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ABSTRACT
Scatterplots of biological datasets often have no-data zones, which suggest constraint or promotion of dependent variables. 
Although methods exist to estimate boundary lines—that is, to fit lines to the edges of scatters of data points—there are, to our 
knowledge, none available to assess the significance of the areal extents of no-data zones. Accordingly, we propose a flexible 
boundary line definition paired with a permutation test of the magnitude of no-data zones—rather than testing the shape or 
slope of the line as current methods do. Our proposed permutation test can be used with any method of defining a boundary 
line. We demonstrate our approach with empirical datasets, find no-data zones that methods such as quantile regressions fail 
to detect, and discuss how our approach can quantify constraint and promotion relationships that are not always apparent with 
other statistics.

1   |   Introduction

In biological datasets, one or more corners of a scatterplot are 
often free of data (Figure  1). Although lines can be drawn 
around the scatter of data points using methods such as mathe-
matical models (Guo, Brown, and Enquist 1998; Hao et al. 2016; 
Li et al. 2022), partitioned regressions (Thomson et al. 1996), iso-
lation of data points (Blackburn, Lawton, and Perry 2009), and 
quantile regression (Cade and Noon  2003; Cade, Terrell, and 
Schroeder 1999), there are to our knowledge no statistical meth-
ods available to calculate the probability that the area extents of 
these no-data zones are greater than that expected by chance. 
A boundary line—also referred to as  a constraint line,  enve-
lope (e.g., Hao et al. 2016) or limit line (Carling, Jonathan, and 
Su 2022)—delineates the edge of a scatter of data points as well 
as a zone where no data occurs. Values of the dependent variable 
are unlikely to occur beyond such an edge into the no-data zone 
across a given range of the independent variable (Grubb 2016; 
Webb 1972). Since first mentioned (Webb 1972), boundary lines 
have been used throughout the biological sciences—particu-
larly in ecology (e.g., Puglielli, Hutchings, and Laanisto 2021), 

agronomy (e.g., Evanylo and Sumner 1987; Schnug, Heym, and 
Achwan 1996; Walworth, Letzsch, and Sumner 1986), and for-
estry (e.g., Zhang et al. 2005). In all these disciplines, the prob-
abilities of the sizes of no-data zones are potentially of major 
biological significance (Guo, Brown, and Enquist  1998). This 
is because calculating them could assist in assessing whether 
the dependent variable is being constrained or promoted by the 
independent variable over a certain range of the independent 
variable (Milne, Ferguson, and Lark 2006; Walworth, Letzsch, 
and Sumner 1986; Webb 1972). Moreover, the presence of under-
lying boundary lines or triangular relationships (sensu Maller 
et al. 1983; Maller 1990) can be indicative of unmeasured fac-
tors—closely correlated with the independent variable—con-
tributing to variation in the dependent variable (Grubb  2016; 
Hao et al. 2016; Mills et al. 2009).

In this paper, we describe: (i) a flexible and assumption-free 
method to define a boundary line, delineating a no-data zone; 
and (ii) a non-parametric method to assess the significance of 
the position and magnitude of the no-data zone—as opposed to 
assessing the shape or slope of the boundary line. Our method 
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to assess the significance of no-data zones is independent of the 
method used to define a boundary line.

2   |   Rationale and Related Methods

To illustrate the utility of an areal-extent boundary line method 
and the features of a dataset it describes, we compare it with 
two other statistical methods often applied to bivariate scatter-
plot data: simple linear and quantile regression (Table 1). Our 
approach is not to present an exhaustive comparison of related 
methods but rather to illustrate the distinction between methods 
that assess the significance of the curves' parameters and meth-
ods that assess the significance of the area extent of no-data 
zones. Quantile regressions—and other methods—simultane-
ously fit and test a line, whereas we propose a method to test the 
areas bound by a line. Although simple linear regression is inap-
propriate for defining a boundary line—as is evident below—we 
include its comparison as an introduction for readers unfamiliar 

with boundary line concepts and because it is so frequently used 
in ecology and broader biological sciences.

