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A fundamental goal of evaluating the performance of a clinical model is to ensure it performs well
across a diverse intended patient population. A primary challenge is that the data used in model
development and testing often consist of many overlapping, heterogeneous patient subgroups that
may not be explicitly defined or labeled. While a model’s average performance on a dataset may be
high, themodel can have significantly lower performance for certain subgroups, whichmay be hard to
detect. We describe an algorithmic framework for identifying subgroups with potential performance
disparities (AFISP), which produces a set of interpretable phenotypes corresponding to subgroups for
which the model’s performance may be relatively lower. This could allow model evaluators, including
developers and users, to identify possible failure modes prior to wide-scale deployment. We illustrate
the application of AFISP by applying it to a patient deterioration model to detect significant subgroup
performance disparities, and show that AFISP is significantly more scalable than existing algorithmic
approaches.

Artificial intelligence (AI) andmachine learning (ML)-enabled technologies
are rapidly entering clinical practice, with more than 800 authorizations of
AI/ML-based medical devices by the US Food and Drug Administration
(FDA)1. AI/ML-based systems have been demonstrated to improve patient
outcomes2,3 and increase efficiency of healthcare delivery4. However, as the
adoption of this technology increases, concerns about its bias, robustness,
and generalizability have also risen.

A fundamental goal of evaluating the performance of a clinical ML
model is to ensure it performs well across a heterogeneous intended
patient population. A primary obstacle is that a model may exhibit high
overall performance on an evaluationdataset, yet its performance can vary
significantly across different subgroups, leading to lower performance for
some. This variability can exacerbate disparities in patient care and out-
comes, particularly for rare or underrepresented subgroups. Detecting
these subgroups can be particularly challenging when they are not
explicitly defined (a problem sometimes referred to as hidden
stratification5).

A variety of case studies have shown how models can learn to predict
using dataset-specific artifacts that cause themodel’s performance to appear
strong, but significantly deteriorate when applied to new sites6–9. As one
example, the Epic Sepsis Model has been reported to have varying perfor-
mance when implemented at different hospitals10,11. Analysis of factors
associated with the model’s performance has shown that it performs worse
on patient populations with higher sepsis incidence, comorbidity burden,
and cancerprevalence12. This information canhelpdeterminewheremodels
will be safe and effective.

Subgroup performance can also inform post-deployment monitoring,
because models can encounter new subgroups not present during initial
development and validation13. Auditing models for such subgroups is
manageable when a small list of relevant subgroups (e.g., different demo-
graphic groups) is known beforehand. However, model performance can
vary across numerous factors, including patient demographics, comorbid-
ities, and medical history, making it challenging to detect performance
differenceswithout labels formany subgroups. Thus, there is a need for tools
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to help evaluators navigate the possible heterogeneous subgroups where a
model may underperform.

Existing methods for identifying subgroups for which a model
underperforms typically rely on manual strategies. One approach, schema
completion, involves detailed annotation of subgroups5. This can be
impractical when many complex subgroups exist. Another approach, error
auditing, involves manual expert review of misclassified instances, and is
also labor-intensive5,14. To streamline this process, algorithmic, data-driven
approaches have been developed to automatically suggest subgroups for
further examination. For tabular data, methods search for subgroups
defined by data “slices” (combinations of feature values such as male
patients with dementia) with poor performance15–17. However, the space of
possible slices is vast, often requiring heuristics and parallelization to make
searches over slices tractable. Slice-based methods have also been extended
to unstructured cross-modal datasets (e.g., paired imaging and text data)18.

To address these challenges, we describe AFISP (Algorithmic Frame-
work for Identifying Subgroups with Performance disparities), a scalable,
end-to-end approach for identifying subgroups for whom a model may
perform poorly. Given a pre-trained model to evaluate, an evaluation
dataset, a set of user-specified features (e.g., patient characteristics), and a
performance metric, AFISP first identifies the model’s worst-performing
subset of the evaluationdataset.This subset reveals shifts in theprevalenceof
unknown subgroups that would lead to low performance, enabling eva-
luators to detect mixtures of poorly performing subgroups automatically.

Given theworst-performing data subset, AFISP learns an interpretable
characterization (i.e., a concretely defined and easily communicable data
slice) of subgroups presentwithin the subset. This provides away to identify
subgroups with potentially poor performance that can be documented and
further analyzed. This reduces the reliance on manual review of individual
datapoints, and is significantly more scalable than exhaustively searching
over all possible subgroups.

In this paper, we illustrate the use of AFISP to algorithmically deter-
mine subgroups forwhich amodel has lowperformance.As a case study,we
apply AFISP to a patient deterioration monitoring model and identify
several potential subgroups with poor discriminative performance. AFISP
finds subgroups similar to the ones found by an exhaustive slice-searching
algorithm while being more scalable and running significantly faster. We
also demonstrate how identifying problematic subgroups can potentially be
used to drive additional data collection and model improvement.

Results
Applying AFISP to a patient deterioration monitoring model
The workflow for applying AFISP is outlined in the process diagram in Fig.
1. AFISP takes as input a model to evaluate, an evaluation dataset, and a set
of possible subgroup-defining features.

In our experiments, we usedAFISP to evaluate amodel inspired by the
advanced alert monitor (AAM)19, an ML model trained to detect inpatient
deterioration outside of the intensive care unit (ICU) that was shown to
decrease patientmortalitywhendeployed at 19hospitals3.Note thatwehave
implemented an AAM-inspired model for illustrative purposes, so our
findings do not represent subgroups on which the original AAM model
underperforms. AFISP uses an evaluation dataset, for whichwe used 60,998
patient encounters extracted from the electronic health records of adult
patients admitted to any of 5 hospitals within the Johns Hopkins Hospital
network (excluding labor and delivery admissions) from 2016 to 2021.

