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implications (Oschwald et al., 2020) such as early detection 
of neurodegenerative disorders (e.g., Alzheimer’s Disease). 
Comprehensive in-person multi-domain neuropsychologi-
cal assessments are considered the gold standard for esti-
mating cognitive status in research and clinical settings. 
This type of assessment is labor intensive, costly and not 

Introduction

Aging is associated with substantial changes in cognition 
(Murman, 2015) and brain structure (Lockhart & DeCarli, 
2014). The trajectories of these age-related changes show 
significant individual differences with major clinical 
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Abstract
Clinical identification of early neurodegenerative changes requires an accurate and accessible characterization of brain 
and cognition in healthy aging. We assessed whether a brief online cognitive assessment can provide insights into brain 
morphology comparable to a comprehensive neuropsychological battery. In 141 healthy mid-life and older adults, we 
compared Creyos, a relatively brief online cognitive battery, to a comprehensive in person cognitive assessment. We used 
a multivariate technique to study the ability of each test to inform brain morphology as indexed by cortical sulcal width 
extracted from structural magnetic resonance imaging (sMRI).

We found that the online test demonstrated comparable strength of association with cortical sulcal width compared to 
the comprehensive in-person assessment.

These findings suggest that in our at-risk sample online assessments are comparable to the in-person assay in their 
association with brain morphology. With their cost effectiveness, online cognitive testing could lead to more equitable 
early detection and intervention for neurodegenerative diseases.
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always feasible. Accessibility issues are a significant barrier 
for older adults to receive health care (Gaans & Dent, 2018). 
Recent events, such as the Covid-19 pandemic, have also 
been found to influence older adults’ access to health care 
(Bastani et al., 2021) raising the importance of reducing bar-
riers to participation in clinical care and research.

Self-administered online cognitive testing offers sev-
eral advantages over in person assessments, including 
greater flexibility, the ability to record accuracy and speed 
of response with high precision, and better cost-efficiency 
(Bauer et al., 2012). The popularity of online neuropsycho-
logical tests is rapidly increasing, with the availability of 
online cognitive batteries having more than doubled in the 
past decade (Mackin et al., 2018; Wild et al., 2008) and large 
biomedical databases such as the UK biobank (https://www.
ukbiobank.ac.uk/) solely relying on computerized testing. 
Earlier studies initially expressed scepticism about the use 
of computerized testing, particularly regarding the introduc-
tion of environmental confounds and the lack of supervi-
sion (Gosling et al., 2004; Kraut et al., 2004). Nonetheless, 
research in large samples has shown a strong correlation 
(Pearson’s r = 0.80) between in-person and web-based cog-
nitive testing (Germine & Hooker, 2011; Haworth et al., 
2007), suggesting potential for high-quality data compara-
ble to in-person testing when quality insurance measures are 
met. This is excellent considering that test-retest reliabili-
ties of widely used in person neuropsychological tests are 
highly variable (ranging between r = 0.5–0.9 for individual 
tests, with memory and executive functioning scores often 
less than r = 0.7) (Calamia et al., 2013). Few studies have 
validated the use of online cognitive testing in older adults, 
but unsupervised web-based tests, including the Stroop task, 
paired associates learning, and verbal and matrix reasoning, 
have been shown to yield comparable results to supervised 
tests administered in a laboratory (Cyr et al., 2021). More-
over, performance on web-based tests does not appear to be 
correlated with technology familiarity, an issue previously 
raised as a potential barrier (Cyr et al., 2021).

Creyos (previously Cambridge Brain Sciences, CBS), 
is a widely used online cognitive assessment platform that 
consists of 12 self-administered tasks, based on well-val-
idated neuropsychological tests adapted for use in a home 
environment (Hampshire et al., 2012). Difficulty-levels of 
the tasks increase with the individual’s performance level, 
minimising floor and ceiling effects as well as allowing 
for a good level of engagement. Data reliability is ensured 
through ‘validity’ indicators, flagging when the data are 
outside expected bounds. Creyos has been used in several 
large-scale epidemiological studies (Nichols et al., 2020, 
2021; Wild et al., 2018). There have only been a limited 
number of studies comparing the use of the Creyos platform 

with in-person neuropsychological testing in older individu-
als (aged ≥ 40years), using small sample sizes and non-clin-
ical populations (Brenkel et al., 2017; Sternin et al., 2019).

