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Background: Diabetes poses a serious global challenge, given its increasing 
prevalence, detrimental effects on public health, and substantial economic 
burden. Since 1950s, tens of drugs have been approved by the United States 
(US) Food and Drug Administration (FDA). In the past decade, the medical 
community and regulatory agencies have moved away from the glucose-
centric paradigm and increasingly call for a holistic approach to assess different 
treatments’ benefits and harms.

Objective: This study aimed to assess the medication efficiency and 
technological progress of Type 2 Diabetes (T2D) drugs, by considering their 
physiological outcomes, including both benefits (i.e., glucose lowering and 
weight loss) and adverse effects (mortality), relative to dosing frequency.

Methods: To derive medication efficiency, this study utilized data from the 
US FDA and prominent meta-analyses. Given that both the benefits and 
adverse effects of medications are multidimensional, this study employed a 
nonparametric frontier method, the data envelopment analysis (DEA) model, to 
integrate these factors into a measure of medication efficiency. Physiological 
outcomes could assume both positive and negative values. Adverse effects were 
regarded undesirable outputs. The DEA model was built under the framework of 
directional distance function and was able to handle negative and undesirable 
values which naturally arose in the case of T2D medications.

Results: The paper presented a ranking of 20 T2D drugs in terms of medication 
efficiency. Three of them were able to attain the highest medication efficiency, 
all of which were in the GLP-1 class, including oral Semaglutide, subcutaneous 
Semaglutide and Dulaglutide. However, the other two GLP-1 drugs, Lixisenatide 
and Liraglutide, were less efficient. The average medication efficiency of drugs 
approved post-2010 was significantly higher than pre-2010 drugs. High dose 
frequency, low HbA1c reduction and insignificant weight loss were the main 
driving factors behind inefficiencies. Overall, medication efficiency provided 
an alternative perspective on treatment effectiveness other than conventional 
measures such as cost-effectiveness.
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1 Introduction

Diabetes presents a severe global challenge, underscored by 
compelling quantitative figures that highlight its pervasive impact on 
health, economies, and quality of life. According to the International 
Diabetes Federation (IDF), approximately 537 million adults 
(20–79 years) were living with diabetes worldwide in 2021 and this 
number is projected to rise to 783 million by 2045 (1). Diabetes also 
imposes a substantial economic burden for countries around the 
world. For example, the American Diabetes Association (ADA) 
estimated the total cost of diagnosed diabetes in the United States (US) 
to be  $412.9 billion in 2017, including direct medical costs and 
indirect costs such as productivity loss. Moreover, Diabetes is a major 
contributor to illness and death worldwide. It elevates the likelihood 
of several serious complications such as cardiovascular disease, 
strokes, kidney failure, vision loss, and amputations of the lower limbs. 
In 2021, diabetes was linked to approximately 6.7 million deaths 
globally, accounting for 11% of fatalities among people aged 20–79 (1).

Anti-diabetic drugs play a critical role against the disease (2). 
Figure 1 plots the evolution of Type 2 Diabetes (T2D) drugs, including 
the discovery of the compounds and the earliest approvals of the 
compounds with brand names by the US Food and Drug 
Administration (FDA). The first approval was granted to Tolbutamide 
under the brand name Orinase under the class of Sulfonylurea in 
1957. A second class of drugs, the Biguanide, was approved in 1994 
for the compound Metformin. Recent years see the approval of GLP-1 
(e.g., Exenatide), DPP-4 inhibitors (e.g., Sitagliptin), and SGLT2 
inhibitors (e.g., Canagliflozin).

The primary goal of anti-diabetic drugs is to regulate blood 
glucose levels (3). Effective control helps prevent hyperglycemia (high 
blood sugar) and reduce the risk of acute complications. Intensive 

blood glucose control, particularly with certain medications like 
insulin and sulfonylureas, can increase the risk of hypoglycemia, 
which can lead to dizziness, confusion, and in severe cases, 
unconsciousness. Some diabetes medications, such as certain types of 
insulin and sulfonylureas, may be associated with weight gain, which 
can exacerbate other risk factors for diabetes-related complications. 
Some individuals may experience gastrointestinal side effects, such as 
nausea or diarrhea, with certain diabetes medications. In some cases, 
there may be concerns about potential cardiovascular risks associated 
with specific classes of diabetes drugs. The cardiovascular safety of 
new medications is a key consideration during regulatory evaluations. 
Certain medications may pose a risk to kidney function, especially in 
individuals with pre-existing kidney disease.

