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Multi-omics analysis deciphers
intercellular communication regulating
oxidativestress topromoteoral squamous
cell carcinoma progression

Check for updates

Hongrong Zhang 1,2,5, Yemei Qian1,2,5, Yang Zhang3,5, Xue Zhou1, Shiying Shen1,2, Jingyi Li1,
Zheyi Sun2,4 & Weihong Wang1,2

Oral squamous cell carcinoma (OSCC) is a commonmalignant tumor in the head andneck, associated
with high recurrence and poor prognosis. We performed an integrated analysis of single-cell RNA and
spatial transcriptomic data from cancerous and normal tissues to create a comprehensive atlas of
epithelial cells and cancer-associated fibroblasts (CAFs). Our findings show that AKR1C3+ epithelial
cells, located at the tumor’s stromal front, exhibit significant copy number variation and poor
prognostic indicators, suggesting a role in tumor invasion. We also identified a distinct group of early-
stageCAFs (namedOSCC_Normal, characterized byADH1B+, MFAP4+, and PLA2G2A+) that interact
withAKR1C3+cells,whereOSCC_Normalmay inhibit theFOXO1 redox switch in these epithelial cells
via the IGF1/IGF1R pathway, causing oxidative stress overload. Conversely, AKR1C3+ cells use
ITGA6/ITGB4 receptor to counteract the effects of OSCC_Normal, promoting cancer invasion. This
study unveils complex interactions within the OSCC tumor microenvironment.

OSCC is the most common malignant tumor in the head and neck region,
frequently found in the tongue, cheek, gums, floor of themouth, palate, and
lips1. OSCC is known for its high malignancy and aggressiveness, with
significant rates of metastasis and recurrence. Currently, surgery is the
primary treatmentmethod, but the 5-year survival rate for patients ismerely
64.4%2. Postoperative issues such as facial disfigurement, impaired speech,
and difficulty in chewing severely impact the quality of life of the patients3.

The tumor microenvironment (TME) comprises cellular and non-
cellular components, which are crucial in tumor initiation, progression,
invasion, metastasis, and drug resistance. These components modulate the
microenvironment to either promote or inhibit tumor development4.
Fibroblasts, as a major component of the TME, participate in crosstalk with
adjacent epithelial cells, influencing local epithelial stem cell behavior and
coordinating immune system functions by producing chemokines and
cytokines. Traditionally, cancer-associated fibroblasts (CAFs) have been
recognized for their significant and diverse roles in supporting tumors5,6.
Beyond directly interactingwithmalignant epithelial cells, CAFs help create

a tumor-favorable TME by activating normal fibroblasts into CAFs, pro-
moting angiogenesis in endothelial cells, and recruiting myeloid cells and T
cells for immune suppression7–9. The advent of single-cell RNA sequencing
(scRNA-seq) technology has unveiled previously unrecognized levels of
CAF heterogeneity across various cancer types. This discovery is significant
as it provides a potential explanation for the dual roles of CAFs in both
tumor suppression and promotion10.

OSCC originates from epithelial cells, and epithelial–mesenchymal
transition (EMT) signaling is pivotal in cancer metastasis and invasion11,12.
During the local invasion, tumor cells initially detach from the primary
tumor site, invadeneighboring tissues, and breach the basementmembrane.
This transition from an epithelial to a mesenchymal state in tumor cells is
continuous and varied, allowing tumor cells to maintain different transi-
tional stateswith varying conversion rates andheterogeneity across different
tumors and patients13–15. The epithelial state contributes to tumor mass
increase, whereas themesenchymal state enhances invasion andmetastasis,
with the mixed state exhibiting even more complex functions16. Oxidative
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stress plays a crucial role in EMT induction17. However, reactive oxygen
species (ROS) concentration serves as a double-edged sword for cancer cells,
with a critical mechanism being how cancer cells regulate their oxidative
stress defense systems to maintain ROS levels, thereby acquiring high
metabolic activity and an EMT-invasive phenotype.

Moreover, CAFs within the TME are also significant. scRNA-seq has
revolutionized our understanding of the biological characteristics and
dynamics within cancer lesions, offering high-resolution cellular tran-
scriptomicmaps and cell state transition trajectories of the OSCCTME, yet
it does not indicate the spatial relationships of neighboring cells18,19. Spatial
transcriptomics (ST) addresses this limitation by providing spatial dis-
tribution and positional information for each cell20–22. We employed high-
resolution multi-omics analysis of single-cell and spatial transcriptomics to

elucidate their roles in this process, aiming to uncover potential targeted
therapeutic strategies.

Results
Integration of OSCC scRNA-seq Atlas
The study included a total of 18 scRNA-seq expression profiles from two
datasets, comprising OSCC samples (n = 15) and normal tissues (n = 3). A
workflowdiagram (Fig. 1a) was created to illustrate this process. In addition
to scRNA-seq data, we also incorporated spatial transcriptomics data for
integrative multi-omics analysis, which was further validated using OSCC
tissue samples. To achieve consistent gene alignment results and reduce
batch effect impacts on downstream data analysis, we utilized STARsolo for
uniformupstreamdata processing. After quality control, we included a total

Fig. 1 | Integration of OSCC scRNA-seq Atlas. a The workflow diagram illustrates
the data analysis process. The data were summarized and categorized into 15 OSCC
samples and 3 normal samples. Initial data processing was conducted using the
STARsolo software, resulting in a total of 89,593 cell data points. The Harmony
algorithm was applied for batch effect correction. Various analytical methods were
employed, including UMAP dimensionality reduction, GRN analysis (using pyS-
CENIC), trajectory analysis (using Palantir), InferCNV, and CellChat. Single-cell
annotations were mapped to spatial transcriptomics using RCTD, and further