Cognitive changes reflect structural and functional 
changes in the brain. Healthy age-related changes occur in 
the thickness of the grey matter (cortical thickness, CT) as 
well as the widening of the sulci (Sulcal width, SW) (Ber-
toux et al., 2019), as inferred from structural magnetic reso-
nance imaging (sMRI). SW has recently received increased 
attention as a robust measurement of cortical morphometry, 
most notably in older adults (Bertoux et al., 2019) as it 
appears to be less susceptible to age-related deterioration 
of sMRI contrast between white and grey matter (Kochu-
nov et al., 2005). A growing number of studies suggest that 
greater sulcal width in older adults is associated with poorer 
cognitive performance and Alzheimer’s disease progression 
(Bertoux et al., 2019; Borne et al., 2022; Liu et al., 2011). 
However, whether this association is detectable with online 
cognitive testing remains unclear.

In this novel study, we explore the correlation between 
brain morphology, specifically sulcal width, and cognitive 
functioning across both, online and in-person modalities, 
providing a comprehensive examination and comparison 
of the relationship between brain structure and cognitive 
performance across both administration modalities. We first 
studied the mapping between online and in-person testing 
in a sample (N = 141) of healthy adults and then studied the 
relationship to cortical morphology as assessed with SW.

Method

Participants

The 141 participants (75% female, aged 46–71 years, 
mean age = 60; years of education: 13.1 (6.5), NART-IQ 
mean = 110 (SD = 9), with 50% or more completed cog-
nitive tasks across both, the online as well as the in-per-
son tasks were drawn from the 159 participants that had 
attempted online and in-person testing, within the Pro-
spective Imaging Study of Aging (PISA) cohort- a mid-
life cohort, genetically enriched for risk of AD. AD risk 
was defined as high or low genetic risk of Alzheimer’s dis-
ease based on Apolipoprotein E4 (APOE ɛ4; see Table 1) 
(Lupton et al., 2021). Our sample was enriched for risk 
for AD with 47% of participants at increased risk, com-
pared to the general population at a 25% risk (see Table 1). 
Cognitive data acquired at QIMR Berghofer and structural 
(T1-weighted) MRI scans at Herston Imaging Research 
Facility (HIRF) in Brisbane, QLD, Australia (see Table 1 
for a demographic overview).
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Neuropsychological assessment

Online

The Creyos battery consists of 12 self-administered tasks 
across memory, executive function, language, and visuo-
spatial domains (listed in supplementary material table S1 
and fully described at https://creyos.com/). Completion 
of the full battery takes on average 30 min, following the 
guidelines of the American Psychological Association’s 
guidelines for the practice of telepsychology (American 
Psychological Association, 2023). Standardized inbuilt 
Creyos-provided instructions including videos and written 
instructions were given. Resulting scores did not require 
inversion before processing.

In-person

The comprehensive in-person cognitive battery was adminis-
tered assessing cognitive domains of executive functioning, 

memory, language, and visuo-spatial functioning. All neu-
ropsychological tests listed in Lupton et al. (Lupton et 
al., 2021) were administered by trained clinical neuropsy-
chologists. Table 2 lists the tests that were included in this 
analysis. Completion of the full battery took on average two 
hours to complete. Where required scores were inverted so 
that a high score always signifies better performance (e.g., 
task accuracy) and a lower score indicates poorer perfor-
mance (e.g., error rate, reaction time).

MRI

As part of an extensive imaging protocol, T1-weighted 
3D-MPRAGE structural Magnetic Resonance Imag-
ing (sMRI) data were acquired (TE/TR = 2.26 ms/2.3  s, 
TI = 0.9  s, FA = 8˚, 1  mm isotropic resolution, matrix 
256 × 240 × 192, BW = 200  Hz/Px, 2x GRAPPA accelera-
tion) at 3T on a Biograph mMR hybrid scanner (Siemens 
Healthineers, Erlangen, Germany). (Lupton et al., 2021).

