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Excellent estimations of initial rates can be obtained from plots of AP/t versus product
formed (where P is the instantaneous concentration of the product). AP/t is the chord
from Po,to to P,t on an ordinary P-versus-t plot. When the chord is plotted as a function
of product, the intercept at P0 of the resulting curve is necessarily dP/dto. This curve

approximates to a straight line extremely closely in all cases tested thus far. If APIt
versus product is calculated from the integrated rate equation for a first-order reaction,
and if a straight line is fitted through points representing the first 50% of the reaction, the
discrepancy between the true initial rate and dP/dto estimated from the plot is 0.68%.
For the most common form of the integrated rate equation for catalysed reactions the
discrepancy varies between 0 and 0.90%. Because of the complexities of the integrated
rate equations, catalysed second-order reactions have not been evaluated directly;
uncatalysed reactions have been done instead. For a reaction with one reactant and two
products, the discrepancy varies from 0.68 to 2.02%. For two reactants and one

product, it varies from 0 to 0.68%; for two and two, 0 to 2.02%. The larger
discrepancies occur only when unfavourable equilibrium constants are being overcome

by the initial conditions.

The integrated rate equation for uncatalysed
first-order reactions is:

In[I-AP/(Pe-PO)] =-k 1( 1 + I IKe)t.
Rewritten in order to display the dependence on the
initial rate, the equation is:

In [1 - AP/(Pe-P0)I = -(dP/dtO)t/(Pe-Po)
The logarithm in this equation, In [1- AP/(Pe-P)],
can be approximated by AP/[-(Pe-P0) + AP/2].
This approximation is accurate to within 4% when
AP <0.5(Pe-PO) (Cornish-Bowden, 1975), i.e.,
when the reaction is up to 50% complete. Sub-
stituting and rearranging gives:

AP/t = (dP/dto)[ 1- AP/2(Pe-Po)]
This is the equation of a straight line if AP/t, the
average rate over time t, is plotted as a function of
AP, the total product formed. The intercept is
dP/dto, the initial rate.

Abbreviations used: A, B, S, instantaneous concen-
trations of reactants; P and Q, instantaneous concen-

trations of products. The subscripts 0 and e indicate initial
and equilibrium concentrations; AP is P-P0; Ka is the
apparent and Km is the true Michaelis constant; and Va is
the apparent and Vm is the true maximum velocity.
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The integrated rate equation for an irreversible
reaction between two reactants A and B is:

AP= (k1AOBO-k1BOAP)t

if A is the limiting reactant. Rearranging gives:

AP/t = dP/dto-kkBoAP
which is again the equation of a straight line.
The integrated Michaelis-Menten equation can be

very closely approximated by:

AP/t = Vm /(1 + Km /So) -APVmKm /2(Km + So)2

(Goldenberg, 1954; Morgan, 1972)

This is also the equation of a straight line, and the
first term is, of course, dP/dto.

These simple considerations suggest that a plot of
AP/t versus product formed might prove to be a

general method of estimating initial rates. AP/t is the
chord from Po,to to P,t on an ordinary P-versus-t
plot. As t approaches zero, AP/t necessarily
approaches dP/dto. If it can be shown that this plot
is linear for the general run of enzyme-catalysed
reactions, it could be used as a simple, less
judgmental alternative to tangent analysis; the
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standard evaluation techniques for Michaelis con-
stants, and substrate dependence and product
inhibition patterns would remain unchanged.

In order to evaluate the linearity of this plot for a
particular type of reaction, it is necessary to know
the integrated rate equation. In the present paper I
evaluate the plot for those catalysed reactions whose
integrated equation has the form:

Vat = AP-Kaln[I-AP/(Pe-Po)]