validation was conducted through histological staining. bUMAP plot showing nine
major cell types: T/NK cells, epithelial cells, macrophages, fibroblasts, endothelial
cells, B/plasma cells, mast cells, DC cells, and myocytes. c Heatmap showing the
expression of representative marker genes for each cell type. Cell clusters are indi-
cated on the x-axis, and gene names are on the y-axis. The color intensity represents
the average gene expression level, with Z-score values standardized. d Proportion of
cell types in OSCC patients; the y-axis represents the percentage of cell counts, and
the x-axis represents the Normal and OSCC groups.
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of 89,593 cells. Based on known cell marker genes, we identified nine cell
types (Fig. 1b): T/NK cells (CD3D, CD3E, TRAC, TRBC2), epithelial cells
(“SFN”, “TACSTD2”, “KRT6A”, “KRT5”), macrophages (“AIF1”, “IL1B”,
“LYZ”, “CD68”), fibroblasts (“DCN”, “COL1A2”, “C1S”, “COL6A2”),
endothelial cells (“PCAT19”, “VWF”, “PECAM1”, “EGFL7”), B/Plasma
cells (“CD79A”, “IGLC2”, “IGHG3”, “IGHG1”), mast cells (“TPSB2”,
“TPSAB1”, “CPA3”, “HPGDS”), DC cells (“IL3RA”, “LILRA4”, “PLD4”,
“IRF4”), and myocytes (“COX6A2”, “CKM”, “DES”, “ACTA1”) (Fig. 1c).
We analyzed the cell proportion changes between theOSCCandNORMAL
groups. In the OSCC group, epithelial cells were predominant (49.89%),
whereas fibroblasts were most abundant in the Normal group (54.28%).
T/NK cells were more prevalent in the Normal group than in the OSCC
group (31.20% vs. 24.90%), ranking second in both groups (Fig. 1d).

Identification of specific regulatory patterns in fibroblasts
through gene regulatory network analysis
The heterogeneity of epithelial cells and fibroblasts is fundamental to the
cellular heterogeneity of OSCC. Therefore, it is crucial to conduct a detailed
differentiation of the cell states and types they encompass. However, the
classic cell clustering annotation process is sensitive to resolution selection,
which can lead to over-clustering and hinder the identification of cell states
or subtypes.Gene regulatory network (GRN) analysis basedon the SCENIC
algorithmdoes not rely on cell classification labels. Instead, it calculates gene
co-expression to abstract the single-cell gene expression matrix into co-
expressed gene sets with regulatory relationships (i.e., regulons). Using this
as a basis, we can employ algorithms such asAUCell to transform the single-
cell gene expression matrix into an activity matrix reflecting the functional
activity of the GRN, thereby distinguishing differences in cell states at the
functional level of gene synergy.This approachpreciselymeets ourneeds for
a deeper differentiation of OSCC cellular heterogeneity.

Initially, we used pySCENIC to establish the GRN of OSCC single
cells23,24. Using AUCell, we calculated each cell’s regulon active score (RAS)
to construct the GRN activity matrix. Through UMAP dimensionality
reduction visualization (Fig. 2a), we unexpectedly found that fibroblasts
clustered together in the gene expression matrix were clearly divided into
twogroups.This observation ledus to realize that cellswithhigh similarity at
the shared gene expression level might exhibit significant differences in the
activity levels of their GRNs (Fig. 2b, top left). This finding indicates that the
above analytical strategy provides a reference anchor point for the sub-
division of cell subtypes and states (Fig. 2b, top right).

Analysisofdifferential regulons infibroblastsbetweenOSCCand
Normal tissues
We analyzed the differential regulons between fibroblasts from OSCC and
Normal tissues (Fig. 2c and Supplementary Fig. 1d–f). The results showed
that the activity of transcription factors JUNBandKLF4was lower inOSCC
fibroblasts, while MZF1 and SOX15 exhibited higher activity (Fig. 2d).
Interestingly, we found that in the feature space of the GRN activity matrix,
fibroblasts from the Normal group could be divided into two clusters: one
projecting in the original Normal space and the other appearing in the
OSCC space.We defined these asNormal–Normal andNormal–OSCC cell
clusters, respectively. Similarly, fibroblasts from theOSCC group could also
be divided into OSCC–Normal and OSCC–OSCC clusters (Fig. 2e). This
indicates that a group of CAFs in OSCC (OSCC–Normal) possesses char-
acteristics similar to normal cells at theGRNactivity level. The function and
role of theseCAFs intriguedus. Furthermore,we found thatOSCC–Normal
cells still clustered together on the UMAP (Supplementary Fig. 1a), indi-
cating consistent characteristics at the gene expression level.

However, when we attempted to cluster cell subgroups similar to
OSCC–Normal directly at the gene expressionmatrix level using classic cell
clustering strategies, specifically C35 (Supplementary Fig. 1b, c), we needed
to set the resolution parameter of the clustering function to a very high level.
This is extremely rare and difficult to achieve in typical analysis workflows.
Moreover, high-resolution settings significantly increase the difficulty of cell
annotation and the exploration of the biological functions of cell clusters.

This indirectly proves the efficiency of our analytical strategy over classic
approaches. Using GRN, we identified this special group of CAFs,
OSCC–Normal, which retains the gene expression similarity of CAFs while
exhibiting GRN activity characteristics similar to normal fibroblasts. This
genetic profile may indicate that they are primitive cells among CAFs and
have important functions in OSCC.

Functional typing and lineage analysis of CAF subgroups
in OSCC
To better explore the heterogeneity of fibroblasts in OSCC, we divided
fibroblasts in OSCC into 11 subgroups (named F00–F10) based on the
resolution reference anchor points provided by the previous analysis
(Table 1 and Fig. 3a). We used classical CAF surface markers to label our
CAF cell groups (ACTA225, FAP26, PDGFRA26, PDGFRB26, PDPN27,
S100A426, TNC28, VIM, and COL1A129). Additionally, we referenced the
explorations of CAFmarkers by researchers such as Dwivedi30 and Lyu31.
The results indicated that the expression of F10 is relatively weak, while
the remaining fibroblast subtype exhibited widespread CAF marker
expression (Fig. 3b). Additionally, we identified the top 5 characteristic
markers of these CAF subgroups (Supplementary Fig. 2a), with F05 being
the OSCC–Normal subgroup identified in the previous step. We labeled
this subgroup with PLA2G2A, MFAP4, PRELP, APOD, and ADH1B,
among which ADH1B, PLA2G2A, and MFAP4 were the most specific
(Fig. 3c).