Simple linear regression estimates the ‘line of best fit’—the mean 
value of the dependent variable conditional across the range of the 
independent variable, assuming the relationship follows a straight 
line. Although simple linear regression can be generalised to de-
scribe non-linear relationships (e.g., with link functions), we only 
discuss linear forms of regression here to simplify comparison 
across methods. Quantile regression—an extension of linear re-
gression (Koenker and Bassett  1978)—predicts a given quantile 
(𝜏) of the dependent variable conditional across the range of the 
independent variable. For example, if the model is specified to 
regress for the median (i.e., the 50% quantile; 𝜏 = 0.5), a quantile 
regression of the form Y = β0 + β1X1 uses the median to estimate 
the central tendency of the dependent variable across the range of 
the independent variable. When specified with high or low quan-
tiles (e.g., 𝜏 = 0.05 or 0.95), quantile regressions describe patterns 
in the extremes of the response variable, not the central tendency. 

FIGURE 1    |    The four no-data zones that can occur in scatterplots of biological data. Although such no-data zones are often eye-catching 
(Beitman 2009) and potentially of considerable conceptual significance (Guo, Brown, and Enquist 1998), biologists seldom investigate whether such 
patterns are statistically significant or merely illusory.

TABLE 1    |    Comparison of two statistical methods commonly applied to bivariate data (Cade and Noon 2003; Gotelli and Ellison 2004) and our 
proposed permutation test of no-data zones. While the lines fit by quantile regressions can also be used to calculate the area extents of no-data zones, 
the lines fit by linear regressions cannot.

Linear regression Quantile regression
Proposed permutation 

test of no-data zones

Assumptions

Independent observations Yes Yes Yes

Residuals ~ N Yes No Not applicable

Linear response Yes No No

Homoscedasticity Yes No No

Sensitivity to outliers Some Limited Potentially extreme

Core estimate/statistic Slope of mean Slope of quantile Area (Q) of no-data zone

Null hypothesis (H0) H0: slope = 0 H0: quantile slope = 0 H0: Q = Qperm.

p-value meaning P (slope|H0) P (quantile slope|H0) P (Q|H0)

Appropriate as a boundary 
line method

No Yes Yes
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Indeed, in many studies, this has been used to describe the ‘edges’ 
of the scatter of points to test whether the independent variable 
constrains or promotes the dependent variable (e.g., Anderson and 
Jetz 2005; Horning 2012; Kelt and Van Vuren 2001; Lessin, Dyer, 
and Goldberg 2001; Medinski et al. 2010; Mills et al. 2006, 2009, 
2013; Strong 2011; Scharf, Juanes, and Sutherland 1998). However, 
constraint or promotion may be evident in features other than the 
shape of the extremes of a scatter of data points; it may also be ev-
ident in the ‘tightness’ of such relationships. For regression lines, 
the spread of data can be described with confidence intervals about 
the line or with metrics like R2. Additionally, the shape of such 
spread can be described by regressing both an upper and lower 
quantile separately. For example, in datasets where the 95% quan-
tile has a steep positive slope and the 5% quantile has a relatively 
shallow slope, the spread of the dependent variable increases as the 
independent variable increases—that is, a triangular relationship.