This is true for all one-substrate-one-product cases,
including those where product inhibition is sig-
nificant and those which are reversible (Huang &
Niemann, 1951; Sch0nheyder, 1952; Alberty &
Koerber, 1957). It also applies to a two-sub-
strate-one-product ternary-complex reaction in
which the first substrate is limiting (Laidler &
Bunting, 1973). Integrated equations for other
catalysed reactions with two substrates, two pro-
ducts, or both, are complex (Darvey & Williams,
1964); the progress curves depend on the equili-
brium constant, all of the Michaelis constants, the

initial concentrations of substrates and products,
and the type of product inhibition. In order to avoid
the complexities inherent in such an analysis, I have
used uncatalysed second-order reactions to model
the catalysed reactions. It is then possible to
consider all the possible initial conditions in a
systematic but reasonably economic fashion.
The integrated rate equation for catalysed first-

order reactions consists of terms for a zero-order
and a first-order reaction. Since a plot of AP/t
versus product is necessarily linear for a zero-order
reaction, it is not surprising that, as I will show, the
uncatalysed reactions, with only first-order terms,
model the catalysed ones quite well. Similarly, the
integrated equations for uncatalysed second-order
reactions have first- and second-order terms; for
many of the commonly encountered second-order
catalysed reactions (identified in the Discussion
section), the equations have zero-, first- and second-
order terms. The uncatalysed reactions should, again,
model their catalysed counterparts well.
A preliminary report of this work has appeared

(Boeker, 1981).
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Methods

Four uncatalysed reactions were evaluated. For
each, an exact equation for AP/t was obtained from
the integrated rate equation. These equations are
shown in Table 1. They take into account the
possibility that, as is frequently the case in enzyme-
kinetic studies, P0 may not be zero.

In the integrated rate equation used for catalysed
reactions shown in Table 1, P0 has not been
constrained to be zero, and the dependence on Ke
has been made explicit. The transformations shown
in Table 1 are true if Po/KeSo< 1. This is nothing
more than the condition required to obtain hyper-
bolic kinetics from a reversible reaction, i.e., to
ignore the velocity term due to the reverse reaction.

In order to plot the results in a dimensionless
form, AP/t was expressed as a fraction of the initial
rate (see Table 1) and the product formed was
expressed as a fraction of the product formed at
equilibrium, AP/(Pe-P0). Experimental data would,
of course, be plotted directly, not as the fractions. It
is not necessary to know Pe in order to use this plot.
The Figures shown in the present paper were drawn
by a Burroughs B6800 computer on a CalComp
plotter. The lines shown on the progress curves are
accurate regression lines rather than estimates.
Each of the equations in Table 1 was used to

generate exact curves for AP/t versus product
formed. Essentially all initial conditions were exam-
ined for each equation. Since each such curve is in
fact error-free, it was treated as if it deviated from a
straight line only on the vertical (AP/t) axis, and a
best-fit line was obtained for the first 50% of the
reaction by carrying out a linear regression on ten
points spaced at equal intervals of product. The
difference between the intercept of this line and the
actual value of dP/dto was used as an empirical
measure of the discrepancy inherent in estimating
the initial rate for that particular set of initial
conditions.

This procedure is not meant to suggest that a
simple regression should be used when experimental
data are plotted. As shown in the discussion, this can
be justified only under certain specific circum-
stances.

Rather than express the degree to which each
curve resembles a straight line in some statistical
fashion, I have presented actual curves which
include the poorest fit. In most cases, the correlation
coefficient calculated for the linear regression was so
high that it did not give any reasonable idea of the
precision of the fit.

Results

The expected progress curve for a first-order
reaction is shown in Fig. 1(a). The intercept of the

regression for the first 50% of the reaction is 1.0068
dP/dto.

Unlike most of the calculations in the present
paper, the one shown in Fig. 1(a) was done at equal
intervals of time, since experiments will inevitably be
done this way. The difference between results
collected at equal intervals of time and product is
shown in Fig. 1(b). Either method gives a very small
discrepancy for the first 50% of the reaction. Beyond
this, however, the error accumulates at equal time
intervals. The reason can be clearly seen in Fig. 1(a);
the frequency of the points increases substantially at
longer times. Since these are the points that also
deviate most from a straight line, the estimate of
dP/dto becomes increasingly biased.
A compromise of 50% completion has been

chosen. The difference between equal time and equal
product intervals is small; the experimental design
will not be critical. The absolute discrepancy is also
small, yet much of the available progress curve can
still be used. If the reaction has a finite equilibrium
constant, 50% completion of course refers not to the
initial reactant concentration, but to Pe -P0, the total
change in product at equilibrium.
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Fig. 1. Linearity of APIt versus product for an un-
catalysed, reversiblefirst-order reaction