To further understand the biological functional characteristics of each
OSCC fibroblast subgroup, we referred to the single-cell CAF annotations
from pan-cancer tissues and Bienskowa’s32 classification of CAFs in
HNSCC. Currently, the academic community generally agrees on three
central CAF subtypes (myofibroblastic CAFs [MyCAFs], immunor-
egulatory/inflammatory CAFs, and antigen-presenting CAFs33). MyCAFs
are further divided based on function into those promoting tumors and
those involved in extracellular matrix (ECM) construction. Tumor-
promoting MyCAFs highly accumulate IL4, IL13, and TGFB33,34, while
ECM-constructing CAFs highly express POSTN, COL1A1, and MMP11
genes, participating in collagen formation and ECM remodeling29,35,36.
Notably, the functions of MyCAFs are diverse and play different roles in
various tissues and diseases. Immunoregulatory/inflammatory CAFs are
primarily rich in various chemokines of theCXCL family and inflammatory
factors such as IL-6 and IL-837,38. Additionally, antigen-presenting CAFs
highly express MHC family genes, such as HLA-DRA and HLA-DQA39,40.

Functional typing and lineage analysis of CAF subgroups
in OSCC
Building on this understanding, we categorized fibroblast subgroups in
OSCC into functional types (Fig. 3d). The subgroupsF00 (MMP11+), F02
(LUM+), F03 (PPP1R14A+), F06 (MKI67+, BIRC5+), and F09
(POSTN+) exhibit characteristics of MyCAFs, which are involved in
ECM composition and remodeling (Supplementary Fig. 2b). Subgroups
F01 (IGHG3+), OSCC–Normal (ADH1B+, PLA2G2A+, MFAP4), and
F07 (VIM+, CD3E+) display characteristics of immunoregulatory,
inflammatory, and antigen-presenting CAFs (Supplementary Fig. 2b).
The remaining subgroups, F04, F08, and F10, do not correspond well to
any known CAF subtypes. F04 is characterized by CHRDL2+, which has
been reported to promote gastric cancer cell proliferation and is positively
correlated with poor patient prognosis41 (Supplementary Fig. 2b). F08’s
specific marker is FGFBP1, which enhances fibroblast growth factor
(FGF) signaling, and is upregulated in various cancers, promoting cancer
cell migration and invasion35,42–44. F10 specifically expresses MLANA, a
marker often associated with melanocytes45–47.

The OSCC–Normal subgroup, characterized by ADH1B, PLA2G2A,
and MFAP4, currently lacks related research on CAFs with this combina-
tion ofmarkers. However, studies have shown that PLA2G2A is specifically
expressed in inflammatory benign hepatocellular adenomas and detected in
stromal cells around hepatocellular carcinoma tissues, without an associa-
tion with poor prognosis in hepatocellular carcinoma48. A reduced number
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of ADH1B+ CAFs is linked to the invasive characteristics of lung adeno-
carcinoma. The ADH1B+CAF subgroup also exhibits high expression of
CFD, DCN, SEPP1 (SELENOP), A2M, and MFAP4 genes, which in early-
stage lung adenocarcinoma, are associatedwith better survival rates49. These
findings suggest thatOSCC–NormalCAFsmight have potential anti-tumor
functions. Lastly, we investigated CAF-specific transcription regulators

(Supplementary Fig. 2d). The key transcription factors for OSCC–Normal
include HOXA6, ALX1, ALX3, HOXB4, and SP5, which likely determine
the state and identity of OSCC–Normal cells (Fig. 3e).

OSCC, as a chronic progressive disease, exhibits extensive changes in
cell types and states, which can be captured by single-cell sequencing. Given
that OSCC–Normal has GRN activity characteristics similar to normal
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fibroblasts, we believe that OSCC–Normalmight act as a group of primitive
CAFs that resist tumor progression, being at an earlier stage in the fibroblast
state transition process in OSCC. Therefore, we used single-cell trajectory
analysis tools to fit the lineage relationships and transcriptional fates among
the 11 CAFs, starting from OSCC–Normal. The pseudotime trajectory
originating from the OSCC–Normal cell cluster pointed to five major
branches (F03, F04, F06, F07, and F08) (Supplementary Fig. 2c), while F00,
F01, F02, F09, andF10were considered intermediate states duringCAFstate
transitions. The pseudotimemap indicated the relative differentiation times
of F03, F04, F06, F07, and F08 cells, with these five terminal CAF subgroups
showing distinct cellular fates (Fig. 3f).

We explored the molecular dynamics of the five CAF groups, mapping
the paths from OSCC–Normal to five different CAF states (Fig. 3g, h). We
investigated the functions of the six different fate cell clusters, with GSEA
results suggesting thatEMT, complementprocesses, andotherswere activated
in OSCC–Normal (Fig. 3I). The F03 cluster showed activated EMT (Sup-
plementary Fig. 3a), the F04 cluster significantly activated hypoxia, comple-
ment, and NF-kB mediated TNF-α signaling processes (Supplementary Fig.
3b), the F06 cluster significantly activated angiogenesis, NF-kB mediated
TNF-α signaling, inflammation, hypoxia, and EMT (Supplementary Fig. 3c),
the F07 cluster significantly activated myogenesis, coagulation, and EMT
(Supplementary Fig. 3d), while the F08 cluster only showed activation of the
downregulated KRAS signaling pathway (Supplementary Fig. 3e).

GO analysis indicated that the specific gene functions of
OSCC–Normal are involved in ECM composition (Fig. 3j). F03 genes
mainly participate in actin binding (Supplementary Fig. 3f) and ECM
composition, F04 genes are primarily involved in ribosomal structure
components and rRNA binding, ECM binding (Supplementary Fig. 3g),
F06 cluster genes participate in ECM structural components, cadherin
binding, collagen binding, integrin binding (Supplementary Fig. 3h), F07
cluster genes are involved in ECM structural components, collagen binding,
growth factor binding (Supplementary Fig. 3i), and F08 cluster genes are
involved in cadherin binding, skin epidermis structural components, and
cell–cell adhesion mediator activity (Supplementary Fig. 3j).