Thefinal input toAFISP is a set of user-chosen features that are used to
create subgroup definitions. Some of these features may be inputs used by
the model to make predictions, while others may represent different char-
acteristics that the user wants to evaluate for potential disparities. Prior
studies demonstrating clinical predictive model performance disparities
between subgroups have primarily focused on demographic subgroups,
such as performance disparities by race or sex20,21. By contrast, in the current
study we examine the potential existence of more broadly defined patient
subgroups for which the AAM-inspired model underperforms. We allow
for the discovery of subgroup phenotypes (i.e., the observed characteristics of

a subgroup) defined with respect to features pertaining to over 80 comor-
bidities (e.g., prostate cancer, chronic bronchitis, etc.), patient demographics
(age and sex), hospital information (trauma level and hospital size), and
admission circumstances (including admission source and admission time
and season). In total, 91 features were selected.

We measured performance in terms of the AAM-inspired model’s
ability to discriminate between patients who deteriorated outside of the ICU
vs. patients who did not deteriorate. Specifically, as defined in the AAM
development paper19, the outcome was positive if a patient had an in-
hospital death, an unexpected transfer from the ICU (i.e., less than 6 h ICU
stay followed by transfer to the operating room), or a long stay in the ICU
(i.e., greater than6 h ICUstaynotdue to scheduled surgery).We selected the
area under the ROC curve (AUROC) as an overall measure of dis-
criminative performance.

Analyzing the stability of model performance as subgroup pre-
valence changes
We analyzed how the performance of the AAM-inspired model decays as
the evaluation data distribution is gradually changed adversarially through
shifts in the prevalence of subgroups defined with respect to the 91 features
described above. The results are depicted in the performance stability curve
in Fig. 2a. The blue curve shows how the performance (AUROC) of the
AAM-inspired model on the worst-performing subset of the evaluation
dataset varies vs. the size (as a fraction of the number of evaluation dataset
samples) of the worst-performing subset. For a given subset fraction α, a
corresponding worst-performing data subset is identified by the algorithm
such that it contains the 100 × α%samples in the evaluation dataset with the
worst expected loss (i.e., worst average loss conditioned on the selected 91
features). A subset fraction of α = 1 corresponds to model performance on
the full evaluation dataset, and smaller data subsets (i.e., smaller α) can
statistically differ more from the full population than larger subsets.

As expected, the AUROCof the AAM-inspiredmodel decreases as the
subset fraction gets smaller, since smaller worst-performing data subsets
correspond toworse quantiles of theAUROC.On the full evaluationdataset
(i.e., subset fraction of 1), the AAM-inspired model achieves an AUROCof
0.986 (CI 0.985, 0.987). As the subset fraction becomes smaller, the AAM-
inspired model’s AUROC decays to 0.919 (CI 0.910, 0.929) at a fraction
of 0.05.

To select a specific subset to analyze, we used a user-determined per-
formance threshold. This threshold can be determined in a variety of ways,
including from published literature, standard of care, or based on existing
models. For illustration, we trained a “baseline”model to serve the role of an
existing model (details in Supplementary Information 1C), and used its
performance on the evaluation set as the minimum performance threshold
for subgroup performance in the AAM-inspired model. Using this
threshold (AUROC of 0.944; the green horizontal line in Fig. 2), we found
that subset fractions of size ≈10% or less yielded a worse AUROC.

Learning interpretable subgroup phenotypes that produce poor
model performance
Given the worst-performing data subset, we want to determine specific
subgroups present within the subset on which the AAM-inspired model
has performance worse than the reference value.We used SIRUS22, a rule-
based classification algorithm, to determine interpretable subgroup phe-
notypes (i.e., combinations of values of the 91 selected features). We
allowed for up to three features to be simultaneously considered in a
phenotype definition. After filtering subgroups based on significance (and
correcting for multiple comparisons) and effect size, AFISP recovered the
13 subgroups reported in Table 1 (ordered by within-subgroup AUROC).
The subgroups are all quite rare in the evaluation dataset, with the most
prevalent subgroup (Subgroup 13)making up only 4.4% of the evaluation
dataset. We also plot the prevalence of these subgroups in the worst-
performing subsets extracted during the stability analysis stage in Fig. 2b.
This shows that worse model performance is associated with the
increasing prevalence of these subgroups.
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Notably, four of the subgroups have AUROC intervals that are below
0.9, and there is some redundancy in the specified feature values. Further,
nine of the subgroups have multivariate phenotype definitions. Thus, any
univariate subgroup analysis would fail to identify these subgroups.We also
note that except for choosing the 91 features for possible subgroup defini-
tions, the process of producing Table 1was automated and did not involve a
human user’s oversight.

AFISP identifies subgroups similar to those found by exhaustive
algorithmic approaches
Without ground truth labels for subgroups with poor performance, it is
difficult to assess the quality or accuracy of the subgroups found by AFISP.
Thus, we instead compared the subgroups found by AFISP to those found
by Slice Finder (SF)15, a state-of-the-art algorithmic approach which sear-
ches all possible degree two slices (i.e., subgroup phenotypes involving at
most two features). As expected of an exhaustive search of 34,716 possible
slices, SF found 748 slices corresponding to subgroups with poor perfor-
mance—substantially more than AFISP identified. However, these 748 sli-
ces were a superset of the 13 found by AFISP.

To visualize and compare the similarity of subgroups found by AFISP
and SF, we used partial least squares (PLS) regression23 to jointly project the
AFISP subgroups, SF slices, and a random sample of 2000 of the possible

34,716 slices into a two-dimensional vector space that captures correlations
between subgroups and performance within those subgroups.