This paper examines the medication efficiency of T2D drugs. Here, 
medication efficiency is defined as the by the balance between 
therapeutic benefits and side effects, in relation to the frequency of 
dosing (i.e., the number of doses taken per day or per week). It gauges 
the extent of health improvement achieved with each dose. According 
to this definition, if two drugs—A and B—produce identical 
therapeutic benefits and side effects, but Drug A requires daily dosing 
while Drug B is taken weekly, Drug B would be considered more 
efficient. It is important to distinguish medication efficiency from 
three other related yet distinct concepts, medication effectiveness, 
dose-effectiveness and cost-effectiveness. Medication effectiveness 
refers to how well a medication achieves its intended therapeutic 
effect. On the other hand, medication efficiency refers to how well a 
medication achieves its desired effect while using the least amount of 
dose. Dose-effectiveness refers to the relationship between the dose 
(amount or concentration) of a drug administered and the resulting 
effects it produces on the body. Cost-effectiveness emphasizes the cost 
per unit of health improvement.

FIGURE 1

Evolution of diabetes drugs. The upper part above the horizontal axis shows the discovery of the chemical agent classes that the drugs belong to. The 
lower part shows the compound names and the corresponding brand names of the drugs of each class that is first approved by the US FDA.
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Medication efficiency provides a unique and insightful perspective 
on the effectiveness of medications, offering advantages over other 
measures for two reasons. Firstly, it considers patient behavior and 
adherence by incorporating the dosing schedule into its definition. 
Medications that require fewer doses reduce the patient’s pill burden, 
thereby enhancing convenience and potentially improving adherence 
(4). Extensive literature has shown that dosing schedule can 
significantly impact adherence and is a major factor that physicians 
consider in prescribing T2D drugs (5, 6). By the incorporation of 
dosing schedule, medication efficiency places a direct emphasis on the 
impact of a medication on the patient’s health and aligns with the 
patient-centric approach to healthcare. Second, while cost-
effectiveness focuses on evaluating treatments from an economic and 
utility standpoint, medication efficiency approaches treatments from 
a technological perspective. It offers a detailed assessment of how each 
dose affects the specific health indicators being targeted. By measuring 
the improvement achieved per dose, healthcare providers can tailor 
treatment plans to achieve optimal health outcomes with minimal 
medication use. This approach promotes both effectiveness and 
efficiency in healthcare delivery. Additionally, medication efficiency 
considers the practicality of treatment plans. Highly efficient 
medications may encourage better patient adherence, ultimately 
leading to improved long-term health outcomes.

This study employed the data envelopment analysis (DEA) 
approach to evaluate branded T2D drugs’ medication efficiencies. 
DEA is a nonparametric benchmarking method that can take multiple 
factors into consideration simultaneously to gauge the efficiency of 
transforming inputs into outputs. We benchmarked T2D drugs using 
clinical data on its benefits and harms extracted from FDA Online 
Label Repository and recent studies published on flagship medicine 
journals. The capability of DEA to assess a variety of factors 
simultaneously is an appealing feature aligned with the holistic 
assessment approach promoted by governing bodies. For example, the 
US FDA has transitioned from a blood glucose (sugar) focused 
assessment approach to a holistic approach, in which co-benefits and 
harms of the medicine should also be considered (7). Moreover, the 
relationship between the dosing frequency, therapeutic benefits and 
side effects of T2D drugs is complex. DEA is especially suitable for this 
situation, since as a nonparametric approach it does not require a 
specific functional form for the relationship between inputs 
and outputs.

In 2012, the European Association for the Study of Diabetes 
(EASD) and the American Diabetes Association (ADA) jointly issued 
consensus guidance outlining a decision cycle for the patient-centered 
management of T2D (8). This approach considered not only key 
patient characteristics such as age, weight, cardiovascular disease 
(CVD), and renal history but also specific factors like the HbA1c 
lowering effect, hypoglycemic risk, impact on weight, side effects, 
complexity, costs, and cardiorenal effects. These guidelines 
incorporated these diverse factors to make recommendations 
regarding the choice of treatment and advocate for a shared decision-
making strategy to formulate a comprehensive management plan. This 
plan signified a departure from a purely glucose-centric approach to 
a more holistic one, with a preference for a certain mode of application.

The paper proceeds as follows. Section 2 analyzes the literature. 
Section 3 describes the methodology, including data and variables. 
Section 4 shows the results. Section 5 concludes with limitations and 
future research directions.

2 Literature review

This section reviews the existing literature on concepts related to 
medication efficiency (e.g., efficacy and cost-effectiveness), 
development of holistic assessment of T2D interventions, and the 
application of benchmarking methods in healthcare studies.