We analyzed the molecular characteristics and functional hetero-
geneity of variousfibroblast subgroups (CAFs) inOSCC, revealing dynamic
transitions and interactions of different CAF subgroups within the TME.
This analysis mapped the lineage relationships and transcriptional fates of
CAFs inOSCC. Particularly, theOSCC–Normal subgroup, which hasGRN
activity characteristics similar to normal fibroblasts and is upstream in the
CAF state transition trajectory in OSCC, provides new perspectives for
tumor research with its unique transcriptional regulators and gene function
activity.

Analysis of heterogeneity and functional state evaluation of
OSCC epithelial cells
Oneof themain contributors to the heterogeneity andmalignancy ofOSCC
is the OSCC epithelial cells. We applied the same strategy for the detailed
identification of OSCC epithelial cells. The epithelial cells were divided into
seven subgroups (Fig. 4a). We identified the characteristic genes of the
epithelial cell subgroups and used the top 5 markers to indicate each epi-
thelial subgroup.The specificmarkers forEpithelial01 areMAB21L4,GBP6,
SPINK5, NMU, and LGALS7; for Epithelial02 they are AMTN, AKR1C3,
CASC9, GPX2, and TMPRSS4; for Epithelial03 they are CA2, GSDMC,
CDH3,GJB3, andAIM2; for Epithelial04 they areCASP14, PRR9,DNAH5,
IGFL2-AS1, and KHDC1L; for Epithelial05 they are KRT15, ALDH3A1,
SPRR3, THSD4, and WIF1; for Epithelial06 they are SRARP, TSPAN1,
KIAA1324, HMGCS2, and PIGR; and for Epithelial07 they are WFDC2,
TFCP2L1, ZG16B, ADH1C, and STATH (Table 2, Fig. 4b, and Supple-
mentary Fig. 4b).

In the enrichment analysis of biological processes, we found that in
Epithelial05, genes related to apoptosis andproliferationwere activated (Fig.
4c). Epithelial03 showed activation of cell proliferation, differentiation, and
EMT processes. In Epithelial02, DNA damage and hypoxia processes were
observed, and stem cell genes were also activated. Additionally, we refer-
enced epithelial cell types from esophageal squamous cell carcinoma
(ESCC) since ESCC andOSCC are both epithelial-origin cancers and share
common molecular and cellular biological characteristics50. By comparing
the epithelial cell characteristics of these two cancers, we can gain a deeper
understanding of the heterogeneity of epithelial cells in OSCC and their
interactions with the TME.

Epithelial06 andEpithelial07 indicatemucosal characteristics (Fig. 4d),
associated with innate immune response (S100P), mucosal defense
mechanisms (CXCL17), and mucus production (e.g., AGR2 and MUC20).
Epithelial05 indicates stress, composed of genes responding to a wide range
of cellular stimuli (e.g., EGR1, JUN, andFOS). Epithelial03maybe related to
antigen presentation (AP) processes, potentially indicating responsiveness
to tumor neoantigens. The cell cycle (cycling) program is characterized by
high expression of genes involved in cell proliferation (e.g., CENPW,
CKS1B, and BIRC5), suggesting strong proliferative capacity in tumor cells
in Epithelial05.

Reportedly, Epi1/2 are two highly co-existing epithelial cell groups.
Epi1 is characterized by stress keratins (KRT6, KRT16, and KRT17), which
may play a role in enhancing tumorigenesis and tumor growth. Epi2 fea-
tures overexpressed genes associated with terminal differentiation, such as
envelope proteins (SPRR1A/1B) and calgranulins (S100A8/9). Epithelial01

Fig. 2 | Single-cell transcriptional regulatory network analysis reveals regulatory
patterns and cellular heterogeneity in fibroblastsm. a UMAP and UMAP_RAS
visualizations showing cell distribution based on different cell types and groups. The
top left plot shows clustering by cell type, while the top right plot shows clustering by
transcription factor regulatory patterns. The bottom left plot shows cell distribution
in healthy and OSCC samples, while the bottom right plot shows the distribution
between the two groups under transcription factor regulatory patterns. b Fibroblast
distribution in UMAP and UMAP_RAS visualizations. The top left plot shows
fibroblasts clustering together with similar gene expression. The top right plot
reveals that fibroblasts are regulated by two distinct groups of regulons. The bottom
left plot shows the distribution of healthy and OSCC fibroblasts in UMAP, while the

bottom right plot shows the inter-group distribution characteristics of the two
fibroblast regulon groups in UMAP_RAS. c The significantly different transcription
factors (TFs) between normal and OSCC fibroblasts. Each point represents a tran-
scription factor, with the Y-axis showing the transcription factor names and the X-
axis showing the differential activity scores. d Comparison of transcription factor
activities of JUNB, KLF4, MZF1, and SOX15 in normal and OSCC fibroblasts, with
the Y-axis representing TF activity analysis and the X-axis representing cell types.
eUMAPdimensionality reduction shows the heterogeneity offibroblast populations
and transcriptional regulatory differences. Different colors in the plot represent
different cell states, such as Normal_Normal, Normal_OSCC, OSCC_Normal, and
OSCC_OSCC. RAS regulon activity score.

Table 1 | CAFs subtype mark

CAFs subtype Mark (top 3)

F00 MMP11, ADAMTS2, TDO2

F01 IGHG3, IL24, TWIST2

F02 LUM, COL6A2, SFRP2

F03 PPP1R14A, PLN, MYH11

F04 CHRDL2, MYF5, DLK1

F06 MKI67, RRM2, BIRC5

F07 CD3E, CD2, CD3D

F08 FGFBP1, LAD1, GJB6

F09 POSTN, LRRC17, COL11A1

F10 MLANA, TYR, FABP7

OSCC–Normal PLA2G2A, ADH1B, MFAP4
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is enriched with Epi1 characteristics. Epithelial05 exhibits mesenchymal-
like characteristics (Mes), composed of genes like VIM and SPARC, and
shows activation of EMT and angiogenesis pathways. Finally,
Epithelial02 shows oxidative stress (Oxd) characteristics, expressing various
peroxidases and reductases (e.g., GPX2 and AKR1C1), involved in
defending against oxidative damage.