APOE ɛ4 and polygenic risk score

APOE genotype (ɛ4 allele carriers vs. non-carriers) was 
determined from blood-extracted DNA using TaqMan SNP 
genotyping assays on an ABI Prism 7900HT and analysed 
using SDS software (Applied Biosystems). APOE ɛ4 carri-
ers were coded as positive across homozygous and hetero-
zygous carriers. A polygenic risk score (PRS) to assess the 
overall heritable risk of developing AD was calculated by 
combining common AD genetic risk variants with APOE ɛ4 
omitted (as described in Lupton et al. (Lupton et al., 2021).

Data processing and modelling

Python 3.11.15, with Pandas 1.2.5 and Numpy packages 
1.22.4, was used throughout data processing and analy-
ses. Specific details, including the use of other software, 
are included in each section. Figures were generated using 
packages Matplotlib 3.8.2 and Seaborn 0.11.2.

Sulcal Width (SW).
The Morphologist pipeline of the BrainVISA toolbox 

4.6.0 (Borne et al., 2020) was used to extract local mea-
sures of brain anatomy from the T1-w MRI. This pipeline 
identifies 127 cortical sulci, 63 in the right hemisphere and 
64 in the left hemisphere. Cortical thickness (CT) around 
each sulcus and the sulcal width (SW) were extracted; these 
have both shown promise for the early detection of AD. 
The pipeline was applied in a docker image (https://github.
com/LeonieBorne/morpho-deepsulci-docker). Following 
Dauphinot et al. (Dauphinot et al., 2020), right and left 
hemisphere measurements were averaged when the same 
two sulci exist in each hemisphere, resulting in 64 unique 

Table 1  Participant demographics for PISA participants who com-
pleted both the online and in person cognitive assessments
Variable Number of participants Percent
Sex Female 107 76%

Male 34 24%
Education < 12 years 38 27%

≥ 12 years 103 73%
Positive 66 47%

APOE ε4 Negative 38 38%
Missing 21 15%

Table 2  In person cognitive battery
Domain Task
Memory Rey Auditory Verbal Learning Test - Immedi-

ate and Delayed (Ivnik et al., 1990; Rey, 1964)
Topographical Recognition Memory Test 
(Warrington, 1996)

Executive 
Functions

Stroop Test (Victoria version) (Troyer et al., 
2006)
Word fluency (FAS) (Tombaugh et al., 1999)
Digit Span F/B (Wechsler Adult Intelligence 
Scale - Fourth edition - WAIS-IV) (Wechsler, 
2008)
Hayling Sentence Completion Test (Burgess 
& Shallice, 1997)
Test of Everyday Attention: Telephone Search; 
Dual Task (Robertson et al., 1994)

Language Graded Naming Test (Warrington, 1997)
National Adult Reading Test (Nelson & Wil-
lison, 1991)
Spontaneous speech - complex scene descrip-
tion (Robinson et al., 2015)
Category fluency – Animals (Tombaugh et al., 
1999)

Visuo-spatial VOSP-cube (Warrington & James, 1991)
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These tests consist of randomly shuffling subject labels in 
one of the data domains (in this case, the cognitive mea-
sures dataset) to disrupt the empirical association with the 
other domain (sMRI). Then PLS is performed on these 
shuffled data and the covariance is measured between 
each pair of latent variables. This test is repeated 1000 
times. If the covariance of an empirical mode is greater 
than 95% of those obtained from the first of these shuffled 
modes, then that mode is considered robust. As in Smith 
et al. (Smith et al., 2015); we compared scores to the first 
mode of the permutation tests because this extracts the 
highest explained variance in a null sample and can thus 
be viewed as the strictest measure of the null hypothesis 
(Wang et al., 2020).

Bootstrapping

Bootstrapping was used to identify which individual 
measures within a mode had a significant impact on the 
PLS latent variables (Mooney & Duval, 1993). This 
approach consists of creating a surrogate dataset of the 
same size as the original data by randomly selecting and 
removing participants, with replacement. This tests how 
robust the loadings are to particularities of the original 
dataset. PLS is then performed on the bootstrapped data 
and the loadings between each initial measure and the 
corresponding latent variable are calculated. This test is 
repeated 1000 times. If the 2.5 and 97.5 percentiles of 
the loadings obtained have the same sign, the measure 
(a specific sulcus or cognitive measure) is considered to 
have a statistically significant impact on the calculation 
of the latent variable.