A large body of research, based on both clinical trials and meta-
analysis, has evaluated the effectiveness of various diabetes 
medications, including insulin therapies, metformin, sulfonylureas, 
GLP-1 receptor agonists, SGLT2 inhibitors, DPP-4 inhibitors, and 
thiazolidinediones (9). The central function of the diabetes drugs is 
their capability of controlling the level of blood sugar (glucose), 
usually measured by the hemoglobin A1c (HbA1c) level (10). Other 
factors, particularly weight loss and cardiovascular protection, are also 
important and have been examined through many clinical trials (11–
13). Weight loss is a desirable property, since obesity is a major cause 
of T2D and lowering weight is beneficiary for glucose control (14).

A substantial volume of effectiveness analyses on T2D treatments 
focused on their cost-effectiveness or cost-utility (15–17). Cost-
effectiveness, as a concept in health economics, is typically measured 
as monetary cost/saving per life years gained or quality-adjusted life 
years (QALYs) gained. Costs can be  evaluated from different 
perspectives, including health care system, society, and patient. QALY, 
as a widely used health outcome variable, is intended to combine the 
length of life with quality of life into a single numerical value. For 
example, a study (15) identified cost-saving and very cost-effective 
T2D interventions. However, QALY, the central element in most cost-
effectiveness studies, has been constantly criticized for its 
methodological, ethical and contextual limitations (18).

Furthermore, recent literature shows a trend of holistic assessment 
of T2D interventions. While early effectiveness assessment of diabetes 
drugs focuses on HbA1c, the arrival of new evidence indicates that the 
drugs’ benefits and risks in other aspects should be taken into account 
(13). As noted in Wilcox et al. (7), prior to 2008, the approval of new 
antidiabetic drugs by the U.S. FDA primarily depends on their ability 
to lower blood glucose levels. Since late 2008, the U.S. FDA started to 
mandate cardiovascular outcome trials (CVOTs) for cardiovascular 
safety of new antidiabetic agents to ensure their cardiovascular safety. 
The introduction of CVOTs has fundamentally changed clinical 
practice guidelines for managing T2D. Moreover, new clinical trial 
results are constantly popping out and revising the existing knowledge 
on T2D drugs. For example, recent studies show that GLP-1 drugs 
offer a slew of benefits including kidney protection and alleviation of 
depression (19, 20), but are also associated with higher risks of 
pancreatitis, gastroparesis, and bowel obstruction (21). These benefits 
and adverse effects, gradually realized through costly clinical trials 
over a long-time horizon, should be considered in T2D management. 
Consequently, medical research has increasingly call for holistic 
assessment of diabetes drugs (7).

The necessity of holistic assessment prompts us to choose the 
directional distance function method. The directional distance 
function approach, employed in our study, belongs to the broad class 
of nonparametric efficiency benchmarking models (22). The 
benchmarking models, particularly DEA, have been extensively used 
in healthcare research, to evaluate the efficiency of healthcare systems, 
hospitals, dialysis facilities and other entities (23–29). More pertinent 
to our study, an emerging stream of literature started to use DEA to 
assess medical treatments and diagnosis. A study (30) ranked a set of 
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surgical services (e.g., cardiovascular and plastic surgeries) in a 
specific hospital through DEA, treating bed turnover, number of 
physicians, bed occupancy rate as inputs, and numbers of operations 
and discharged patients as outputs. Another research (31) applied 
DEA to evaluate the efficiency of hip fracture surgeries, with inputs 
capturing the pre-surgery conditions of patents and outputs capturing 
the post-surgery outcomes. A recent work (32) used DEA to assess the 
efficiency of magnetic resonance imaging. An early research (33) 
evaluated the efficiency of physical therapy after total knee 
replacement surgery at the patient level by DEA. We extended this 
stream of literature to the benchmarking of T2D medications.

Traditional nonparametric benchmarking models suffers from 
two limitations. First, all variables should assume positive values for 
the models to be well defined and logically coherent (34). Various new 
models have been introduced to expand the application of DEA to 
negative data, including the range directional distance function 
approach (35), the semi-oriented radial measure approach (36), and 
the modified slacks-based measure approach (37), among others. 
Since the attributes of diabetes drugs, such as the change of weight, 
could be negative, we used the range directional distance function 
approach. Another limitation is about the undesirable outputs (38), 
the presence of which breaks the assumption of traditional models 
that more outputs are more desirable. Different models have been 
proposed to address undesirable outputs (39–41). There is no clear-cut 
answer as to which model should be used since each model has its 
strengths and weaknesses (38).