Based on the characteristics of OSCC cases, epithelial cells in the
samples are often regarded asmalignant. To verify this assumption, we used
normal cells, specifically macrophages and T/NK cells, as references and
conducted a copy number variation (CNV) analysis. The results from
inferCNV indicated that OSCC epithelial cells exhibit a significantly higher
level of CNVs overall, highlighting their malignant features in comparison
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to normal cells. We also performed an inferCNV analysis on different
epithelial cell subgroups (Supplementary Fig. 4c). The findings showed that
the epithelial subgroups 02, 03, and 04 display extensive chromosomal copy
number alterations, suggesting a higher degree of malignancy (Fig. 4e).

Building on this, we attempted to further validate the malignant
characteristics and severity of the epithelial cell subgroups by conducting
clinical prognosis modeling on 329 OSCC cases using the gene sets of
characteristic genes from each subgroup. We performed lasso regression
and multivariate Cox regression on the marker gene sets of the epithelial
subgroups to calculate the Risk score for each subgroup and build clinical
prognosis models. The results revealed that all epithelial subgroups in the
TCGA–OSCCcohortwere associatedwith lower survival rates.Notably, the
multivariate Cox analysis indicated that Epithelial02 had a hazard ratio
(HR) as high as 320 (p = 0.0089). Additionally, the prognosis nomogram,
which included all epithelial subgroups, highlighted the prominence of the
weight score for Epithelial02 (Fig. 4f).

Furthermore, the gene set variation analysis score constructed from the
marker genes of epithelial subgroups created an overall risk score, and the
Kaplan–Meier (KM) curve indicated that a higher score correlated with
poorer patient prognosis (Fig. 4g). Collectively, these results consistently
suggest that theEpithelial02 subgroup exhibitsmorepronouncedmalignant
characteristics compared to other subgroups, drawing more attention to its
role in cancer.

Spatial transcriptomics reveals CAF and tumor cell interactions
Current understanding highlights that interactions between tumor epithe-
lial cells and the TME are critical mechanisms driving tumor development.
The possibility and extent of these interactions are significantly influenced
by the spatial distributionwithin the tissue.Tocomprehensively evaluate the
spatial ecological domains of various cell subgroups, we integrated single-
cell transcriptomics and spatial tissue information ofOSCC (GSE20825351).
Using robust cell type decomposition (RCTD), we spatially identified the
characteristics of major cell groups and thoroughly analyzed the spatial
distribution of all cell types present in OSCC (Supplementary Materials).

Arora51 classified the histological features of OSCC into “Tumor core
(TC),” “Transition (TS),” “Leading edge (LE),” and “Non-cancer” regions.
In the “TC” area, we observed a strong epithelial cell signal, which gradually
transitioned toward the TS zone and stopped at the LE. In the LE area, we
found a significant enrichment of T/NKcells,macrophages, and endothelial
cells, while fibroblasts were located away from the tumor region (Fig. 5a). In
sample 2, we observed that epithelial cells did not exhibit a noticeable
invasion process, which might be due to the slice, but scattered epithelial
budding clusters appeared in the stroma (Fig. 5b). Around these budding
clusters, there were distributions of endothelial cells, macrophages, T/NK
cells, B/plasma cells, and dendritic cells, consistent with the known tumor
progression process.

This indicates that our integrated single-cell and spatial tissue maps of
OSCC can accurately depict the dynamic process of tumor development.
They clearly demonstrate howmalignant epithelial cells invade the stroma,
providing an important perspective for understanding cell interactions and
tumor behavior within the TME.

After projecting the characteristics of various cell subtypes into the
spatial transcriptomics data space for joint analysis, we identified Epithe-
lial01, 02, 03, and 04 as themost representative epithelial regions (Figs. 6a–f
and 7a). The remaining epithelial subtype did not exhibit any discernible
distribution patterns. Epithelial01, with its unique RNA expression profile,
indicated the site of carcinoma in situ, appearing prominently in sample 02
only within the TC, and being most evident in sample 01, where the tumor
invades the stroma after breaking through the basementmembrane.During
this process, Epithelial01 is most abundant at the primary site (Fig. 6a). The
most specific marker gene for Epithelial01 is SPINK5 (Fig. 6g), which has
been reported to inhibit the proliferation, migration, and invasion of eso-
phageal cancer cells by suppressing the Wnt/β-catenin signaling
pathway 52–54. InOSCC, SPINK5 acts as a tumor suppressormolecule and is
also associated with a favorable prognosis (Fig. 6h) (P < 0.05). GO enrich-
ment for Epithelial01-specific markers suggests a structural constituent of
skin epidermis. Additionally, the transcription factor PITX (Fig. 6i), specific
to Epithelial01, has been reported to act as a tumor suppressor gene in
various human cancers, including OSCC55. We believe Epithelial01 may
play a role in the early stages of cancer and remain fixed in the primary
tumor niche in later stages, potentially aiding in locating the tumor’s origin.

We also explored the positions and possible functions of high-CNV
score epithelial subtype (02, 03, 04) based on spatial transcriptomics.
Epithelial04 primarily represents the TC and TS of the tumor (Fig. 6b, e),
while Epithelial03 is associated with the TS and the LE of the tumor (Fig.
6c, f). Interestingly, Epithelial03 and 04 exhibit relatively independent
malignant expression profiles, residing in their respective epithelial spatial
domains, and together forming amalignant epithelial region. AIM2 is the
specific marker for Epithelial03, while CASP14 is specific to Epithelial04.
We propose that Epithelial03 and 04 are independent yet interdependent
populations in tumor development. Immunofluorescence usingAIM+ to
mark Epithelial03 and CASP14+ to mark Epithelial04 showed their co-
occurrence in tumor nests (Fig. 6j). Both subtypes were observed in the
center of tumor cell clusters, indicating their critical roles in tumor cell
composition (Fig. 6k, l). Additionally, we found that CASP14+ Epithe-
lial04 is closer to the granular and keratin layers, whereas AIM+ Epi-
thelial03 is closer to the basal layer (Supplementary Fig. 4d). AIM2, an
immune receptor, recognizes abnormal cytoplasmic double-stranded
DNAto assemble the inflammasome56. Chronic inflammation is known to
contribute to most stages of tumorigenesis, with inflammasome compo-
nents promoting tumor cell proliferation, survival, immunosuppression,
angiogenesis, and metastasis57. Studies have shown that AIM2 enhances
the production of matrix metalloproteinases (MMPs) in skin squamous
cell carcinoma (SCC), leading to increased invasion, possibly due to the
indirect effects of cytokine responses toAIM2 inflammasome activation57.
Caspases, including caspase-14, participate in apoptosis, necrosis, and
inflammation signaling pathways58,59. Although the role of caspase-14 in
cancer is unclear, its activation at the interface between the granular and
keratin layers primarily functions within the keratin layer. Aberrant
expression and localization of caspase-14 in epithelial tumors often result
from altered transcriptional activity, potentially indicating early
tumorigenesis60.