Statistical analyses

Given the strong sex-difference in AD (Zhu et al., 2021) and 
previous work reporting sex-differences in SW variability 
(Díaz-Caneja et al., 2021), we evaluated such potential sex-
effects (male, female) on the relationship between in-person 
cognition and SW and online cognition and SW respec-
tively using an ANCOVA, controlling for age. The strength 
of association between in person cognitive testing and SW 
versus online cognitive testing and SW was tested with Stei-
ger’s z test. The PISA sample was enriched for high genetic 
risk of AD, including participants who were APOE ɛ4 posi-
tive, as well as those in the highest decile of risk for AD as 
defined by a polygenic risk score (PRS), which was calcu-
lated by combining common AD genetic risk variants with 
APOE ɛ4 omitted (as described in Lupton et al. (Lupton et 
al., 2021).

measurements (see Supplementary Fig. S1 for abbreviations 
and labels). Docker 4.14.0, with XQuartz 2.8.5, were also 
used to create the SW image.

Partial least square (PLS)

We used a partial least square (PLS) multivariate analy-
sis, to reduce the variables to a smaller set of predictors. 
PLS extracts a set of latent factors that maximize the cova-
riance between two data sets, here cognition and cortical 
morphology.

First a PLS analysis was used to study the co-variation 
between the two cognitive assays (online and all in person 
test as well as online and in-person subdomains). Then, 
two more PLS analyses were conducted; one between the 
online cognitive tests and SW, and the other between the 
in-person cognitive tests and SW. PLS is a multivariate 
method that identifies modes of common variation between 
two data sets and ranks these according to their explained 
covariance. The resulting projections help identify the 
most important factors, often referred to as latent variables, 
that link the two sets of data together, to improve under-
standing of the relationship between them. The Canoni-
cal Partial Least Square (PLS) approach (Wegelin, 2000), 
implemented in the Python library scikit-learn (Pedregosa et 
al., 2011), was used. This method iteratively calculates pairs 
of latent variables (modes): the first mode corresponds to 
the pair explaining the most covariance, and so on for ensu-
ing modes. These latent variables enable loadings, which 
weight each individual cognitive test or SW according to 
their contribution to that mode.

For all analyses, missing values were replaced by the 
average score across all participants. Sulci width features 
and neuropsychological measures were excluded if miss-
ing in more than 50% of participants. Likewise, partici-
pants were excluded if they were missing more than 50% of 
either cognitive measures or sulci width measures. In total, 
3 sulci measures were excluded (F.C.L.r.sc.ant., S.GSM., 
S.intraCing). No participants or neuropsychological mea-
sures were excluded. All measures were z-scored by sub-
tracting the mean of these participants and scaling to unit 
variance before applying the PLS.

The corresponding code is available at https://github.
com/LeonieBorne/brain-cognition-pisa.

Statistics

Permutation tests

Permutation tests were used to identify the robustness of 
the rank ordered PLS modes (Nichols & Holmes, 2002). 
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most strongly onto memory and executive functions (1st 
mode, p = 0.011, cov = 3.55, z-cov = 3.00, R2 = 0.18, 
z-R2 = 0.95; 2nd mode, p > 0.99). For the online battery, 
the cognitive projection loaded most strongly onto execu-
tive function (1st mode, p < 0.001, cov = 2.76, z-cov = 4.71, 
R2 = 0.14, z-R2 = 1.15; 2nd mode, p = 0.99). Greater SW in 
these projections covaried with poorer performance in the 
corresponding cognitive assessments.

Brain loadings of overall cognition-related sulcal width 
showed a regional pattern that was significantly corre-
lated between the online and in person cognitive apprais-
als (r = 0.996; see figure S1 in supplementary material), 
with both cognitive administration modalities (in-person 
and online) loading most strongly across the occipital 
lobe, the anterior and posterior inferior temporal sulcus, 
the posterior lateral fissure, superior, inferior and internal 
frontal sulcus, intraparietal sulcus, sub-parietal sulcus, and 
parieto-occipital fissure. Brain-behavior z-transformed 
covariance was likewise comparable across the two admin-
istration types (Fig. 3) with no significant difference in the 
variance explained in sulci width for the online cognitive 
assay (r = 0.39) compared to the in-person testing (r = 0.42; 
Steiger-z = 0.48, p = 0.63). Taken together both cognitive 
projections loaded onto similar cognitive domains and pro-
jected with comparable strength and topography onto the 
brain’s morphology (Fig. 4). AD risk and sex had no signifi-
cant effect on the association (see Figures S2 - S4 in supple-
mentary material).