The above literature survey reveals two significant research gaps 
that our study seeks to address. First, while there is a considerable 
body of research assessing the efficiency of treatments for Type 2 
Diabetes (T2D), these studies concentrate on cost efficiency. This 
focus overlooks critical factors such as the dosing schedule and the 
overall convenience for patients. Second, most benchmarking studies 
in this field tend to be conducted at the organizational level, evaluating 
the performance of healthcare providers or facilities rather than 
focusing on individual medications. There is a need for more granular 
analyses that evaluate the efficiency of individual treatments.

3 Materials and methods

3.1 Variables and data

To evaluate the benefits and adverse effects of T2D treatments 
relative to dosing schedule, we employed dose frequency as the single 
input. Medication frequency referred to how often a person takes a 
prescribed drug, and it was an important factor in ensuring the 
effectiveness and safety of the treatment. Lower dose frequency was 
desirable, since it had been shown to be associated with improvement 
in patient adherence, patient quality of life, patient satisfaction, and 
costs (42).

We considered two desirable outputs, change of HbA1c and 
change of weight, the latter of which may assume negative values. 
HbA1c was the main biomarker used to assess the average blood sugar 
level for the past 2 to 3 months. We denoted reduction of HbA1c as 
positive so decline of HbA1c was desirable. For change of weight, 
since some drugs might cause undesirable weight gain, we denoted 
reduction as positive value and increment as negative value. 
We  considered one undesirable output, the all-cause mortality. 

All-cause mortality was given as the odds ratio between the drug and 
the placebo, with lower values corresponding to lower mortality. The 
value of all-cause mortality was always positive.

We obtained T2D medication data from two sources, FDA Online 
Label Repository1 and recent meta-analyses published on flagship 
medicine journals. FDA Online Label Repository contains the most 
recent drug listing information that companies have submitted to 
FDA. Each label featured a Clinical Studies section where the 
companies reported clinical trials data including change in HbA1c 
and weight against placebos. We obtained the list of T2D drugs from 
a University of California at San Francisco website.2 For each drug in 
the list, we searched its brand name in FDA Online Label Repository 
and extracted the clinical trial data, including dose frequency, HbA1c 
change and weight change, as well as the year when the drug 
was approved.

As an example, Onglyza is the drug brand name for compound 
saxagliptin as a DPP4 inhibitor. According to its FDA label,3 Onglyza 
was approved by FDA in 2009. The “recommended dosage of 
ONGLYZA is 2.5 mg or 5 mg once daily,” so its dose frequency was 
1/day. The label may report clinical trial results for the drug as 
monotherapy or in combination with other drugs. We focus the results 
of monotherapy. Onglyza’s label indicates that “ONGLYZA was not 
associated with significant changes from baseline in body weight or 
fasting serum lipids compared to placebo.” Therefore, the weight 
change was set to zero. The label reports the “Glycemic Parameters at 
Week 24 in a Placebo-Controlled Study of ONGLYZA Monotherapy” 
and indicates a −0.6 difference from placebo with a p-value less than 
0.0001. Therefore, Onglyza’s HbA1c reduction is 0.6. It is notable that 
companies may design and carry out the clinical trials for different 
drugs in different ways. For example, trials for different drugs may 
have different sample sizes and durations. We use the data as reported 
in the studies.

The data extracted from the FDA Online Label Repository allowed 
us to undertake branded drug-level analysis. However, the FDA labels 
did not report sufficient information on cardiovascular protection, 
which was recognized as a critical factor in diabetes treatment recently. 
For the purpose of all-around assessment, we  resorted to meta-
analysis for further information. We obtained data for compound-
level analysis from meta-analysis published on flagship medical 
journals. We extracted the HbA1c and mortality data from Tsapas 
et al. (13). The paper reported the effectiveness of 20 glucose-lowering 
drugs for T2D through meta-analysis. The paper did not report weight 
change resulted from the interventions, another critical outcome 
factor affecting quality of life and closely associated with other 
diseases. Therefore, we complemented the weight change data from 
other studies (11, 43).

Table  1 showed the summary statistics of input and output 
variables. We noted that several classes of drugs, such as Biguanides, 
Glinides, Thiazolidinediones, and Dopamine D2 receptors, contained 

1 https://labels.fda.gov/, accessed on November 29th, 2023.

2 https://dtc.ucsf.edu/types-of-diabetes/type2/treatment-of-type-2-diabetes/

medications-and-therapies/type-2-non-insulin-therapies/table-of-medications/, 

accessed on November 29th, 2023.