Fig. 3 |Analysis of CAF subgroups inOSCC. aUMAP analysis reveals the diversity
of CAFs in OSCC, dividing them into 11 subgroups (F00–F10), with each color
representing a subgroup, showing their distribution in the cell state space. bThe left
panel shows the expression levels of classical CAF markers in each CAF subgroup,
with the bar chart on the right showing the expression intensity. The right panel
displays a violin plot showing gene characteristic expression across clusters.
c Expression intensity and location of marker genes in the OSCC_Normal specific
subgroup, highlighting ADH1B+, PLA2G2A+, and MFAP4+ in red. dDot plot of
average expression of MyCAFs, immunoregulatory/inflammatory, and antigen-
presenting genes across CAF subtypes (X-axis representing CAF clusters, Y-axis
representing gene characteristics), with color indicating average expression inten-
sity and dot size representing expression proportion. e Characteristic transcrip-
tional regulators in the OSCC–Normal subgroup, showing the top 10 by specificity

score. f Pseudotime trajectory reveals the dynamic process of fate determination in
CAFs. The left panel shows the force-directed graph of FDG_1 dimensionality
reduction, and the right panel shows the pseudotime scores of each CAF cluster,
with darker colors indicating later cell fates. g,hDifferentiation trajectories from the
OSCC–Normal starting point to different terminal subgroups (F03, F04, F06, F07,
F08), showing differentiation characteristics and molecular dynamics of specific
subgroups, with each dot representing a cell in (h), and red cells indicating cells on
the differentiation trajectory. iGSEA results show key biological processes activated
in the OSCC–Normal subgroup, including epithelial–mesenchymal transition,
coagulation, and others. j GO analysis results reveal the specific functions of the
OSCC–Normal subgroup in ECM structure, actin binding, and other aspects, with
dot size indicating gene count and color depth indicating statistical significance.
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Fig. 4 | Redefinition of OSCC malignant epithelial cells from the perspective
of GRN. aUMAP dimensionality reduction reveals that epithelial cells in OSCC are
divided into seven distinct subgroups. b Specific marker genes for the epithelial cell
subgroups are displayed, showing the fivemost significantly expressed genes in each
subgroup. c A dot plot illustrates the gene expression related to processes such as
apoptosis, proliferation, differentiation, DNA damage, hypoxia, stemness, and EMT
in the seven epithelial cell subgroups. The color indicates the average expression
intensity, while the size of the dots represents the proportion of expression.
d Functions of epithelial cell subgroups based on specific biomarkers are depicted,
highlighting characteristics such as mucosal properties, stress response, and antigen
presentation. eAheatmap displays theCNVwithin the epithelial cell subgroups. Red

indicates chromosomal amplification, blue indicates chromosomal deletion, with
the X-axis representing chromosome numbers and the Y-axis representing the cell
clusters included in the analysis. T/NK cells and macrophages are used as reference
genomes. f Multivariate Cox regression analysis calculated the risk scores of epi-
thelial cell subgroups for OSCC. For patients (n = 329), the coefficient (coef)
represents the partial regression coefficient. A hazard ratio (HR) > 1 is considered a
risk factor. g Kaplan–Meier curves show the relationship between the risk scores of
epithelial subgroups and patient survival rates. A higher risk score correlates with
poorer survival outcomes (P = 0.028). The Y-axis represents the probability of
patient survival, and the X-axis represents patient survival time.
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Characteristics and functional analysis of Epithelial02 in OSCC
Conversely, the Epithelial02, characterized by the highest inferCNV and
malignant prognosis, is not located within the tumor epithelium but is
widely distributed in the stromal region at the tumor’s invasive front
(Fig. 7a). GSEA results for cluster 02 indicate that hypoxia and EMT are
extensively activated in this subtype (Fig. 7b, c) and exhibit significantly
higher expression levels compared to other subtype (Fig. 7d). Additionally,
pathways related to ROS and glycolysis are also activated (Fig. 7b). During
the EMT process of Epithelial02, OSCC_Normal CAFs were consistently
present in the normal stromal tissue surrounding Epithelial02 (Fig. 7e), far
from the malignant epithelial cell regions (Supplementary Fig. 5a–f).

AKR1C3 is specifically expressed inEpithelial02. Research indicates that
AKR1C3 promotes liver cancer proliferation and metastasis through the
activation of the NF-κB pathway, releasing pro-inflammatory cytokines and
the IL-6/STAT3 pathway61. Another study identifies AKR1C3 as a novel
EMTdriver in prostate cancermetastasis throughERK signaling activation62.
AKR1C3 expression is also positively correlated with poorer survival rates in
oropharyngeal squamous cell carcinoma (OPSCC) cohorts63. GPX2,
AKR1C1, and AKR1C3 are upregulated in four smoking-related cancers
(OSCC, lung adenocarcinoma, bladder adenocarcinoma, and lung squamous
cell carcinoma), all associated with the downregulation of arachidonic acid
metabolism, an inflammatory pathway and a downstream target of the
redox-sensitive Nrf2 transcription factor pathway64. GPX2 expression is
negatively correlated with pro-inflammatory cytokines/chemokines andNF-
kB activation, where GPX2 knockdown leads to increased secretion of
prostaglandin E2 (PGE2) and interleukin-665. In HPV16-positive and HPV-
negative OPSCC tumors, upregulated expression of AKR1C1 and AKR1C3
indicates poor prognosis66. In our study, GPX2, AKR1C1, and AKR1C3 are
top markers for Epithelial02 (Fig. 7f). The oxidative stress or detoxification
(Oxd) program involves various peroxidases and reductases (e.g., GPX2 and
AKR1C1) in defense against oxidative damage50.