To see that the vector space captures subgroup performance correla-
tions, we plot the PLS representations of the SF slices and 2000 randomly
selected slices from the set of all possible slices in Fig. 3. The SF slices, which
correspond to those found by SF to have poor performance, are all in the left
two quadrants, while the randomly selected slices are distributed across the
space. Thus, the left region of the space captures slices with poor
performance.

Next, in Fig. 4, we plot the SF slices as points (colored according to
AUROC) and the AFISP subgroups as vector directions in the space
(black arrows). This allows (cosine) similarity between subgroups to be
assessed using the angle between two points/vectors (with a smaller
angle indicatingmore similarity).We see that the plot captures similarity
amongst rules. For example, the vectors for AFISP subgroups 3, 5, and 7
are closely aligned, and all of these subgroups correspond to subsets of
patients with acute respiratory failure. Overall, most of the 748 Slice
Finder subgroups are similar to at least one of the AFISP subgroups. A
few patches of Slice Finder subgroups are outliers, but the corresponding
AUROCs of these rules are relatively higher (≈0.9 ormore). Thus, AFISP
found a concise set of subgroups that covers most of the slices selected
by SF.

Fig. 1 | Process diagram depicting the AFISP
workflow. AFISP is an end-to-end framework for
identifying subgroups on which an ML model may
perform poorly. Given a dataset, pre-trained model,
and set of user-specified features, the Stability
Analysis phase (blue) allows a user to identify the
worst-performing subset of the dataset on which the
model has significantly deteriorated performance.
Then, this data subset is processed to determine
concrete subgroup phenotypes (interpretable sub-
group descriptions; orange) present within the
subset. Finally, an AFISP user applies model per-
formance diagnostics (purple) to each identified
subgroup to evaluate if the observed subgroup per-
formance disparity is correctable through changes to
the modeling pipeline.
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To further validate the proposed approach, in the Supplementary
Information we compare subgroups found by AFISP to those found by SF
on an implementation of the SICULA ICU mortality prediction model24

using the MIMIC-III dataset25.

Assessing thecorrectabilityofsubgroupperformancedisparities
An important component in determining the safety risk associated with
poor subgroup performance is to use model performance diagnostics to
assess the correctability of an observed performance gap. As just one
example, considering the worst-performing subgroup in Table 1, we tested
the effect of addingmore training data from the subgroupwhile keeping the
amount of training data from outside the subgroup fixed. Figure 5a shows
the effect of additional training data from the subgroup on the within-
subgroup AUROC. The vertical dashed lines denote the amount of sub-
group data present in the original training set used to develop the model.

Subgroup data beyond that amountwas taken from the training datasets for
the other hospitals. The plot demonstrates that, in this case, data collection
would be helpful in addressing the performance gap. With 2000 training
samples from the subgroup, the performance would be comparable to that
of many of the other subgroups in Table 1. Figure 5b shows that increasing
the amount of training data for just this single subgroup also improved the
model’s AUROC on the full evaluation dataset.

Validating AFISP accuracy and scalability
The application of the AAM-inspired model illustrates the usability of the
AFISP workflow and qualitatively shows that AFISP can concisely capture
important subgroups found by exhaustive search-based approaches. To
validate the correctness of the subgroup discovery method we turned to
synthetic data inwhichwe createdproblematic subgroups andmeasured the
ability of methods to recover these subgroups. Specifically, we simulated a

Table 1 | Poorly performing subgroups identified by AFISP

Subgroup # Phenotype AUROC [95% Bootstrap CI] Number of patients

AFISP 1 Anemia and nonspecific lung disease 0.81 [0.78, 0.84] 562

AFISP 2 Nonspecific lung disease and Hypoxemia 0.82 [0.77, 0.86] 310

AFISP 3 Sepsis and acute respiratory failure 0.83 [0.79, 0.87] 306

AFISP 4 Sepsis and anemia 0.85 [0.82, 0.88] 606

AFISP 5 Acute respiratory failure and no bronchitis 0.89 [0.88, 0.91] 1095

AFISP 6 Nonspecific lung disease and hypoxemia 0.89 [0.88, 0.91] 1468

AFISP 7 Acute respiratory failure 0.89 [0.88, 0.91] 1137

AFISP 8 Sepsis 0.91 [0.90, 0.93] 1361

AFISP 9 Hypoxemia 0.91 [0.90, 0.93] 1587

AFISP 10 Nonspecific lung disease and not admitted from ED 0.92 [0.90, 0.94] 468

AFISP 11 Nonspecific lung disease and no infection 0.92 [0.90, 0.95] 422

AFISP 12 Transferred from nursing facility and admitted from ED 0.93 [0.91, 0.94] 2196

AFISP 13 Transferred from a nursing facility 0.93 [0.92, 0.94] 3035

Phenotypes of subgroups found by AFISP in theworst 10%subset of the evaluation dataset, and the performance of the AAM-inspiredmodel on these subgroups. For reference, the full evaluation dataset
contained 60,998 patients and the AUROC of the AAM-inspired model on the full dataset was 0.986 [0.985, 0.987]. Confidence intervals computing using 100 bootstrap resamples. All subgroups had a
statistically significant difference (at the 0.05 significance level) in performance from the performance threshold (0.944) with all p values less than 1 × 10−4 after correcting for multiple comparisons.

a b

Fig. 2 | Performance analysis of the AAM-inspiredmodel as subgroup prevalence
changes. a Performance stability curve for the AAM-inspired model under a shift in
patient subgroup prevalence as measured by area under the ROC curve (AUROC).
The blue curve plots the AUROC of the AAM-inspired model on the worst-case
subset of a given size (x-axis; the fraction of thewhole evaluation dataset). Theworst-
case subset is determined algorithmically based on the AAM-inspired model’s
expected loss conditional on a set of 91 patient characteristics. The shaded region

denotes a 95% bootstrap confidence interval derived from 100 resamples. The green
dashed line denotes a minimum performance threshold that was selected based on
the performance of an existing model. b Prevalence of subgroups with poor per-
formance extracted by AFISP vs. subset fraction. While these subgroups are rare in
the full dataset (subset fraction = 1), they become more common in smaller worst-
case subsets.
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classification task with ten binary features, and trained a well-specified
logistic regression prediction model. We then created a problematic sub-
group for this model by randomly flipping labels in samples corresponding
to a subgroup defined by two features.