An underlying boundary line delineates the values of the depen-
dent variable—across the range of the independent variable—be-
yond which observations are unlikely to occur. For example, the 
observed boundary lines for the upper-left and -right no-data zones 
(Figure 1) describe the maximum observed Y-values for given ob-
served X-values. In our proposed method, the estimate of interest 
is the areal extent of regions of the scatterplot with no data—as op-
posed to, for example, the slope of the relationship between X and 
Y (Table 1). These regions are defined using the corners of the scat-
terplot, such that the areal extent of each no-data zone is expressed 
relative to that of the full dataset. With the method we propose, 
the probability of a given no-data zone of the observed extent is 
described relative to permutations of the raw data—the p-value is 
associated with the area (Q; Table 1) of the no-data zone. This con-
trasts with the P-values associated with the slope terms of linear 
and quantile regressions—that is, the probability that the observed 
trend in the dependent variable is a product of chance. In those 
cases, the p-values are associated with the locations and slopes of 
relationships between X and Y (Table 1). Although confidence in-
tervals about such regression lines can also be used to describe the 
likely range of values for the dependent variable, these intervals 
are based on the statistic that a regression estimates (i.e., the slope) 
and not an estimate of where data is likely—or unlikely—to occur. 
We postulate that investigating constraint or promotion effects is 
better done by assessing the magnitude by which the dependent 
variable is restricted rather than assessing the shape (i.e., slope) of 
that restriction.

In Figure 1, for example, it would be useful to know whether no-
data Zone A is greater in area extent than would be expected by 
chance. If it is greater, then it would be reasonable to conclude 
that the dependent variable is constrained by the independent 
variable—or a closely correlated variable—over the first third 
of the range of the independent variable. Similarly, if Zone D is 
greater than expected by chance, then the dependent variable is 
likely to be promoted by the independent variable—or a closely 
correlated variable—over the last third of the range of the inde-
pendent variable.

3   |   Defining a Boundary Line

To test the significance of the area extent of a no-data zone, a 
first step is delineating the edge of that no-data zone—that is, 

identifying which points in the scatterplot form the ‘boundary’. 
Such lines can be defined with multiple approaches—for exam-
ple, quantile regressions (Mills et al. 2006; Grubb 2016), Pareto 
fronts (Shoval et al. 2012; Sheftel et al. 2013), convex hulls, or ker-
nel density estimation (Carmona, Pavanetto, and Puglielli 2024). 
The most flexible and assumption-free definition, we propose, 
uses the four extreme points of the scatter—the data points with 
the minimum and maximum X- and Y-values. To delineate such 
a boundary, straight lines are used to join points—progressively 
nearer the centre of the scatter in one direction but further from 
the centre in the direction perpendicular to that—starting from 
one of the four extreme points. The resulting boundary line is 
equivalent to a Pareto front. Using the boundary line for Zone A 
as an example, the procedure is described below.

1.	 Start with the point with the minimum X-value.

2.	 Only considering points with X- and Y-values greater than 
those of the starting point, select the point closest in the X-
direction to connect to the boundary.

3.	 Repeat steps 1 and 2, with the selected point as the new 
starting point, until there are no points with greater Y-
values remaining.

4.	 Connect the resulting sequence of points with the corner of 
the plot—that is, an imaginary point at the horizontal min-
imum and vertical maximum coordinates of the scatterplot.

The area of this polygon can then be computed. As boundary lines 
can be defined in other ways, we suggest that in such cases the 
curve described be used to delineate the no-data zone along with 
the corners of the scatterplot. The significances of the areal extents 
of no-data zones can then be tested with the permutation method 
we describe here. Using regression methods to delineate boundary 
lines—irrespective of the significance of the slope of that regres-
sion—has its limitations, in that the form of the relationship must 
be defined a priori and is forced to be a smooth line. This can re-
sult in seemingly inappropriate or uncertain fits (e.g., Figures 2b 
versus 3c). Kernel density estimation methods, while more flexi-
ble than regression lines, are dependent on a priori or parametric 
bandwidth selection (e.g., Steury et al. 2010). It is, however, note-
worthy that both regression and kernel density estimation meth-
ods are less statistically sensitive to outliers than the boundary line 
procedure described above (Table 1).

