Text for a detailed illustration, and Figs 1, and B and C in S1 Text for a visualization of actual

network weights). To provide some quick intuition, and taking an example from language, to

encode “The vampire bat”, one would expect self-attention weights between “bat” and “vam-

pire” to be strong (i.e. “bat” attends to “vampire” and the two become merged). Conversely

attention weights between “bat” and “The” may be weak because “The” is not very informative

for translating “bat”. Intuition aside, the value of contextualized speech encoding for EEG pre-

diction is an empirical question which we address by experimentally constraining Whisper’s

context (Fig 4B).

The third assumption—that Whisper produces a graded multistage transformation (of

speech-to-language)—was based on Whisper’s multilayer feedforward architecture. Each layer

(Transformer block) contextualizes each time-frame via the Self-Attention computation
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described above. Because in principle at least, L1-6 produce increasingly contextualized repre-

sentations which contribute to transitioning speech into a linguistic code (suitable for Decoder

transcription), we assumed that this transformation is graded. Nonetheless, we did experimen-

tally test this assumption by referencing the EEG predictions derived from Whisper’s different

layers to acoustic speech representations (Fig 2) and a language model (Fig 4A).

For the EEG analyses we extracted 512 dimensional vectors corresponding to each (contex-

tualized) time-frame, that were output from each layer. We focused only on encoder layer out-

puts rather than within-layer states (e.g. Self-Attention maps) to constrain the breadth of our

analyses. As such, the current analyses may have overlooked representational information

within Whisper that could be relevant for EEG prediction, and might provide the basis for

future studies.

Because Whisper is set up to process 30s speech in parallel–which for the first time-frames

in the current experimental stories would enable Whisper to see 30s into the future–we con-

strained the model to preserve biological realism. This was implemented by feeding the input

speech audio waveform (resampled at 16000Hz) into Whisper via a�30s sliding window

approach, which stepped forward over the waveform in 1/8s steps (corresponding to the 8Hz

low-pass filtering of EEG data). Thus, at 10s into a run, Whisper was given access to the past

10s of speech audio waveform, and the series of Whisper vectors within the final 1/8s were

saved from each layer of the Encoder and accumulated for the EEG analysis. At 40s into the

analysis, Whisper processed 10-40s of audio waveform, and the series Whisper vectors within

the final 1/8s were saved from each layer of the Encoder and accumulated for the EEG analysis.

Whisper time-series were resampled from 50Hz to 32Hz (to match the EEG data) using the

Python module resampy.

In addition, to reduce the computational burden of the EEG Regression Analysis, we

applied Principal Components Analysis (PCA) to reduce the 512 dimensional Whisper vectors

to 10 dimensions. To mitigate any risk of extracting data-set specific Principal Components

and thereby maximize the generality of the approach, PCA axes were derived from an external

audiobook dataset (i.e. not used as stimuli in any of the current EEG experiments). The exter-

nal dataset collated 1.5mins speech from each of 7 males and 7 females narrating one story

each (14 different stories in total). We processed each 1.5min dataset through Whisper sepa-

rately, and extracted activations from L0-L6. We then concatenated each layer’s activations for

the 14 stories to produce seven separate 512 *(14*1.5mins) matrices. PCA was conducted on

each layer to provide 7 sets of PCA axes (L0 to L6). To then reduce the dimensionality of the

Whisper datasets used in the current EEG analyses, Whisper vectors were projected onto the

first ten Principal Component Axes of the corresponding layer by matrix multiplication. The

selection of ten components was ultimately arbitrary, but was our first choice. To sanity check

this choice, we ran a set of post hoc analyses with different numbers of components and

observed diminishing returns when using twenty or forty components (Fig D in S1 Text).

Wav2Vec2 and HuBERT–self-supervised models of unlabeled acoustic

speech

To explore how EEG correlates of Whisper relate to Self-Supervised Speech models that unlike

Whisper are pre-trained entirely on unlabeled audio speech (without any access to language),

we modeled audio stimuli with Wav2Vec2 [15] and HuBERT [38]. Both Wav2Vec2 and

HuBERT are publicly available, and we directly applied the base versions downloaded from

https://huggingface.co/docs/transformers/model_doc/wav2vec2 or /hubert respectively.

Architecturally, both Wav2Vec2 and HuBERT share commonalities with Whisper in being

contextualized speech models based on deep multilayer Transformer Encoder networks.
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However, unlike Whisper neither Wav2Vec2 or HuBERT uses a Transformer Decoder to tran-

scribe Encoder outputs and indeed zero manually labeled data is used in pre-training. In the

absence of having language to provide a ground truth for optimization, both Wav2Vec2 and

HuBERT are pre-trained to make inferences about the identity of artificially masked speech

sounds. For intuition, masking sound segments forces the Transformer blocks (and Self-

Attention mechanism, see Fig A in S1 Text) to develop contextualized representations of the

surround to infer the missing content. To facilitate inferring masked sound identity, both

Wav2Vec2 and HuBERT are optimized to generate their own dictionaries of discrete speech

sounds, which they approach in different ways (please see the original articles for further

details of the differences in both quantization and training objectives). A final difference to

Whisper is in audio pre-processing. Both Wav2Vec2 or HuBERT directly extract latent speech

features from the audio speech waveform via a convolutional neural network, without spectro-

gram conversion.