Applying AFISP and SliceFinder to a holdout evaluation set of 10,000
samples (and repeating 50 times), we report the accuracy (percent of times
that each method found the problematic subgroup) of each method in
Fig. 6a. Due to the exhaustive nature of its search, SF found the problematic
subgroup 94.6% (CI 89.5, 99.6) of the time. By contrast, AFISP found the
problematic subgroup 83.4% (CI: 73.8, 93.0) of the time (equality of two
proportions test p value of 0.073).

While SF was more accurate in subgroup discovery than AFISP, we
also evaluated the scalability of each method as the number of features
increased from 25 to 5000. In Fig. 6b, we plot the runtime (in minutes) of
each method vs the number of features, as measured on a server with 64
CPU cores. As expected, the runtime of SF scales much worse than that of
AFISP. SF’s scaling would be even worse if SF considered slices involving
more than two features, and if the features had more than two categories.
Thus, for datasets with large numbers of features, high cardinality features,

or slices of high degree, exhaustive search-based methods like SF quickly
become intractable.

While the output of AFISP is similar in form to the output of existing
search-based algorithmic approaches like SliceFinder, there are a few key
differences. First, while an exhaustive search is more thorough (and thus
more likely to find all poorly performing subgroups), it may find too many
subgroups (e.g., have issues with redundancy) and it scales poorly. For the
purposesofhypothesis generationandexploratorydata analysis, an approach
like AFISP may be more suitable for quickly identifying significantly
underperformingsubgroups. Second, the intermediateoutputsofAFISPhave
additional value beyond what is possible with approaches like SliceFinder. In
particular, the performance stability curve in Fig. 2a serves as a detector that
tests for the existence of some subgroups with poor performance. For
example, if this curvewere tobenearconstant, thiswould indicate that there is
no detectable underperforming subgroup with respect to the given user-
selected features. This is noteworthy because in caseswherewe are not able to
identify specificphenotypesor slices (e.g., because thephenotype template is a
poor fit for the true underlying subgroups), AFISP’s performance stability
curve may still be able to detect the existence of the subgroups.

Fig. 4 | Comparing vector embeddings of sub-
groups found by AFISP and SliceFinder. Loading
plot of the same partial least squares (PLS) regres-
sion as in Fig. 3, this time plotting the subgroups
found by SliceFinder as points and the subgroups
found by AFISP as vectors (black arrows). We plot
the AFISP subgroups as vectors to enable a better
visual assessment of cosine similarity: a smaller
angle between subgroups indicates more similarity.
Thus, points close to or along a vector are Slice-
Finder subgroups that are highly cosine similar to
the corresponding AFISP subgroup. The points are
colored according to the AAM-inspired model’s
AUROC within the corresponding subgroup.

Fig. 3 | Vector embeddings of patient subgroups.
Loading plot of the first two dimensions created by
jointly embedding subgroups found by SliceFinder
(purple points), random candidate subgroups
(orange points), and subgroups found byAFISP (not
pictured) using partial least squares (PLS) to predict
model loss. While the random slices are spread
throughout the space, all SliceFinder slices are in the
left two quadrants, indicating that PLS was able to
capture subgroup-performance correlations.
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Discussion
In healthcare, evaluating a predictive ML model to ensure its safety and
effectiveness across the various populations and subgroups to which it will
be applied is of primary importance. Ideally, this is done during the initial
evaluation of the model and prior to model deployment to avoid poor and
possibly unsafe performance for any group. However, this is currently a
major challenge due to the complex nature of the prediction algorithms, the
existence of hidden stratification and a priori unknown subgroups, and the
burden of expert-drivenmanual error review5,26. In this study, we described
and demonstrated the potential of AFISP, a scalable algorithmic, data-
driven approach for identifying subgroups for which a model may under-
perform. Applying this data-driven approach to our custom implementa-
tion of AAM, an inpatient deterioration prediction system, we identified 13
subgroups with significant gaps in discriminative performance (e.g.,
AUROC of 0.81 in subgroup 1 vs. 0.986 on average) with minimal user
input. We also demonstrated that we could use model performance diag-
nostics to assess the correctability of a subgroup performance gap found by

AFISP. We found the performance gap in the worst-performing subgroup
for the AAM-inspired model to be largely fixable through a targeted col-
lection of more data from that subgroup.