4   |   Permutation Testing

As is common practice in ecology and evolutionary biology, we 
apply a non-parametric test (Gotelli and Ellison 2004; Ives 2022; 
Pielou  1966) to our measure of interest—that is, the areal ex-
tent of a no-data zone. In instances where parametric null dis-
tributions and observed no-data zones need to be compared for 
a priori reasons, permutations can be generated from Monte 
Carlo simulations. For example, Díaz et al. (2016) and Puglielli, 
Hutchings, and Laanisto  (2021) tested the significances of the 
observed magnitudes (in those cases, volumes) of data in trait 
space using Monte Carlo approaches. While those studies did 
not test the significances of no-data zones, Monte Carlo simu-
lations could be used to parametrically generate a null distribu-
tion of such zones.
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Here, we propose a permutation-based method for assessing 
the significance of an observed boundary line's corresponding 
no-data zone (Figure  4)—irrespective of how the boundary 
was defined. The proposed method uses permutations of the 
observed data to generate a random null distribution against 
which the observed data is compared. Using Zone A as an ex-
ample again (see Figure 5, illustrated with empirical data), the 
procedure is described below.

1.	 Measure the area of Zone A in the observed data.

2.	 Randomly reorder the X and Y coordinates separately, cre-
ating a new dataset of X–Y data point pairs (but comprising 
the same X- and Y-values).

3.	 Measure the area of Zone A in the new permuted dataset.

4.	 Repeat steps 2 and 3 a total of 10,000 times, for example.

5.	 Calculate the average extent of the 10,000 Zone A areas gen-
erated in step 4.

6.	 Use a one-tailed Z-test (see Figure 5c) to determine the prob-
ability of the area calculated in step 1 being greater than the 
average area calculated in step 5.

Described mathematically, the vectors X and Y represent the 
coordinates for a series of observations (xi and yi), such that 
the area Qobs. of a given no-data zone (A, B, C or D) is based 
on some function of Xobs. and Yobs., as described above (see 
also Figure 4a–c). Sampling without replacement, one can per-
mute Xobs. and Yobs., giving Xperm. and Yperm. (Figure  4d), and 
determine a given no-data zone's area (Qperm.) accordingly 
(Figure  4f). Doing this, for example, 10,000 times generates a 
set of 10,000 areas based on random permutations of the data, 
such that Qperm. follows a normal distribution (Figure 4g). The 
probability of observing an area at least as great as a given Qobs. 
can then be calculated using a one-tailed Z-test—that is, the dif-
ference between Qobs. and the mean of Qperm. (Qperm.), in terms of 
the standard deviation of Qperm. (s):

5   |   Examples With Empirical Data

In addition to the empirical data used to illustrate the logic 
of our proposed permutation test (Figure  5) (Sankaran 
et al. 2005), we also demonstrate here further example appli-
cations of this test to other empirical datasets (Figure 3) (Mills 
et al. 2006, 2013).

When comparing soil infiltrability and water-dispersible clay 
content (Figure 3a), permutation tests identify significant no-
data Zones B and C—that is, a significant lack of observations 
where infiltrability and water-dispersible clay content are 
great (Zone B) as well as small (Zone C). While similar con-
clusions can be drawn using quantile regression (e.g., for Zone 
C; Figure 2a), the latter method estimates a smaller no-data 
zone than our proposed method, with relatively wide confi-
dence intervals.

The extents to which woody cover is constrained at different 
levels of rainfall, soil silicon and soil zinc (Figure 3b–d) all ex-
emplify the case of ‘humped’ constraint–promotion datasets. 
Our method distinguishes between patterns of constraint in 
these datasets that are significant (minor amounts of rainfall 
and soil silicon, and large amounts of soil zinc) and illusory 
(large amounts of rainfall and soil silicon, and minor amounts 
of soil zinc) (Figure 3b–d). To test for a humped relationship 
with another method, we performed a quantile regression 
with a parabolic form between woody cover and soil silicon. 
This quantile regression (Figure  2b) failed to identify and 
highlight the significance of no-data Zone B (as in Figure 3c). 
Furthermore, the non-parametric observed boundary line in 
Figure  3c shows the easily undetected—yet ecologically im-
portant—pattern of decreasing woody cover as soil silicon 