We analyzed the transcription factors with characteristic activity in
Epithelial02, including SHOX2, LHX5, FOXO1, HOXC10, and CLOCK
(Fig. 7g). Among these, FOXO1 shows significantly high expression in
Epithelial02 (Fig. 7h). Studies have shown that FOXO1 plays crucial roles in
cell proliferation, apoptosis, autophagy, metabolism, inflammation, and
differentiation by activating or inhibiting downstream target genes and is
associated with regulating oxidative stress67, functioning as a switch to
modulate mitochondrial ROS production68. Epithelial02 is significantly
enriched in oxidative stress and EMT characteristics, widely distributed in
the stromal region at the tumor’s invasive front, suggesting its role as a
pioneer in tumor invasion.

Given that Epithelial01 is only present in carcinoma in situ and might
represent an early stage of the malignant epithelial lineage, we included
malignant epithelial subtype from OSCC in trajectory analysis. The results
show that malignant epithelial cells in OSCC progress from Epithelial01 as
the starting point, with 02, 03, and 04 as trajectory endpoints. Epithelial03
and 04 indicate similar fate outcomes in pseudotime, while Epithelial02
represents a distinct progression direction, highlighting its potential sig-
nificance (Supplementary Fig. 6a, b).

We further validated these findings with histological staining experi-
ments on OSCC tissues. Tumors were categorized into invasive fronts,

stroma enriched with lymphocytes, and stroma without lymphocytes based
on histological evidence (Fig. 7i). Positive expression of Epithelial02
(AKRIC3+) was found at the tumor invasive front, in keratin pearls, and
surrounding tumor cells, along with infiltrating OSCC_Normal cells
(ADH1B+, MFAP4+, PLA2G2A+) (Fig. 7j and Supplementary Fig. 6c).
Additionally, extensive positive signals for Epithelial02 were observed at the
tumor invasive front. OSCC_Normal (ADH1B+, MFAP4+, PLA2G2A+)
surrounded Epithelial02 but were absent from the invasive front, where
Epithelial03 (AIM2+) and 04 (CASP14+) were not detected (Supple-
mentary Fig. 6d). These results indicate that Epithelial02 is widely dis-
tributed in the stromal region at the tumor’s invasive front and may play a
crucial role in guiding tumor invasion. OSCC_Normal CAFs are associated
with Epithelial02, suggesting potential interactions between these
populations.

Exploring cell communication and interactions
To further investigate the potential interactions between Epithelial02 and
OSCC_Normal, we conducted a cell communication analysis. The results
revealed that the communication signals between CAFs and Epithelial02
were the strongest (Fig. 8a), supporting our hypothesis that Epithelial02 acts
as a pioneer in tumor invasion, which is consistent with its histological
localization. Interestingly, OSCC_Normal also exhibited the highest com-
munication intensitywith Epithelial02 (Supplementary Fig. 7a).We further
analyzed the cell–cell interactions betweenOSCC_Normal and Epithelial02
and identified 93 signaling interaction networks, including FGF, inter-
leukins (IL-2, IL-6), chemokines (CCL, CXCL), and vascular endothelial
growth factor (VEGF) (Fig. 8b).

Among these, the insulin-like growth factor (IGF) signaling network
displayed the most specific and intense communication between OSCC_-
Normal and Epithelial02 (Fig. 8b). We detailed the interactions within the
IGF signaling network, showing that ligands were primarily emitted by
OSCC_Normal and F04, with OSCC_Normal having a significantly higher
signal intensity than F04 (Supplementary Fig. 7b). Meanwhile, Epithelial02
served as the strongest signal receptor (Fig. 8c and Supplementary Fig. 7b).
This signaling network includes two pairs of ligand–receptor interactions:
IGF–IGFR1 and IGF–(ITGA6+ ITGB4) (Fig. 8d, e). Comparing the
weights of these interactions in epithelial cells and CAFs revealed that
IGF–(ITGA6+ ITGB4) was dominant (Fig. 8f). The IGF1 ligand origi-
nating from CAFs is expressed exclusively in OSCC_Normal and F04.
Similarly, the receptors IGFR1 and the ITGA6+ ITGB4 complex are pri-
marily found in Epithelial02 (Fig. S7c). The cell communication results
indicate that OSCC_Normal exerts its effects primarily through the release
of IGF1 ligands binding to receptors on Epithelial02.

Studies have reported that insulin-like growth factor receptor (IGF1R)
can inactivate FOXO1 through phosphorylation67,69, whereas FOXO1 reg-
ulates mitochondrial ROS production as a switch for oxidative stress.
Inactivation of FOXO1 leads to uncontrolled oxidative stress, adversely
affecting cells. This IGF1–IGF1R inhibitory pathway mediated by
OSCC_Normal is primarily observed in Epithelial02 and 03, with a stronger
presence in subtype 02, indicating its role at the tumor invasion front (Fig.
8d and Supplementary Fig. 7b). The results of the histological staining of
OSCC indicate that tumor cell aggregates in the stroma exhibit strong
positivity for P63 and P40, which are markers of squamous cell-derived
tumors (Fig. 8g and Supplementary Fig. 7d). Additionally, these invasive
tumor cell aggregates show positivity for Epithelial02 (AKR1C3), while
positive expression of IGF1R, ITGB4, and ITGA6 is observed surrounding
the tumor cell aggregates (Fig. 8h). This finding suggests that the potential
intercellular interaction relationships identified through CellChat are
indeed present during tumor progression and imply a possible regulatory
mechanism.