We also showed across real data examples (see Supplementary Infor-
mation Section 2 for an additional real data example) and in a simulation
study that subgroups found by AFISP were similar to those found by
exhaustive search-based methods like SliceFinder (SF). The results present
an interesting trade-off: SF can more accurately find all underperforming
subgroups, but scales very poorly in the number (and cardinality) of can-
didate factors. By contrast, AFISP scales better but only finds a repre-
sentative subset of underperforming subgroups. The improved scalability is
advantageous because model performance can vary with respect to
numerous factors, including demographic information, but also patient
history, comorbidities, circumstances of admission, geographic location,
hospital type, data collection instruments, etc. By having the ability to
includemany possibly relevant factors into the feature set, model evaluators
can avoid having to define all relevant subgroups to test ahead of time.

a b

Fig. 6 | Accuracy and efficiency of subgroup discovery methods on
simulated data. a Results from a synthetic data experiment in which a poorly
performing subgroup was manually defined for the given predictionmodel. The bar
plot reports AFISP and SliceFinder’s accuracy (percent of times that each method

found the problematic subgroup). Error bars represent 95% Wilson score intervals
from50 trials. bRuntime inminutes of eachmethod vs the number of binary features
(on log scale). Shaded regions represent one standard error from five repetitions.

a b

Fig. 5 | Testing model performance after retraining with more data. a Subgroup
performance learning curve for subgroup 2 found by AFISP: `Patient has
anemia & patient has a nonspecific lung disease'. The learning curve
plots the subgroup AUROC of the model vs. the amount of training data present
from the subgroup. The amount of non-subgroup data is kept fixed. b Full popu-
lation performance learning curve for this subgroup. This plots the full population

AUROC of the model vs. the amount of training data present from the subgroup. In
both plots, the points represent the average of ten samples of subgroup data, and the
shaded region denotes a 95% confidence interval. The vertical dashed line denotes
the amount of training samples used for the original model. The green horizontal
dashed line is the full population AUROC of the original model.
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On the other hand, from a safety perspective, evaluators wouldwant to
identify all underperforming subgroups. However, as our experiments
show, there can be significant redundancy between underperforming sub-
groups because of overlapping features. For example, eight out of 13 AFISP
subgroups involve either a nonspecific lung disease or acute respiratory
failure (two conditions which share the same ICD-9 heading). This
redundancy is even worse for the 748 subgroups identified by SliceFinder,
for which many correspond to highly overlapping groups of patients. For
exploratory purposes and hypothesis generation, this redundancy could
result in a large overhead for the expert who needs to review the identified
subgroups.Auseful avenue for futureworkwouldbe to learn subgroups that
can leverage hierarchical structure (such as relationships between ICD-9
codes) to reduce the amount of repetition or to provide subgroupdefinitions
at varying levels of granularity.

Algorithmic evaluation methods such as AFISP could provide sig-
nificant value to how model evaluations are performed throughout a
model’s lifecycle. For example, during model validation, prior to deploy-
ment, model developers can perform algorithmic subgroup discovery to
proactively identify possible failure modes for the model. Additionally,
AFISP could help with monitoring a model’s performance post-
deployment. As new model performance data becomes available from
active sites, algorithmic subgroup discovery can be run in order to identify
new vulnerable subgroups that were not previously present or were too
small to be reliably detected. This complements real-time monitoring
procedures that actively audit individual predictions for errors as they occur
during use27,28.

With regard tomodel improvement and updating, we demonstrated a
model performance diagnostic that measured the ability of additional
subgroup-specific data collection andmodel retraining to correct subgroup
performance disparities. However, in some cases thismodel diagnosticmay
be challenging to perform because of difficulties in collecting targeted data.
Another reason for performance disparities can be due to model
underfitting29. Model developers can attempt to diagnose this by seeing if
changes to the type of model used (e.g., using tree-based ensembles instead
of linear models) or to the richness of the feature set (e.g., adding new
features or including interactions) improve the disparity. Methods for
updating models used by humans30,31 and model localization through
transfer learning32,33 remain open areas of research.

There are some limitations: First, the proposedmethodology is limited
by the heterogeneity of the available evaluation data. AFISP only uncovers
latent subgroups present in the data. Thus, if there is a subgroup with poor
model performance that is not represented in the evaluation data, the
method will fail to identify this subgroup. For example, if a model has very
poor performance on patients with HIV/AIDS, but the evaluation dataset
contains no (or few) patients with HIV/AIDS, then the algorithmwould be
unable to discover the model’s under-performance on the HIV/AIDS
patient subgroup. This limitation underscores the importance of collecting
diverse, high-quality datasets for performing an algorithmic evaluation.
Additionally, the study data was limited to hospitals within the same
institutional network. Thus, subgroups identified by AFISP could not be
validated on out-of-network data.

Second, distinguishing the signal (i.e., subgroups with poor perfor-
mance) from noise (i.e., small arbitrary collections of samples with high
variance in performance) is difficult when the evaluation dataset is small, or
the subgroup in question is very rare in the evaluation dataset. In such cases,
the confidence interval for a subgroup performance estimate will be large,
indicating high uncertainty for small-sized subgroups. Fortunately, in our
experiments, the evaluation dataset contained more than 60,000 samples,
and the smallest subgroup phenotype that was identified contained more
than 300 patients. Additionally, the confidence intervals plotted in the
stability curve (Fig. 2) and computed for the phenotypes (Table 1) are
sufficiently narrow such that differences from the reference performance
threshold are statistically significant. More generally, the variance of a
performance estimate can provide additional information about the
potential relevance of the subgroup.

Finally, it is important that a holisticmodel evaluation account for how
a model is intended to be used. In our case study, we trained and evaluated
the AAM-inspired model using only an encounter-level analysis. In prac-
tice, systems for inpatient deterioration monitoring make real-time pre-
dictions over the course of a patient’s stay. Thus, in addition to a model’s
encounter-level ability todiscriminate betweenpatientswhodeteriorate and
patientswhodonot, it is important to evaluate the alert-level performanceof
themodel to identify subgroupswhere themodel fails to alert (i.e., lowrecall)
and subgroups where the model over-alerts and creates process delays (i.e.,
low precision). Repeating the proposed analysis with other relevant per-
formance metrics and shift types can provide a more comprehensive
assessment of possible failure modes.