3 https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/022350s016lbl.

pdf, accessed on November 29th, 2023.
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TABLE 1 Summary statistics of the variables.

Class Sulfonylureas Biguanides Glinides Thiazolidinediones GLP-1 
analogs

SGLT2 
inhibitors

DPP-4 
inhibitors

Dopamine 
D2 

receptors

Combination oral pills

Dose frequency (per day)

Mean 1.000 1.400 2.500 1.000 0.651 1.000 1.000 1.000 1.462

S.D. – 0.300 0.500 – 0.518 0.000 0.000 – 0.269

Median 1.000 1.000 2.500 1.000 0.140 1.000 1.000 1.000 1.000

Min 1.000 1.000 2.000 1.000 0.140 1.000 1.000 1.000 1.000

Max 1.000 2.000 3.000 1.000 2.000 1.000 1.000 1.000 2.000

HbA1c change (%)

Mean 1.700 1.068 0.450 0.800 0.884 0.642 0.667 0.400 0.884

S.D. – 0.452 0.005 – 0.098 0.044 0.013 – 0.170

Median 1.700 0.700 0.450 0.800 0.800 0.600 0.600 0.400 0.700

Min 1.700 0.500 0.400 0.800 0.500 0.400 0.600 0.400 0.400

Max 1.700 1.800 0.500 0.800 1.300 0.910 0.800 0.400 1.600

Weight change (%)

Mean 0.000 0.000 −2.815 −2.200 2.344 2.338 0.000 −0.340 0.489

S.D. – 0.304 0.470 – 5.378 0.463 0.000 – 1.943

Median 0.000 −0.250 −2.815 −2.200 1.430 2.570 0.000 −0.340 0.000

Min 0.000 −0.470 −3.300 −2.200 0.740 1.510 0.000 −0.340 −2.380

Max 0.000 0.640 −2.330 −2.200 7.340 3.080 0.000 −0.340 2.790

Branded drugs Glucotrol XL

Glucophage, 

Glumetza, 

Riomet, 

Glucophage XR, 

Fortamet

Prandin, Starlix Avandia

Victoza, 

Bydureon, 

Trulicity, 

Adlyxin, 

Ozempic, 

Mounjaro, Byetta

Farxiga, 

Jardiance, 

Steglatro, 

Brenzavvy, 

Invokana

Januvia, Onglyza, 

Nesina
Cycloset

Glucovance, Janumet, PrandiMet, 

Kombiglyze XR, Jentadueto, Janumet 

XR, Oseni, Invokamet, Xigduo XR, 

Glyxambi, Synjardy, Trijardy XR, 

Kazano
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negative values in weight change, indicating that they could cause 
weight gain.

3.2 Data envelopment analysis

The assessment of the medication efficiency of T2D drugs was a 
multidimensional problem by nature, because the treatments involve 
multiple benefits and adverse effects. We employed DEA to address 
the multiple factors involved. DEA, as a non-parametric method 
employing linear programming techniques, identifies an efficiency 
frontier and measures the distance of each unit from this frontier (22). 
The primary benefit of DEA in this analysis was its ability to integrate 
multiple inputs and outputs, even when they were measured in varied 
units, aligning with the holistic nature of drug assessment. Figure 2 
depicts the concept of classical DEA model in the case of evaluating 
the treatments based on two types of benefits under variable returns-
to-scale (VRS) (44). In the figure, there are five treatments labeled A 
to E. Each treatment is characterized by its dose frequency and two 
benefits, with the ratios between benefits and dose frequency 
corresponding to the two axes. The higher the ratio, the more desirable 
the treatment is. The piecewise linear curve A-B-C-D forms a frontier. 
The curve is termed a frontier because it is impossible to find two 
points on it such that one point dominates the other in both ratios. 
Treatment E is enclosed by the frontier A-B-C-D and thereby is 
deemed inefficient. Its level of inefficiency is represented by its 
distance to the frontier, on which we can find a point E’ that dominates 
E. If we use radial measure for distance, the efficiency of E is OE/OE’. 
Points B and C serve as the references of E since E’ is derived from the 
linear combination of B and C. The two-dimensional case can 
be extended to high-dimensional situation.

A variety of DEA models have been developed. To benchmark the 
medication efficiency of diabetes drugs, we needed an approach that 
could (I) integrate multiple factors into account to yield a holistic 
measure to align with the recent trends, (II) handle negative data, and 
(III1) handle undesirable outputs. Due to the requirements, 
we  employed the range directional model (RDM) to evaluate the 
medication efficiency of diabetes drugs (35). While various models 

have been developed to address negative data, RDM remains the most 
widely used one.