(a) APIt versus product. The line shown is the
regression for the first 50% of the reaction. (b)
Increase in the discrepancy between the estimated
and the true value of the initial rate as more of the
progress curve is used to estimate the intercept. The
data are calculated for equal intervals of time (O) or
product (*); see the text for details. In this and all
other plots, AP/t is expressed as a fraction of
dP/dto, and product formed is expressed as a
fraction of Pe-PO,
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Fig. 2. Evaluation of the plot for a reversible catalysed
reaction with one substrate and one product

In order to cover a velocity range from 2 to 98%
of the apparent maximum velocity, the effective
Michaelis constant, Ka(1 + 1/1K)/SO, was varied
from 0.02 to 50. It is plotted as the logarithm
for convenience. Predicted progress curves and the
regression lines that result are shown in the inset.

The results for simple enzyme kinetics are shown
in Fig. 2. The integrated rate equation used takes
into account reversibility, but not competitive pro-
duct inhibition, in first-order reactions (see the 'Note
added in proof below). For the velocity range shown,
which is 2-98% of Va, the discrepancy varies from
0.15% at the lowest S0 to 0.90% at twice the
effective Michaelis constant. For a velocity range
from 10-90% of Va, the discrepancy varies from
0.34-0.90%.
From Fig. 2 it is apparent that, as is to be

expected, the catalysed reaction approaches zero-
order at high substrate concentrations (El in the inset
of Fig. 2; no dependence on P) and first-order at low
concentrations (+). In the vicinity of the Michaelis
constant, the discrepancies are very close to that for
a first-order reaction.

For the uncatalysed second-order reaction
A + B= P + Q, the effect on the discrepancy of
increasing one initial product concentration is shown
in Fig. 3(a), the effect of increasing one initial
substrate concentration is shown in 3(b), and that of
increasing two or more of these together in Fig. 4.

POQO/K,AOBO has been used for the ordinate of

0.

1.0
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4.0 7.0 10.0 1000

BIAo
Fig. 3. Evaluation of the plot for the uncatalysed,

reversible reaction A +B =P + Q
A has been taken to be the limiting substrate and P
the limiting product. (a) Variation in the dis-
crepancy as one product increases. (b) Variation as
one substrate increases. The special conditions
(AO= Bo, etc.) in this Figure and the next were
chosen so as to give the maximum variations in the
discrepancy. In both (a) and (b), values for K0 were
as follows: O, 10-3; 0, 0.010; A, 0.032; +, 0. 100; x,

0.316; 0, 1.00; v, 3.16; , 10.0; *, 104.

Fig. 4 because it represents the full range of initial
conditions while varying only from 0 to 1; if P0QO/
KeA OB is greater than 1, the reaction is proceeding
from products to reactants. The maximum dis-
crepancy for a second-order reaction is 2.02%. The
progress curve for this worst case is among those
shown in the inset of Fig. 4 (0).
When this reaction is irreversible (* in the inset of

Fig. 4 and * on the ordinate elsewhere in Figs. 3 and
4), APIt versus product is a straight line and the
intercept is dP/dto, as pointed out in the intro-
duction. In all cases where K0 is greater than 1, the
discrepancy is less than 0.68%, i.e., less than that for
a first-order reaction. Only when the initial condi-
tions are such as to overcome an unfavourable
equilibrium do discrepancies greater than 0.68%
appear.
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Fig. 4. Continued evaluation of the plotforA + B =P + Q
(see Fig. 3)

The main Figure shows the variation in the
discrepancy as the initial concentration ratio, POQO/
AoBo, approaches the equilibrium ratio, Ke. The inset
shows the variation in the predicted progress
curves, as well as the resulting regression lines. In
the main Figure the following values for Ke apply:
E, 10-3; O, 0.010; A, 0.032; +, 0.100; x, 0.316; 0,
1.00; v, 3.16; 1, 10.0; *, 104. In the inset, the
following table applies:
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Fig. 5. Correlation between the discrepancy and the
initial conditions for the uncatalysed reaction