There was no significant effect of sex on either the in-per-
son or the online cognitive-sulcal width relationships (Fig. 
S4 in supplementary material).

There was a significant relationship between sulcal wid-
ening and cognitive performance across both online and in-
person administration (Fig. 5). This association was evident 
regardless of age (Fig. S5).

Discussion

With an aging population, and recent advances in treatment 
options in the early stages of neurodegeneration, the demand 
for early identification is rising. More accessible, digital 
cognitive testing can assist to fulfill this demand. However, 
such tests need to have comparable performance to tradi-
tional in person tests, and similar sensitivity to the presence 
and nature of underlying neurobiological differences.

Here we demonstrated that relatively brief online cogni-
tive tests strongly co-vary with extensive in-person assess-
ment and relate to similar underlying cortical morphology, 
with executive and memory domains showing the stron-
gest loadings. This aligns with the findings of Germine and 
Hooker (2011) and Haworth et al. (2007), which demonstrate 

Results

Association between online performance and in-
person performance

Across all tests, performance in online cognitive testing 
strongly and significantly covaried with performance in 
detailed in-person assessment (cov = 2.67; z-cov = 12.33; 
r = 0.60; r2 = 0.37; p < 0.001; Fig. 1).

Analyzing different cognitive domains of the in-person 
assessment separately (i.e., executive, memory, language 
and visuo-spatial; see Fig.  2), revealed that the variance 
explained for executive tests of the in-person battery was 
strongest (cov = 1.81; z-cov = 11.57; r = 0.57; r2 = 0.32; 
p < 0.001), followed by language (cov = 1.42; z-cov = 7.09; 
r = 0.51; r2 = 0.26; p < 0.001), memory (cov = 1.45; 
z-cov = 6.44; r = 0.44; r2 = 0.19; p < 0.001), then visuo-spa-
tial (cov = 0.44; z-cov = 2.60; r = 0.26; r2 = 0.07; p = 0.013). 
The latter task showed a ceiling effect with most partici-
pants making either no or one mistake. The average perfor-
mance on the in-person and online tasks can be found in the 
supplementary Tables 2 and 3.

Associations between cognition assessments and 
cortical morphology

The application of partial least square (PLS) yielded a single 
robust mode for covariation between sulcal width and both 
the total online and total in-person assessments, although 
the nature of the loadings somewhat differed (Fig. 3). For 
the in-person assessment, the cognitive projection loaded 

Fig. 1  Projections of z-scored latent variables from the PLS depicting 
the common variation of all online tests onto all in-person tests
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(r = 0.39) and the in-person testing (r = 0.42). By comparing 
online testing to in-person cognitive testing for its efficacy 
in informing brain morphology, we highlight its potential 
utility as a screening instrument in the fields of neurocog-
nition and aging. The independence of the brain-cognition 
relationship from age underscores that age itself is not the 
sole determinant of this association. The relatively strong 
weighting for executive function across both in-person and 
online assessments is in line with West’s (1996) frontal 

strong correlations between in-person and online cognitive 
assessments. Additionally, it reinforces other research vali-
dating the use of computer-based tests in older adults (Cyr et 
al., 2021). We add to this prior body of work by demonstrat-
ing that online assessments in this population produce brain 
projections comparable to those of in-person testing. We 
observed a very strong correlation between the sulcal width 
projections of online and in-person cognitive assays, with 
similarly strong variance explained for the online testing 

Fig. 2  Projections (z-scored latent variables) explaining the relationship between online and onsite tests separate for the four domains (A-executive 
function; B-language; C-memory; D-visuo-spatial), the shaded area represents the 95% confidence interval
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Fig. 3  Loadings of the individual cognitive tests of the in person (left) 
and online (right) battery onto the latent variable of the PLS. (a) Cog-
nitive test loadings for partial least square (PLS) applied to the in-
person assessment, and (b) to the online assessment. The variables are 

shown in order of how strongly they load onto the latent variable, with 
the strongest at the bottom. Tests with non-robust associations (95% 
confidence intervals) are represented in bars with striped pattern

 

Fig. 4  Mean loading of the in person (top) and online (bottom) latent 
variable onto the 127 sulci averaged across left and right hemisphere 
according to BrainVISA toolbox (Borne et al., 2020) for in-person 
(top) and online administration (bottom), with the strongest positive 

covariation of the latent variables of the respective cognitive assays 
onto the sulcal width latent variable in dark purple and the weakest 
association in light yellow
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that can significantly impact diagnosis and treatment, par-
ticularly in a clinical setting. Hence, while remote and 
technology-driven cognitive assessments have their place in 
modern healthcare, in-person neurocognitive assessments 
continue to be indispensable, especially in clinical contexts.