Beyond the network differences, all other speech modeling parameters used for Whisper

were carried over: Wav2Vec2 and HuBERT were run using the same�30s sliding window

approach. Contextualized vector representations of each time-frame were extracted from each

network layer (12 layers) and reduced to 10 dimensions via projection onto ten corresponding

PCA axes, that had been separately computed for each layer on the same external audiobook

dataset used in the Whisper analyses (14 stories narrated by 7 males and 7 females).

GPT-2 –modeling word prediction and surprisal

To provide a pure language reference against which to interpret Whisper’s EEG predictions,

we deployed GPT-2 (Generative Pretrained Transformer 2, [19]). GPT-2 is a Transformer

Decoder Deep-Learning Model trained entirely upon language to predict the identity of the

next word, given a history of up to 1024 preceding words. We selected GPT-2 based on its

excellent performance in providing a basis for modelling brain data, spanning fMRI, MEG,

ECoG and EEG [12,22,24,26,28].

We deployed GPT-2 in two ways. The first was to capture N400 responses in continuous

speech, which are centroparietal negativities following unexpected words that are most pro-

nounced at ~400ms post word onset. Recent research has revealed that estimates of word sur-

prisal (aka lexical surprisal) generated by GPT-2 provide an accurate way to recover the N400

response from continuous natural speech [12]. The second application of GPT-2 was more

exploratory in the context of EEG, though has been tested out in studies of fMRI, MEG and

ECoG [22,24,26,28]. Here we extracted word activation vectors output from each of GPT-2’s

layers, and used these as a basis for predicting EEG activity in much the same way as we did

for Whisper (please see the previous section).

Both word surprisal estimates and layer-wise word vectors were derived by processing the

EEG stimulus story transcripts through GPT-2-medium (a 24 layer Transformer) using a sen-

tence-based sliding window approach: GPT-2 was given as many previous sentences as could

fit into its 1024 word context window, and the sliding window was advanced by stepping for-

ward one sentence at a time. Beyond the transcript of the first EEG run, the sliding window

straddled across run boundaries (so at the start of run 2, GPT-2 had access to sentences span-

ning backwards into run 1). We adopted this approach, because participants brains would like-

wise have had access to this prior story context. With each advance of the sliding window,

word surprisal values and layer activations were extracted for all words within the leading

(newest) sentence in the sliding window (detailed below).

Word surprisal estimates were computed for each word in the EEG stimulus, except for the

very first word in the story (for which there was no preceding word from which to estimate
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surprisal). At wordn, the estimate of next-word-identity is represented as a long vector of prob-

ability values linked to each word in GPT-2’s dictionary (this is GPT-2’s grand output). Word

surprisal was computed as the negative log probability of the actual wordn+1. To enable the

EEG data to be referenced to the series of surprisal values, the surprisal values were aligned to

word onset times as “spikes”. All other time-points were assigned the value zero.

To reference EEG to GPT-2 word activation vectors, we first harvested layer output vectors

from each of the GPT-2’s 24 layers. Word vectors from all layers have 1024 dimensions. To

reduce the computational burden of forthcoming Multiple Regression analyses, GPT-2 vectors

were reduced from 1024 to ten dimensions through projection onto the first ten principal

component axes derived from an independent storybook dataset (comprising the first 2250

words from 10 different stories). Ten dimensions were chosen to match the data reduction

applied to Whisper. Exploratory analyses (not reported further) suggested there was no sub-

stantive advantage to using more than ten dimensions for predicting EEG data. The reduced

10 dimensional vector sequences were time-aligned to EEG, and vectors were stretched to fit

to the duration of corresponding words (e.g. if word 3 started at 10s and ended at 10.3s, the

vector for word 3 would be aligned to 10s and stretched to span 0.3s). Silent periods (lacking

speech) were assigned the value zero.

As an addendum, to simplify the above explanation, we have implied that GPT-2 processes

words. However more accurately, GPT-2 processes tokens which can either be words or sub-

words (which can be useful to model new “out of dictionary” words). For instance, the word

“skiff” is treated as two tokens: “sk” and “iff”. In such a case GPT-2 would generate two token

vectors for one word (or two surprisal estimates). In our analyses, the two token vectors were

combined into a single word vector by pointwise summation–and the two token surprisal esti-

mates were likewise summed to provide a single word surprisal estimate.