A +B=P+ Q
See the text for an explanation of the abscissa. All
the points in Figs. 3 and 4 are represented here,
except in the vicinty of 0.68% discrepancy, where a

number have been omitted for clarity.
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This observation, together with the very regular
patterns of Figs. 3 and 4, suggests that some direct
correlation may exist between the initial conditions
and the discrepancy itself. Such a correlation is
shown in Fig. 5. The abscissa is derived from the first
logarithm in the integrated equation in Table 1. This
logarithm is the fundamental difference between a

first- and a second-order reaction. In order to
calculate it as the reaction progresses, the variable
term must be separated into AP/(P6-P0) and
(Pe-Po)l/[(Pe-Po) +Po +Qo-(A O +Bo + PO+Qo)I/
(1- lIKe)]. This second term is the abscissa in Fig. 5.
An alternate formulation, using equilibrium instead

Vol. 203

of initial concentrations, is -(Pe-Po)(1-1/Ke)/
[Ao+Be+(Pe+QOQ)/K]. This makes clear the
dependence on Ke in Figs. 3 and 4. It can readily be
shown that this term will approach 1 only when
Ke(A + Bo)+ Po+ Qo approaches 0. This is the

initial condition that produces the maximum dis-
crepancy.

For the uncatalysed reaction A + B P, the total
variation in the discrepancy is from 0 to 0.68%; the
reaction approaches first-order as one substrate
becomes limiting. A + B =P is in effect a special case
of A+B=P+Q. If AO/BO is varied at P0=0, the
observed discrepancies show a pattern very similar
to that in the lower portion of Fig. 3(b). Similarly, if
PdKeAOBO (the dimensionless quantity for this
reaction) is varied at Ao = Bo, the results resemble
the lower portion of Fig. 4. The correlation in Fig. 5
is true from 0 to 0.68% if the abscissa, now

(Pe-P0)/(Pe-P0-Ao-Bo-1/Ke) or -(Pe-Po)l
(A0 + Be + 1/Ke), varies from - to 0.
The uncatalysed reaction A =P + Q is also a

special case of A + B P + Q. Here the variation in
discrepancy is from 0.68 to 2.02%. If QO/AO is

/6

t

*.//1

/e
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varied at P0=O, the results resemble the upper
portion of Fig. 3(a), and if PoQo/K,Ao is varied at
Po = Q0, they resemble the upper portion of Fig. 4.
The correlation (Fig. 5) is true from 0.68 to 2.02% if
the abscissa, (Pe-P )/(Pe+ Qo+ Ke), varies from 0
to 1.

Discussion

T, e need for a good method for obtaining initial
ra es has been recognized for many years. The
practice of characterizing enzymes in terms of a
hyperbolic rate equation (where applicable) is so
widespread as to be almost universal; initial rates are
almost always employed for these purposes. A
number of methods have been proposed, but only
the simple graphical procedure of estimating a
tangent by eye has gained wide acceptance. This
appears to be due either to the theoretical and
computational complexities of the other methods or
to their limited applicability. In addition to tangent
estimation, two types of methods have been pro-
posed: polynomial fitting (Booman & Niemann,
1956; Elmore et al., 1963) and, specifically for
enzyme kinetics, methods based on an integrated
rate equation (Jennings & Niemann, 1955; Cornish-
Bowden, 1975).
The plotting methods of Jennings & Niemann

(1955) and Cornish-Bowden (1975) are based on an
equation, related to the one in Table 1, that takes
into account reversibility and product inhibition, but
only for one-substrate-one-product reactions. With
dP/dto eliminated, the equation shown becomes:

AP/t = Va/{ 1 - K.ln [ 1- AP/(Pe-PO)]/AP}
which has the same form as the Michaelis-Menten
equation. Jennings & Niemann (1955) suggest using
one of the three linear transformations of the
Michaelis-Menten equation, plotting AP/t in place
of velocity and -AP/ln [1-AP/(Pe-P0)I in place
of substrate concentration. Cornish-Bowden (1975)
suggests using the direct linear plot. In either
method, extrapolation of -AP/ln[1 - AP/(Pe-P0)]
to S0 gives the initial rate. If the logarithm in these
equations is replaced by the approximation sug-
gested in the introduction, then:

AP/t = Va/[ 1 + Kal(Pe-Po- AP/2)]
Lee & Wilson (1971) suggest a reciprocal plot based
on this equation.