Current alternatives to comprehensive in-person cogni-
tive testing include the Alternatives to in-person cognitive 
testing, like Mini-Mental Status Exam (MMSE (Folstein 
et al., 1975) and Montreal Cognitive Assessment (MoCA 
(Nasreddine et al., 2005), serve as screening tools for cog-
nitive changes. Platforms like Creyos offer online testing 
as potential, more detailed alternatives (Sánchez Cabaco et 
al., 2023). Growing normative datasets may integrate these 
platforms into healthcare, enabling non-experts to moni-
tor cognitive decline and assess interventions’ effects on 
cognition.

There are some caveats to note in the current study. The 
PISA cohort is enriched for those at the extremes of genetic 
risk for Alzheimer’s disease. This selection bias does not 
affect the comparison of the online versus in-person cogni-
tive testing platforms but may predetermine the projections 
towards prodromal Alzheimer’s disease related impair-
ment, rather than impairment associated with normal aging. 
Future validation work should also include longitudinal data 
to allow cognitive decline to also be assessed.

Unsupervised cognitive testing in a home environment 
has limitations that should be taken into account. There is 
the potential for incorrect use of tasks affecting the accu-
racy and reliability of the test results. Appropriate measures 
should be put in place to minimize those risks including 
validity checks. There is also a risk of intentional misuse 
such as completion by another individual or purposely fail-
ing tasks. This would need to be considered if such tests 
were e employed as screening tools for example for inclu-
sion in a clinical trial.

Another limitation is that our sample consists of 75% 
females. This gender imbalance is a common issue in bio-
medical and psychological research, where females are 
often more likely to volunteer. This gender bias should be 
acknowledged when interpreting the results, as it may affect 
the generalizability of the findings to the broader population.

Conclusions

Here we demonstrate that a cost efficient online cognitive 
battery parallels comprehensive cognitive in-person assess-
ment in its correlation with brain morphology. This is par-
ticularly relevant given the anticipated increase cognitive 
screening demand resulting from recent advances in dis-
ease-modifying treatments for neurodegenerative disorders 
like Alzheimer’s.

aging hypothesis and highlights the importance of consid-
ering executive function alongside memory when investi-
gating brain neurodegeneration in mid-life aging. In sum, 
the current analyses suggest adequate sensitivity of online 
cognitive tests for studying the age-related neurobiology of 
cognition.

Online cognitive testing offers cost savings, automated 
interpretation, accessibility, and customizable difficulty lev-
els (Sternin et al., 2019). Our study shows a user-friendly 
30-minute online platform at home correlates comparably 
with cortical morphology to a two-hour in-person test by a 
neuropsychologist.

Increasingly, online testing is employed in large-scale 
epidemiology studies, exemplified by our PISA study with 
data from over 2,000 participants (Lupton et al., 2021). In 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 
the latest data collection wave aims to screen 20,000 par-
ticipants online before further phenotyping (Weiner et al., 
2022). Online testing also holds promise for assessing inter-
ventions on cognitive outcomes and serves as a screening 
tool for clinical trial participant inclusion (Fawns-Ritchie & 
Deary, 2020; LaPlume et al., 2021).

Certainly, in-person cognitive assessments present a 
distinct set of advantages, especially when it comes to 
the clinical evaluation and differentiation of various neu-
rodegenerative disorders during their initial stages. While 
technology-driven cognitive assessments have their merits, 
the traditional in-person approach offers unique strengths 

Fig. 5  Relationship between cognition and sulcal width for in-person 
testing (purple) and online testing (orange) with no significant dif-
ference in the variance explained in sulci width for the two different 
administrations (Steiger-z = 0.48, p = 0.63)
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