Speech envelope and derivative (Env&Dv)–A model of speech audio

tracking

To model the EEG correlates of acoustic speech processing, we first computed the speech enve-

lope, which is a time-varying measure of speech signal intensity, integrating across the acoustic

frequency bands humans typically can hear. It is now widely accepted that cortical activity

reflects the speech envelope [3,57–63]. To compute the envelope, the speech audio waveform

(44100Hz) was first lowpass filtered at 20 kHz (22050Hz cutoff frequency, 1 dB passband

attenuation, 60 dB stopband attenuation). Then a gammachirp auditory filter-bank was

deployed to emulate cochlea filtering [64] by filtering the 128 bands from 80 Hz to 8 kHz with

an equal loudness contour. To create a unidimensional time-series, the 128 bands were aver-

aged together.

Based on findings [65,66] that in addition to the speech envelope, cortical responses reflect

so-called acoustic onsets–which correspond to positive slopes in the speech envelope–we com-

puted this measure by differencing adjacent elements in the envelope time-series and reassign-

ing negative values with zero.

For all EEG analyses we concatenated the Speech Envelope with acoustic onsets to produce

a 2-dimensional time-series, abbreviated as Env&Dv (Dv because the latter measure reflects an

approximation of the derivative).

Log-Mel spectrogram (Whisper’s input)

As a further model of EEG correlates of acoustic speech processing, we deployed the 80 chan-

nel Log-Mel Spectrogram, that Whisper computes from the audio waveform preprocessing.

The Log-Mel spectrogram is a re-representation of the Short-Time Fourier Transform
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Spectrogram emphasizing finer frequency resolution for lower frequencies and extracting sig-

nal amplitudes across a log-scaled filter bank (with more filters in low frequencies). Whisper’s

implementation computes the Log-Mel Spectrogram using librosa: https://librosa.org/doc/

main/generated/librosa.filters.mel.html, with 80 filters and an upper limit of 8000Hz.

Mapping models to predict EEG with multiple regression and nested cross-

validation

To reference the continuous time-varying EEG signal back to either Whisper or the acoustic

and lexical control models we used regularized multiple regression in a nested cross validation

framework (Fig 1). Multiple regression was deployed to fit a predictive mapping from the

time-aligned model/speech representation to each individual EEG electrode (repeated for all

128 electrodes).

To accommodate neural response delays, we temporally offset model/speech time-lines at

each of a series of time-lags that stepped from the current (0ms) up to 750ms into the future

(which would capture brain responses occurring up to 750ms post stimulation, which we

assume spans the period in which speech is transformed to language). The profile of regression

beta-coefficients over this 750ms period provides an estimate of the brains’ temporal response

function (TRF) to stimulus features (See [67] for illustrations). To maintain consistency across

all EEG analyses, the same time-lags were used for all models (whether acoustic/speech/lin-

guistic) and combinations thereof.

Model-to-EEG TRF mappings were fit using Ridge Regression on EEG/model data for 18/

20 runs. Both EEG and model/speech data sets (18/20 runs) were normalized by z-scoring as is

commonplace for Ridge Regression, such that each feature or electrode had zero mean and

unit standard deviation. Regression fitting was repeated for each of a range of different regular-

ization penalties which can be considered to mitigate overfitting by squashing and smoothing

potential outlier responses in TRF profiles to different degrees. Penalties were: lambda = [0.1 1

1e1 1e2 1e3 1e4 1e5]. The appropriate regularization penalty was estimated as the lambda

value providing the most accurate EEG predictions of the 19th “tuning” run, with accuracy

averaged across all electrodes. To provide a final estimate of the TRFs ability to generalize to

predict new data, the model-to-EEG TRF mapping corresponding to the selected regulariza-

tion penalty was evaluated on the 20th run. In tests on either the 19th or 20th run, prediction

accuracy was evaluated separately for each electrode by computing Pearson correlation

between the predicted time-series and the genuine EEG recording (see the circled r on Fig 1).

Prior to this model, speech and EEG data for runs 19 and 20 were separately feature/electrode-

wise normalized by z-scoring (see above). This procedure was repeated, whilst rotating the

training/tuning/test run splits to generate separate prediction accuracy estimates for each of

the 20 runs. To maintain consistency across all EEG analyses, the same Ridge Regression set

up was deployed for all models (whether acoustic/speech /linguistic) and combinations

thereof.

To summarize prediction accuracy across runs at each electrode, we computed the elec-

trode-wise mean of correlation coefficients across the 20 runs (Correlation coefficients were r-

to-z transformed prior to averaging, and then afterwards, the mean was z-to-r back-trans-

formed by computing arctanh and tanh respectively). Otherwise, the scalp distribution of pre-

dicted-vs-observed correlation coefficients was used to provide a coarse estimate of which

brain regions encode information found in differentmodel/speech representations (e.g. Figs 2

and 3). Electrode-wise comparisons of different models’ accuracy was undertaken using signed

ranks tests. P-values were corrected across electrodes for multiple comparisons with False Dis-

covery Rate (FDR [68]).
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