Although perfectly sound in principle, none of
these methods is in common use. It seems likely that
the ideas behind them, and the limitations of the
integrated rate equation on which they are based, are
not widely understood. It is also true that, when a
reaction is reversible, these methods require some
knowledge of Pe (as opposed to S0), although they
are fortunately not very sensitive to errors in it.

Polynomial fitting has theoretical limitations that
have been thoroughly discussed by Cornish-Bowden
(1975). In general, it appears that a polynomial
which is of a high enough order to estimate the initial
rate well is so flexible that it is unable to smooth the
data. In practice, the principal objection to poly-
nomials is undoubtedly the start-up time required.
Unless a computer program is actually running
locally, polynomial fitting is not worthwhile for a few
kinetic experiments.

Tangent estimation by eye relies extremely heavily
on data taken in the initial phase of a reaction,
precisely the time when artefacts and errors are most
likely to occur. This is a serious difficulty, par-
ticularly when a reaction must be monitored by
discrete measurements.

The method proposed here has three important
features: (1) the plot is linear, and therefore
reasonably objective, but is very simple. (2) It can
make use of 50% of the progress curve of a reaction,
if that much information is available. This is perhaps
five to ten times as much information as is used for
tangent estimation. (3) It appears to be general. It
applies to all first- and second-order uncatalysed
reactions and many one-substrate-one-product cata-
lysed reactions. As the following discussion shows, it
seems likely that it also applies to more complex
catalysed reactions.

It is clear from the results presented here that an
uncatalysed first-order reaction provides a good
model for analysing a plot of AP/t versus product
for a catalysed, one-substrate-one-product reac-
tion. The discrepancy between true and estimated
initial rates is 0.68% in the one case, and the range is
from 0 to 0.90% in the other. The form of the
integrated equation for a reversible first-order
reaction is

(Constant)t = In [1- AP/(P -P0)]

For a corresponding catalysed reaction, it is:

C1t = AP- C21n [1 - AP/(Pe-Po)]
where Cl and C2 are constants.
The integrated equations for reversible, uncata-

lysed second-order reactions and certain catalysed
reactions bear a similar relationship. For
A + B=P + Q, the form is:

(Constant)t = -ln[ 1- AP/(Pe-PO)]
+ln[1-AIP(1- /Ke)/(Ao+Be+Po/Ke+ Qe/Ke)]

This form does not change if there is only one
reactant or one product, but the term in the second
logarithm does (see Table 1). In order to integrate
the rate equation for a catalysed reaction of this
type, the derivative equation term Vm(1- PQ/KeAB)
must not be reduced to Vm; it becomes significant as
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the reaction proceeds. Many second-order catalysed
reactions then have integrated equations of the form:
C1t=AP-C21n[1-AP/(Pe-P0)I+ C3ln[1-AP

x (1- l/Ke)I(Ao+Be+POKe+ QelKe)]
(Darvey & Williams, 1964; E. A. Boeker,

unpublished work).
A mechanism will have an integrated equation of

this form if the derivative equation, written in
coefficient form, has no substrate-product terms
higher than second order, e.g., AB, AP, not ABP.
This is of course true for all two-substrate reactions
in the absence of products. In their presence, the
only ordered mechanism producing a more complex
equation is the ternary-complex mechanism,
A + B P + Q, when Q is present. Most (rapid-
equilibrium) random mechanisms have the form
above as well; the two exceptions are ordered sub-
strates/random products and vice-versa, if P is
present. If a stable enzyme species isomerizes, all
second-order reactions have a more complex form
under at least some circumstances.
On the basis of this analysis, uncatalysed second-

order reactions should model the corresponding
catalysed reactions quite well. Furthermore, the
correlation established in the Results section sug-
gests that the larger discrepancies occur only under
fairly unusual initial conditions. For A + B P + Q,
Ke must be less than 1 and Ke(Ao+Bo)+PO+Qo
must approach zero. In other words, addition of
even a small amount of product to this reaction will
improve the estimation of the initial rate, contrary to
the usual situation. For A + B = P, the discrep-
ancies are all less than 0.68%. For A P + Q,
Po + Qe + Ke must approach zero before discrep-
ancies greater than 1.5% occur. The detailed
behaviour of plots of AP/t versus product for
complex catalysed reactions still needs to be in-
vestigated.