We used the following notations. Suppose there are n  different 
drugs to be  benchmarked, denoted by 1, ,i n= … . The drug i is 
characterized by m types of inputs, labeled as ijx  with 1, ,j m= … . 
Treating with drug i generate s desirable outcomes labeled as iry  with 

1, ,r s= … , and h  undesirable outcomes labeled as ifz  with 
1, ,f h= … . Note that ijx +∈  so all inputs are strictly positive, 

whereas iry ∈ and ifz ∈  so outputs can assume negative values. 
Let iλ  be the weight assigned to the drug i.

Let o denote the drug to be evaluated. For drug o, RDM defines 
the range of possible improvement for its inputs and desirable 
outputs as,

 
{ }min ,x

oj oj ij
i

R x x= −
 ( )for 1, , ; 1 ;j m a= …

 (1a)

 { }max ,y
or ir or

i
R y y= − for 1, , .r s= …  (1b)

As the name implies, the ranges of possible improvement in (1a) 
and (1b) are the maximum possible contraction the input can achieve 
and the maximum possible expansion the output can achieve. Even 
with negative data, (1a) and (1b) cannot be  negative. For the 
undesirable output ifz , we take the negative of it and treat ifz−  as the 
desirable output,

 for (1c) 
{ } { }max min ,z

if of of ifof ii
R z z z z= − + = −

 1, , .f h= …

Note that in ( )1c , z
ofR  is similar to x

ojR  in functional form, implying 
that the range of possible improvement for undesirable output z is 
obtained in the same manner as the input x . This treatment of 
undesirable outputs as inputs is essentially in the spirit of Hailu and 
Veeman (39).

RDM in its general form is formulated as the following 
linear program,

 maxθ θ∗ =

 1
subject to : , 1, , ;

n
x

i ij oj oj
i

x R x j mλ θ
=

+ ≤ = …∑

 1
, 1, , ;

n
y

i ir or or
i

y R y r sλ θ
=

− ≥ = …∑
 

(2)

 1
, 1, , ;

n
z

i if ofof
i

z R z f hλ θ
=

+ ≤ = …∑

 1
1;

n
i

i
λ

=
=∑

FIGURE 2

Conceptual depiction of the classical DEA model under variable 
returns-to-scale.
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 0, 1, , .i i nλ ≥ = …

The above linear program contains 1n +  decision variables: θ  and 
{ } 1, ,i i nλ = … . Note that above model assumes VRS. It can be proved that 
the above RDM has the properties of translational invariance and unit 
invariance (35). Both properties are desirable as they contribute to the 
comparability and flexibility of the analysis. They ensure that efficiency 
scores are not distorted by changes in scale or the choice of 
measurement units, allowing for meaningful and consistent 
evaluations of the relative efficiency of different units. RDM as in (2) 
is given as a general form and is non-oriented. It seeks to 
simultaneously contract the inputs via x

ojRθ , expand the desirable 
outputs via y

orRθ  and reduce the undesirable outputs via z
ofRθ .

In (2), { } 1, ,i i nλ = …  forms a vector of weights to construct the efficiency 
frontier as a linear combination of all observed inputs and outputs of all 
drugs. A larger θ  implies that the drug under evaluation characterized by 
{ } { } { }( ), ,oj or ofx y z , is further away from the efficiency frontier. 

Therefore, model (2) yields an inefficiency score θ∗, bounded between 0 
and 1. The efficiency is obtained as 1 θ∗− . If efficiency equals one, the 
drug is on the frontier and attains a perfect efficiency score. Model (2) is 
solved once for each of the n drugs. So collectively we  solved the 
optimization problem as described in (2) n times.

Further exposition on the choice of DEA for benchmarking in this 
study is needed. Another popular benchmarking method is stochastic 
frontier analysis (SFA). For the purpose of this study, DEA enjoys several 
advantages over SFA. As a nonparametric method, DEA does not require 
a specific functional form for the relationship between inputs and outputs. 
This flexibility is beneficial since the exact nature of the relationship 
between dosing frequency and the outputs is complex. Additionally, DEA 

is well-suited to handle multiple outputs, such as glucose-lowering 
capability (a desirable output) and side effects (an undesirable output). 
SFA, on the other hand, typically handles a single output, making it less 
appropriate when dealing with the multidimensional nature of medication 
outcomes. Furthermore, DEA can easily incorporate undesirable outputs 
into the analysis using models like the directional distance function. This 
is more straightforward in DEA than in SFA, where handling undesirable 
outputs would require more complex modeling adjustments. Last but not 
least, DEA can perform well even with smaller sample sizes, as in our 
study of 20 T2D drugs. SFA typically requires larger sample sizes to 
provide reliable estimates, as it depends on statistical noise and 
parameter estimation.