Despite these limitations, we posit that the current study represents a
significant advance in the ability of model developers and evaluators to
better assess the safety and effectiveness of a model across a range of
populations. TheAFISP framework shows that the available evaluation data
(a resource that is often limited) can be used to provide a more detailed
breakdownofmodelperformance, to understandmodel performance as the
underlying data distribution changes, and to identify subgroups on which
the model may underperform. Nevertheless, we emphasize that a data-
driven framework like AFISP cannot be used in a vacuum. It provides tools
meant to assist human experts as they perform a thorough evaluation of
model performance. Experimentationwith this and related frameworks to a
larger set of AI models has the potential to refine the way AI models are
developed and evaluated across a broad set of applications. In this way,
frameworks such as AFISP can aid human teams in ensuring that safe and
effective devices of public health importance aremade available for a diverse
patient population.

Methods
Stability analysis
Hidden stratification is difficult to detect because it is characterized by a
disparity between a model’s average performance and its performance on
sufficiently rare, but a priori unknown, subgroups. Stability analysis is a
powerful tool for surfacing these types of subgroups because it allows one to
test the uniformity of amodel’s performance across a range of different data
distributions34. Thus, by defining a set of data distributions that vary by
subgroup prevalence, a model evaluator can use stability analysis to deter-
mine if there exist data distributions within the set on which the model has
problematically low performance compared to its average performance on
the full evaluation data distribution.

The first step of the AFISP framework is to perform a stability analysis
to identify the largest worst-performing subset of the evaluation data on
which the model’s performance is below a user-defined threshold. This
subset is then further analyzed to determine concrete subgroups that are
present within the identified data subset.

Identifying worst-case subsets. We use a stability analysis framework
developed by ref. 34 to perform the first step of AFISP. We will refer to
this method as SA (stability analysis).

In the first step, our goal is to identify the subset of the full evaluation
dataset of a particular size, and defined by a particular set of user-selected
features, on which the model performs worst. For example, if a user is
interested in evaluating performance across demographic subgroups, they
might allow the subgroup definition to depend on demographic char-
acteristics such as age, sex, and race. Formally, for an evaluation dataset D
consisting of input features X and prediction label Y, the user specifies a set
of features W ⊂ {X, Y} and a subset fraction α (subset size measured as a
fraction of the dataset). Then, following SA34, we define an uncertainty set
made up of all possible subsets of size α defined based solely on features
inW.

Definition1. (Uncertainty set). LetW be the sample spaceofW and letPbe
the distribution of the evaluation data. Then, define the uncertainty set as
Uα ¼ fS � W : PðW 2 SÞ ¼ αg or the collection of subsets of values and
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features inW with probability α under P. Note thatS denotes subsets of the
sample space ofW, and S 2 S represents an individual such subset.

Considering demographic subgroups again, a user might select W =
age, race, sex, and α = 20%. The corresponding uncertainty set Uα would
contain subsets of the demographics space such that 20% of samples are
included in each subset. Across the subsets, the way other variables relate to
variables inW does not change. For example, considering a subset of Black
men under 30, the comorbidity distribution in this subgroup would be
unchanged. However, if we also included comorbidities in W, the uncer-
tainty set could hypothetically contain a subset that includes only Blackmen
under 30 who have either sickle cell disease or type 1 diabetes. Note that
when using SA, one cannot select subsets that are not represented in the
evaluation distribution. For example, if the evaluation dataset contains no
male patients over age 70, then neither will subsets in Uα. While ideally we
would like to consider subgroups not represented in the evaluation dataset,
SA is statistically constrained to only uncovering unknown subgroups that
are present within the evaluation dataset.

Finding the worst-performing subset in Uα. Once the uncertainty set
has been defined, SA finds the subset in Uα that has the worst average
performance under a model M and for a particular loss function ℓ.
Formally, this is defined by the following optimization problem:

sup
S2Uα

EP½‘ðMðXÞ;YÞjW 2 S�: ð1Þ

In words, SA tries to find S in Uα that maximizes the expected loss on the
distribution of the evaluation data subset S. This is referred to as the worst-
performing subset of size α. For details regarding how this optimization
problem is solved, we refer readers to the SA paper34.

The worst-performing subset will likely be a mixture of different
subgroups, with the prevalence of each of the constituent subgroups dif-
ferent from its prevalence in the evaluation dataset. As an example, suppose
Black females under 18makeup8%of patients in the evaluationdataset. It is
possible for the worst-performing subset of size 0.1 to consist of 60% Black
females under 18. By examining themakeup ofworst-performing subsets as
a function of size, we can determine subgroup characteristics that are
associated with poor model performance.

Identifying a data subset with poor performance. Solving the opti-
mization problem in Equation (1) provides evaluators a way to study how
model performance decays as the evaluation population distribution is
gradually changed adversarially (with respect to the target model). Given
a set of shift characteristicsW, a subset size of α = 1 corresponds tomodel
performance on the full evaluation dataset. As α decreases and approa-
ches 0, the worst-performing shifted data distribution is allowed to be
more and more different from the original data distribution (smaller
subsets can differ more from the overall population than larger subsets).
Thus, for a fixed choice ofW, we can plot a performance stability curve of
the worst-case shift performance for a grid of values α 2 0; 1ð �.