Z =

Qobs. − Qperm.

s

FIGURE 2    |    Application of quantile regressions to empirical datasets, for comparison with our proposed boundary line method (as in Figure 3a,c). 
The forms (log–log and parabolic, respectively) and quantiles (𝜏; 5% and 95%, respectively) of each relationship regressed are noted in blue. Pale-
blue bands represent the 95% confidence intervals (CI) about the regression lines. In (a), the inset highlights the lower-left corner of the data (as in 
Figure 3a), with the same quantile regression plotted.
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FIGURE 3    |    Application of our proposed boundary line permutation test to empirical datasets. (a) Infiltrability versus water-dispersible clay 
content of soils across Namibia and western South Africa (Mills et al. 2006), with the lower-left no-data zone highlighted in the inset. (b) Woody 
cover versus mean annual precipitation (MAP) in African woody savannas (Sankaran et al. 2005), (c, d) Woody cover index versus (c) silicon (Si) 
and (d) zinc (Zn) content of soils across Namibia and western South Africa (Mills et al. 2013). In (c), the upper-right no-data zone highlighted in the 
inset depicts only points from true woodland savanna sites (i.e., excluding desert, Succulent Karoo, Nama Karoo and thornbush savanna sites); the 
Z-value for this no-data zone results from a permutation test of only those data. All tests were based on 10,000 permutations of their respective data. 
Asterisks denote significances (p ≤ 1 × 10−10, *****; p ≤ 1 × 10−6, ****; p ≤ 1 × 10−4, ***; p ≤ 0.001, **; p ≤ 0.005, *; p > 0.05, not significant—NS) following 
one-sided Z-tests of each observed boundary line against 10,000 permutations.

FIGURE 4    |    The logic of the permutation test for a boundary line for the upper-right no-data zone, illustrating how the areal extents of the (a–c) 
observed no-data zone (Qobs.) and (d–f) 10,000 permuted no-data zones (each Qperm.) are compared in (g) a Z-test.
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increases beyond 45%. This contrasts with the easily detected 
pattern shown with the parabolic quantile regression in 
Figure 2b of increasing woody cover as soil silicon increases 
above 30%. A shortcoming of regression methods is apparent 
here: the form of the relationship to be fit must be explicit and 
chosen a priori. The inappropriate fit (Figure  2b) is specific 
to parabolic curves: parabolas are necessarily symmetrical, 
while the humped pattern of woody cover versus silicon is 
potentially asymmetrical. As permutation tests of observed 
boundary lines can be performed regardless of how they are 
defined, our method offers the flexibility to accommodate such 
cases. For example, if kernel density estimates are used to de-
lineate the boundary line, the significance of the no-data zone 
bounded by that line can also be assessed using our method.

In addition to the above demonstrations of the significance 
of observed no-data zones, we note that this significance is 
sensitive to the spread of the rest of the dataset used in per-
mutation tests. When applying our method to the full woody 
cover versus soil silicon dataset, Zone B is not significant 
(Figure  3c). However, Zone B is significant when only con-
sidering the woodland-savanna subset of that data (inset in 
Figure  3c). Notwithstanding the value of determining the 
significances of no-data zones in subsets of data, we encour-
age the use of our method with prudence, applying it only to 
subsets of data that have been predetermined in the specific 
context of an investigation.

6   |   Concluding Remarks

Our proposed permutation test of observed boundary lines 
could be applied to a variety of datasets, not just ecological or 
agronomic—for example, soil temperature dynamics (Chmura 
et  al.  2023), physical properties of cancer cells (Naghavian 
et al. 2023), neurons in the visual cortex (Fişek et al. 2023), cloud 
cover dynamics (Vo et  al.  2023), and planetary temperatures 
(Peterson et  al.  2023). Across datasets as varied as these, this 
method is likely to assist in describing relationships that are not 
immediately apparent with regression lines.
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