All data analyses and computations were carried out using R 
version 4.2.3 (R Project for Statistical Computing), during November 
2023 and February 2024.

4 Results

Table 2 reported the medication efficiencies of 38 T2D branded 
drugs, ranked from high to low. The results indicated that there were 
five medications that achieve the highest efficiency of unity, including 
Glucotrol XL, Glucophage, Riomet, Ozempic, and Mounjaro. Among 
them, Ozempic and Mounjaro belong to the GLP-1 class of drugs, a 
new generation of drugs recently approved by FDA to treat T2D, and 
have been praised for their weight-loss benefits. The results in Table 2 
did not reflect the transition to holistic assessment since 2008, as it did 
not include cardiovascular and other factors that had been shown to 
be associated with the drugs and affected the mortality rate of the 

TABLE 2 Medication efficiency of T2D branded drugs.

Rank Branded 
drug

Approval 
year

Efficiency Rank Branded 
drug

Approval 
year

Efficiency

1 Glucotrol XL 1994 1 20 Glumetza 1995 0.384

1 Glucophage 1995 1 21 Synjardy 2015 0.380

1 Riomet 1995 1 22 Farxiga 2014 0.376

1 Ozempic 2017 1 23 Kombiglyze XR 2010 0.375

1 Mounjaro 2022 1 24 Adlyxin 2016 0.374

6 Janumet XR 2012 0.857 25 Janumet 2007 0.361

7 Jentadueto 2012 0.564 26 Onglyza 2009 0.353

7 Kazano 2013 0.564 26 Nesina 2013 0.353

9 Glucovance 2000 0.553 28 Steglatro 2017 0.351

10 Oseni 2013 0.545 29 Prandin 1997 0.351

11 Victoza 2010 0.534 30 Fortamet 2004 0.347

12 Trulicity 2014 0.524 31 Brenzavvy 2023 0.346

13 Invokana 2013 0.485 32 Xigduo XR 2014 0.343

14 Bydureon 2012 0.463 33 Byetta 2005 0.342

15 PrandiMet 2008 0.463 34 Glucophage XR 2000 0.332

16 Jardiance 2014 0.456 35 Glyxambi 2015 0.316

17 Januvia 2006 0.400 35 Trijardy XR 2020 0.316

18 Invokamet 2014 0.392 37 Cycloset 2009 0.314

19 Avandia 1999 0.387 38 Starlix 2000 0.294

The computation was based on the RDM approach in (2) and employs dose frequency as input, HbA1c decrease and weight loss as outputs. The data for inputs and outputs were from FDA 
Online Label Repository.
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patients. We  undertook further analysis based on Model (2) to 
incorporate mortality rate as undesirable output, using data from 
meta-analysis published on flagship medicine journals.

Since meta-analysis reported results for the underlying compound 
rather the branded drugs, our further assessment was conducted at the 
compound-level. Figure 2 plotted the evolution of medication efficiency 
of T2D drugs. It showed that the new generation of T2D drugs in the 
GLP-1 class including oral Semaglutide, subcutaneous Semaglutide and 
Dulaglutide, all of which were approved in recent years, attained the 

perfect efficiency of one. Lixisenatide, as another GLP-1 agent, also 
achieved a high efficiency of 0.85. Exenatide, as the first GLP-1 agent 
approved by FDA, had a low medication efficiency of 0.15. But the 
ensuing extended-release Exenatide, approved in 2012, had significantly 
improved and attained an efficiency of 0.47. Liraglutide, an earlier GLP-1 
drug, had lower efficiency of 0.24. Earlier T2D drugs, such as 
Sulphonylureas and premixed insulin, had lower medication efficiencies.

Figure 3 clearly indicated the technological progress of T2D drugs 
over the past decades. None of the drugs approved before 2010 was able 

FIGURE 3

Evolution of medication efficiency of T2D drugs. The computation was based on the RDM approach in (2) and employed dose frequency as input, 
HbA1c decrease and weight loss as desirable outputs, mortality rate as undesirable output. The year was the first approval year by FDA. The data for 
inputs and outputs were from meta-analysis published on flagship medical journals.
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to achieve a medication efficiency greater than 0.2. The first drug that 
broke the 0.2 efficiency threshold was Liraglutide, approved in 2010 as an 
GLP-1 class drug. The average medication efficiency of pre-2010 drugs 
was merely 0.104, whereas post-2010 (including 2010) drugs had an 
average efficiency of 0.498, almost five times of the pre-2010 level.