Applying SA for a grid of α values, we created the stability curve
presented in the Results section in Fig. 2. The performance of the target
model (in blue) decays as the subset fraction decreases. Using the perfor-
mance threshold defined by the baselinemodel’s performance,we identified
the largest subset fraction that produces performance worse than the
threshold to be α = 0.1. The performance threshold can be determined in
several ways, including using a known tolerance (i.e., the model is not
suitable if its performance is below a certain value) or using reference values
from a widely used or previously approved baseline model. The worst-
performing data subset selected through this procedure contains subgroups
that occur at a higher prevalence than in the full dataset. In cases where a
reference performance threshold cannot be established, one could instead
select the subset size producing the largest effect size (e.g., the difference
between loss in and out of the worst-case subset normalized by the pooled
standard deviation of the loss).

Subgroup phenotype learning: interpretably characterizing
subgroups
Once theworst-performing subset has beendetermined,we are interested in
understanding the specific characteristics of the subset that are associated
with poor model performance.With respect to the user-specified subgroup
features W, this means finding combinations of values of W that result in
poormodel performance.Wewill refer to such a specificationofW values as
subgroup phenotypes—the observed characteristics of a subgroup.

As part of this approach, it is important that phenotypes satisfy three
primary criteria: interpretability, accuracy, and generalizability. First, when
phenotypes are interpretable, they can be easily documented and commu-
nicated tomodel developers, users, andoverseers. Second,whenphenotypes
are accurate, they precisely describe individuals found in the subset iden-
tified in thefirst step. Third,whenphenotypes are generalizable, they are not
overfit to a particular dataset. The goal of this step of the framework is to
learn subgroup phenotypes from the evaluation data that satisfy these
desired criteria. In practice, we formulate this as a classification task, in
which we use interpretableML classifiers to distinguish between samples in
the evaluation dataset that are in the worst-case subset and samples that are
not, using the feature setW.

Many methods for interpretable classification exist and could
potentially be used within the AFISP framework35. We chose SIRUS22

because it produces phenotypes that satisfy our three criteria. SIRUS is
interpretable by design because the algorithm consists of a decision rule
set. A decision rule is a classifier corresponding to an if-then-else
statement that reads “if condition then response else default response”.
The condition is a logical conjunction (i.e., “and” statement) that forms a
phenotype. For example, if W = {age, race, sex}, a possible condition
would be “age >75 AND race is White AND sex is female.” A decision
rule set is an ensemble of decision rules. Thus, we extract phenotypes
from a classifier fit using SIRUS by taking the condition from each rule in
the ensemble. To determine which of the phenotypes were associated
with poor performance, we performed one-sided z-tests36 to test if 100
bootstrap resampled AUROCs within the subgroup phenotype were
significantly lower than the performance tolerance threshold chosen
during the Stability Analysis stage. To correct for multiple testing, we
applied the Holm–Bonferroni method, setting the family-wise error rate
to 0.05. Following the practices of existing algorithmic subgroup dis-
covery approaches15, and due to the large subgroup sizes leading to small
p values, we also filtered rules by effect size. Specifically, we computed
Cohen’s d ¼ �x1��x2

s (where �x is the mean expected conditional loss in a
subgroup and s is the pooled standard deviation) and took rules
with d ≥ 0.4.

We found that SIRUS accurately captured members of the worst-case
subset in our experiments. Computing metrics using fivefold CV, SIRUS
achieved a mean AUROC of 0.895 (SD 0.008) on the worst-case subset
membership task. Picking thresholds for each fold to fix sensitivity (i.e.,
recall) at 0.8, SIRUS yielded amean specificity of 0.863 (SD 0.026).We note
that decision rule sets are ahighlyflexiblemodel class, and that the rules used
by SIRUS are extracted fromdecision paths in a RandomForest (i.e., SIRUS
can achieve similar accuracies to Random Forest models, while beingmuch
more interpretable).

The final quality of phenotypes found by SIRUS is their general-
izability. Multiple, distinct rule sets could be used to accurately classify the
members of the worst-case subset. Thus, there is the potential for instability
in that the algorithm could return different rule sets across different runs of
the algorithm or across different samples from the same distribution. This
would harm the reproducibility of analyses done using the learned phe-
notypes. Fortunately, SIRUS contains a hyperparameter, p0 2 0; 1ð �, which
is a rule extraction threshold that defines the proportion of trees in a Ran-
dom Forest that a rule needs to appear in to be allowed in the rule set. This
thresholding mechanism can make rules found by SIRUS more general-
izable because they appear in multiple, independently constructed decision
trees. We used the cross-validation procedure suggested by the SIRUS
authors to set p0 = 0.022.
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Model performance diagnostics
The output of the previous steps is sufficient to create initial documentation
of potential safety and effectiveness concerns related to the model’s per-
formance on the identified subgroups.Model performance diagnostics are a
suite of techniques that model developers can use to determine the cor-
rectability of poormodel performance in a subgroup. Themotivation is that
if a model developer can correct an observed subgroup performance dis-
parity, then that subgroup is no longer a concern. If not, then further effort
would be important to determine if the subgroup is of high clinical relevance
and if the performance disparity represents a substantial practical risk.
While a variety of diagnostics exist29, we elected to use a particularly simple
diagnostic to demonstrate the AFISP framework.

We chose to examine the potential for targeted data collection to
improve model performance on a subgroup. To do this, we plot a learning
curve of the model’s performance on the subgroup vs. the number of
training examples from that subgroup. This is done by keeping the non-
subgroup trainingdatafixed and adding to it randomly subsampled training
data of a specific size from the subgroup. Themodel is then retrained on the
dataset, and the subgroup-specific performance (across multiple random
subsamples) is averaged and plotted. The learning curves produced from
our experiments are shown in Fig. 5. The additional subgroup training data
for our diagnostic was taken from training datasets for hospitals that were
not used to train the AAM-inspiredmodel in the primary experiments. For
this aspect of the framework to bemost useful, it is important formore data
to be collectible and available from the identified subgroups. More infor-
mation is in the Experimental details section.