The discrepancies calculated in the present paper
should not be used as correction factors. The actual
discrepancy in any experimental situation will be a
function of the number and spacing of the data
points.

If the equation for this plot is written as
AP/t = a- aflAP, where a = dP/dto and /1 depends
on the reaction, it is easy to see that it corresponds
to the Eadie transformation of the Michaelis-
Menten equation. There are then two additional
linear forms, corresponding to a Lineweaver-Burk
plot and a Hanes plot: 1/APP=,f+ 1/at, and
t/AP = 1/a+ fit. Of the three forms, a plot of AP/t
versus product appears to be the best choice, for two
reasons. First, neither new form bears any obvious
relationship to ordinary reaction rates, whereas AP/t
does. And second, even though the plot is meant to
be analysed simply, with nothing more than a ruler,
it seems inevitable that regression analysis will be

applied to obtain 'best-fit' values of the initial rates.
Although it is not theoretically sound to apply such
analysis to plots with dependent variables on each
axis, it is also true that application of least squares to
either of the other plots does not correspond to any
reasonable sort of experimental error (see, for
example, Cornish-Bowden, 1979) unless proper
weights are used. If each plot is drawn with error
bars corresponding to the two most likely types of
experimental error, a constant amount of product,
and a percentage of AP1, it can be seen that a plot of
AP/t versus product has more nearly constant error
bars than either of the others, although the Hanes-
type plot is a close second. The error in applying
unweighted least squares should then be the least
for the AP/t-versus-product plot.

Note added in proof
The equation for catalysed first-order reactions

(see the introduction) includes competitive product
inhibition. However, Ka in this equation depends on
SO; this was not taken into account in the calcula-
tions. The effect of this is that, strictly, Fig. 2 applies
only in the absence of competitive product inhibition.
If this is taken into account, the discrepancy depends
on the ratio of Km to the competitive-product-inhibi-
tion constant, and varies between 0.90 and -1.25%
for all values of this ratio <2.

This research was supported by grant GM 25471 from
the National Institute of General Medical Sciences. I
thank Dr. William M. Moore for an encouraging word at
the right moment, and Dr. Athel Cornish-Bowden for
many helpful discussions.

References
Alberty, R. A. & Koerber, B. M. (1957) J. Am. Chem.

Soc. 79, 6379-6382
Boeker, E. A. (198 1) Biophys. J. 33, 187a
Booman, K. A. & Niemann, C. (1956) J. Am. Chem. Soc.

78, 3642-3646
Cornish-Bowden, A. (1975) Biochem. J. 149, 305-312
Cornish-Bowden, A. (1979) Fundamentals of Enzyme

Kinetics, pp. 200-203, Butterworths, London
Darvey, I. G. & Williams, J. F. (1964) Biochim. Biophys.

Acta 85, 1-10
Elmore, D. T., Kingston, A. E. & Shields, D. B. (1963) J.

Chem. Soc. London 2070-2078
Goldenberg, H. (1954) Arch. Biochem. Biophys. 52,

288-291
Huang, H. T. & Niemann, C. (1951) J. Am. Chem. Soc.

73, 1541-1548
Jennings, R. R. & Niemann, C. (1955) J. Am. Chem. Soc.

77, 5432-5433
Laidler, K. J. & Bunting, P. S. (1973) The Chemical

Kinetics of Enzyme Action, 2nd edn., pp. 163-195,
Clarendon Press, Oxford

Lee, H.-J. & Wilson, I. B. (1971) Biochim. Biophys. Acta
242, 519-522

Morgan, M. R. J. (1972) Enzymologia 42, 219-233
Sch0nheyder, F. (1952) Biochem. J. 50, 378-384

Vol. 203