DEA can provide not only the efficiency levels of the drugs but 
also slack values. Slacks refer to the shortfall of a drug from its efficient 
counterpart on the frontier. In the context of production economics, 
knowing the slacks can help the inefficient unit to identify 
improvement opportunities. While for drugs improving the inputs/
outputs is not as viable as a manufacturing plant, it is still valuable to 
know the slacks since they give rise to efficiency gaps. We undertook 
slack analysis to identify the shortfalls of the drugs from the efficient 
frontier. Figure 4 plotted the slacks for the 20 T2D drugs across the 
input and outputs. Larger slack values indicated that the variable was 
further away from the frontier. For drugs on the frontier, all slacks 
were zero. Figure 4 showed that for 8 of the 20 drugs, the biggest slack 
occurred for its dose frequency. HbA1c reduction and bodyweight 
decline accounted for 5 and 4 of the biggest slacks, respectively. 
Therefore, high dose frequency, low HbA1c reduction and marginal 
bodyweight decline were common causes of inefficiencies.

5 Discussion and conclusion

The paper benchmarked the medication efficiency of T2D 
drugs and their technological progress, based on DEA approach 

and clinical data. The concept of medication efficiency refers to 
the blood sugar control capability, weight-loss effect and mortality 
rate, relative to the dosing frequency. Namely, it measures how 
much benefit and harm can be  caused per dose. Medication 
efficiency offers an alternative perspective on T2D drugs and 
complements existing measures such as cost-effectiveness. Due to 
the existence of negative values and undesirable output in benefits 
and adverse effects, we  used a special DEA model, the range 
directional model, to compute the efficiency of the drugs. 
We  found that some newer generation GLP-1 drugs (oral 
Semaglutide, subcutaneous Semaglutide, Dulaglutide) exhibited 
significantly higher efficiencies than other drugs. Moreover, 
earlier medications (e.g., Sulphonylureas, Premixed insulin, 
α-glucosidase inhibitors) had medication efficiencies less than 1. 
The inefficiencies were caused by gaps in dosing frequency, 
Hb1Ac reduction and bodyweight decline.

A potential application of the benchmarking results is the 
development of combination therapies for T2D by identifying 
points on the frontier that may dominate inefficient treatments. 
As illustrated in Figure 2, DEA method constructs a piecewise 
linear frontier through linear combination of sample points and 
measures the efficiency by comparing an observed point against 
a hypothetical point on the frontier. A critical problem in this 
benchmarking process is that whether the hypothetical and 
superior point, as a linear combination of sample points, could 
be realized in reality. If the drugs had linear dose–response and 
the responses of different drugs were additive, the hypothetical 

FIGURE 4

Slack analysis of the T2D drugs. Slacks refer to the differences between the actual inputs/outputs and the ideal inputs/outputs.
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point would be realizable. For example, DEA results showed that 
Canagliflozin was benchmarked against a linear combination of 
subcutaneous Semaglutide and Dulaglutide with weights 0.783 
and 0.217, respectively. If there is a linear association between 
dose and response for subcutaneous Semaglutide and Dulaglutide 
and the responses from the two drugs are additive, then combining 
subcutaneous Semaglutide and Dulaglutide according to their 
weights in benchmarking could generate favorable effects. 
Determining the dose–response relationship for a drug is a 
demanding and costly task. There was evidence that dose and 
weight loss are linearly associated for Semaglutide (45).

There are several limitations of this study. T2D drugs can exhibit 
a wide range of adverse side effects, including but not limited to 
urinary tract infections, fractures, amputations (46). While we have 
included mortality rate as an aggregate measure of adverse events, 
most side effects are not life-threatening. Another concern is that the 
research hinges on clinical trials data. Even though we have restricted 
our sample to FDA documents and meta-analysis on flagship 
academic journals to safeguard data accuracy, it is common in 
medical research that new results from more robust trials may amend 
earlier findings. Therefore, emergence of new clinical results may 
override some of the results in this study. Finally, the choice of 
treatment for T2D is very complex. It depends on not only the drugs’ 
attributes but also the patients’ characteristics such as age, weight and 
medical history (7). The analysis in this paper aimed to shed light on 
medication efficiency and technological progress. It did not constitute 
recommendations for choice of treatment.
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