Comparing subgroup similarity
To compare the similarity of the subgroups found by AFISP and Slice
Finder, we jointly embedded the AFISP and Slice Finder subgroups into a
low-dimensional vector space. We wanted the representation to preserve
two typesof relationships about subgroups:Wewanted to captureoverlap in
the individuals coveredbydifferent subgroupphenotypes, andwewanted to
capture correlations between subgroups and the AAM-inspired model’s
performance within those subgroups. Given these criteria, we used Partial
Least Squares regression (PLS) (as implemented in the scikit-learn
package37) to embed the subgroups. PLS is amethod for linear regressionof a
dependent variable Y on the principal components of an input matrix X.

To apply PLS, we first defined a subgroup indicator matrix X 2
f0; 1gN × mþkþrð Þ such that each row i 2 1;N � 68000½ � corresponds to an
individual in the evaluationdataset, and eachcolumn j 2 1;mþ kþ r½ � is a
binary indicator for whether individual i is present in subgroup j for each of
the m = 13 AFISP subgroups, k = 748 Slice Finder subgroups, and
r = 2000 subgroups sampled from the 34,716possible slices.WedefinedY to
be theN × 1 vector of expected conditional losses for each individual. Fitting
a PLS regression with 2 components to X and Y yields a loading matrix
L 2 R mþkþrð Þ× 2 whichmaps eachof the subgroups in theXmatrix to a two-
dimensional vector representation. Given vector representations for two
subgroups, their similarity can be quantified through their cosine similarity
(cosine of the angle between the vectors). Two vectors aremaximally similar
if their directions are aligned (i.e., cosine similarity is 1), while two vectors
are maximally dissimilar if they are orthogonal (i.e., cosine similarity is 0).
The loading plot of this matrix is shown in Figs. 3, 4.

Experimental details
Real data. This study was approved by the Johns Hopkins University
internal review board (IRB no. 00278092), and a waiver of consent was
obtained. We trained and evaluated our custom implementation of an
AAM-inspired model using anonymized data extracted from the elec-
tronic health records of adult patients admitted to any of five hospitals
within the JohnsHopkinsHospital network (excluding labor and delivery
admissions) from2016 to 2021. Following the originalAAMdevelopment
paper19, the prediction outcome was a patient’s need for the ICU, defined
as any in-hospital death, unexpected transfer to the ICU, or long stay in
the ICU. The breakdown of the patient outcomes by hospital is shown in

SupplementaryTable 1. TheAAM-inspiredmodel uses predictors derived
from laboratory tests, vital signs, patient demographics, and circum-
stances of admission (full list in the Supplementary Information). To train
an encounter-level triagemodel, we used data from the first time point for
eachpatient in order todiscriminate betweenpatientswhodeteriorate and
patients who do not deteriorate. This differs from the original AAM
model, which was trained to make hourly predictions for each patient.

We created training, validation, and test splits as follows: We first
defined amulti-site evaluation test set by randomly selecting 20% of patient
encounters fromeachhospital. This combined,multi-site evaluationdataset
contained 60,998 patient encounters and was used in the application of the
proposed evaluation framework.Wedefinedper-site training datasets using
the remaining 80% of patient encounters from each hospital. The AAM-
inspired model was trained using only the Hospital 2 training dataset. This
was intentionally done to mimic the common practical scenario in which a
model is applied to data from new sites that were not used for the model’s
development. The training datasets of the remaining hospitals were only
used for model performance diagnostics in testing the effect of using more
subgroup training data.

We applied Slice Finder15 using its publicly available implementation
(https://github.com/yeounoh/slicefinder). We used a minimum slice sam-
ple size of 400 and a minimum effect size (Cohen’s d of 0.4).

Simulated data. We simulated data for a classification task using the
following data generating process (DGP): We generated 10 iid discrete
features X1,…, X10 ~ Rademacher in which the Rademacher distribution
is the discrete distribution assigning probability 0.5 to the events Xi = 1
and Xi =−1. We then sampled the label according to
Y � Bernoulli p ¼ σ XTβ

� �� �
, where σ zð Þ ¼ 1

1þe�z is the sigmoid func-
tion, and β are coefficients randomly sampled from themixture of normal
distributions 0:5N 1; 0:52

� �þ 0:5N �1; 0:52
� �

. Note that the DGP is
random, and was generated 50 times to create Fig. 6a.

This DGP generates data which can be accurately fit by a logistic
regression model with coefficients β. Thus, we took a logistic regression
model fit to 50,000 samples from the DGP as the target model to evaluate
using the subgroup discovery algorithms. We generated an evaluation
dataset using 10,000 samples from this DGP. To create a problematic
subgroup in the evaluationdataset,without loss of generality,we selected the
subgroup X2 =− 1 ∧ X3 = 1 (which consists of 25% of the data) and ran-
domlyflipped the labels of samples in this subgroupwith probability 0.5. For
the scalability experiment, we modified the DGP by generating various
numbers of features {25, 50, 250, 500, 2500, 5000} and performing five trials
for each.

Data availability
The data are not publicly available because they are from electronic health
records approved for limiteduse by JohnsHopkinsUniversity investigators.
Making the data publicly available without additional consent, ethical, or
legal approval might compromise patients’ privacy and the original ethical
approval. To performadditional analyses using this data, researchers should
contact S.S. to apply for an IRB-approved research collaboration and obtain
an appropriate data use agreement.

Code availability
Code for implementing and demonstrating the AFISPworkflow is available
at https://github.com/asubbaswamy-fda/afisp. In this repositorywe provide
a demo of the software on simple, publicly available data, as well as provide
the code used in the experiments in the main paper.
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