Interestingly, the communication strength of IGF1–(ITGA6+ ITGB4)
is higher than IGF1–IGF1R, with OSCC_Normal activating integrin α6β4
(ITGA6+ ITGB4) across all epithelial subtype except 01. This integrin
expression promotes various aspects of tumor progression, including pro-
liferation signaling, invasion and metastasis, apoptosis evasion, and

Table 2 | Epithelial cell subtype mark

Epithelial subtype Mark (top 5)

Epithelial01 SPINK5, GBP6, NMU, MAB21L4, LGALS7

Epithelial02 AKRIC3, GPX2, AMTN, CASC9, TMPRSS4

Epithelial03 AIM2, CA2, GSDMC, CDH3, GJB3

Epithelial04 CASP14, PRR9, DNAH5, IGFL2-AS1, KHDC1L

Epithelial05 KRT15, ALDH3A1, SPRR3, THSD4

Epithelial06 TSPAN1, KIAA1324, SRARP, HMGCS2, PIGR

Epithelial07 WFDC2, ZG16B, STATH, ZG16B, ADH1C

https://doi.org/10.1038/s41698-024-00764-x Article

npj Precision Oncology |           (2024) 8:272 9

www.nature.com/npjprecisiononcology


angiogenesis70. ITGA6 can accelerate Keap1 proteasomal degradation,
leading to increased Nrf2 stability and activation71. Nrf2 is known as the
“master regulator” of the oxidative stress response, providing inducible
defense against oxidative damage72. Additionally, the upregulation of
ITGB4 in airway epithelial cells enhances wound healing and antioxidative
capabilities, which are blocked when ITGB4 is silenced73.

Some studies suggest that ITGA6+ ITGB4 can downregulate oxida-
tive stress through genes like Nrf2, protecting cells from ROS. The com-
petitive binding of IGF1R and ITGA6+ ITGB4 to the same ligand
IGF1 suggests that Epithelial02 may actively regulate the expression of
ITGA6+ ITGB4 on the membrane surface. This regulation competes for
IGF1 released by OSCC_Normal to prevent the adverse effects of the
IGF1–IGF1R axis, such as FOXO1 inactivation and ROS overload in tumor
cells. Concurrently, ITGA6+ ITGB4 can activate oxidative stress defense
and downregulate ROS. Tumor cells use this mechanism tomaintain redox

homeostasis, ensuring that the pro-tumor effects of ROS are not quenched
while avoiding senescence or apoptosis. ITGA6+ ITGB4 is widely
expressed in Epithelial02–06, with the highest expression in 02, 03, and 04,
suggesting that this process is a tumor cell-initiated response to host defense
mechanisms, promoting their growth (Fig. 8e). Furthermore, we found that
ITGA6 and ITGB4 are adverse prognostic factors for OSCC (Supplemen-
tary Fig. 7e). This also highlights the critical role of ITGA6 and ITGB4 in the
invasion process of OSCC; however, further investigation is needed.

Discussion
Thanks to thedevelopmentof single-cell omics technology, researchershave
significantly elucidated the progression of OSCC tumors and the landscape
of the TME. Kim et al. used single-cell analysis to explore the heterogeneity
of normal tissue, precancerous leukoplakia, primary, and metastatic
HNSCC, finding that regulatory T cells expressing LAIR2 promote tumor

Fig. 5 | Spatial transcriptomics mapping of the OSCC tumor microenvironment
cell Atlas. a, b Spatial transcriptomics analysis of samples 1 and 2 shows the dis-
tribution of different cell types within the tumor microenvironment. Various cell

types, including epithelial cells, macrophages, T/NK cells, and endothelial cells, are
mapped. The top of the figure indicates the expression intensity of each cell cluster,
with darker colors representing higher intensity.
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growth74. Sun et al. established single-cell transcriptomic and spatial tran-
scriptomic maps, observing unique immunosuppressive monocyte sub-
types and spatial transitions of VEGF signaling around precancerous
lesions75. He et al. discovered significant infiltration changes in SPP1+
macrophages and POSTN+ fibroblasts and their strong interactions with
tumor cells during HNSCC progression76.

In our study, we focused on the highly heterogeneous tumor epithelial
cells and CAFs in OSCC. First, we identified a group of CAFs regulated by
normal fibroblast transcription factors: OSCC_Normal (ADH1B+,
MFAP4+, and PLA2G2A+), potentially representing an early stage in
OSCC CAFs. Second, we finely characterized the tumor cells, discovering
that Epithelial01 (SPINK5+), Epithelial03 (AIM2+), and Epithelial04
(CASP14+) possess specific identities during tumor progression, while
Epithelial02 (AKR1C3+) is highly invasive, indicating poor prognosis and
closely associatedwith biological processes such as hypoxia, ROS, andEMT.
Third, we found strong interactions between OSCC_Normal and Epithe-
lial02 through spatial transcriptomics and tissue multiplex fluorescence
localization. We hypothesize that OSCC_Normal may resist tumor devel-
opment by regulating oxidative stress in Epithelial02, although the tumor

appears to counteract this inhibitory effect. Overall, we enriched themap of
tumor cells and CAFs in OSCC, defined different tumor cell states during
progression, and discovered the potential inhibitory role of ADH1B+,
MFAP4+, and PLA2G2A+ CAFs. This detailed study of the cellular
landscape and potential complex interactions in OSCC can aid in devel-
oping precise therapeutic strategies for the host cells’ active resistance
against tumor progression in the TME.

Fibroblasts are the main components of the TME across all types of
stromal cells, engaging in crosstalk with adjacent epithelial cells, affecting
local epithelial stem cell behavior77, and coordinating immune system
functions by producing chemokines and cytokines. Different fibroblasts
exhibit heterogeneity in the cytokines theyproduce78–80. Inmanycases, ECM
expansion caused by fibroblast proliferation occurs concurrently with
tumor development, often limiting early or precancerous lesions81,82.
Experimental studies and observations of early lesions surrounded by
fibroblasts support the idea that initial fibroblast responses can inhibit
tumors83,84. The high heterogeneity within CAFs results in various sub-
groups that exhibit both tumor-suppressing and tumor-promoting
functions.

Fig. 6 | Tumor progression at spatial transcriptomics resolution. a–f The spatial
transcriptomics showcase the distribution of Epithelial01, 04, and 03 inOSCCsamples.
The top of each panel displays the expression intensity for each cell cluster, with darker
colors indicating higher intensity. g The top UMAP plot shows the specific marker
SPINK5 in Epithelial01. The bottom violin plot illustrates SPINK5 expression across
different epithelial subtypes, with the Y-axis representing expression levels. h Survival
analysis based on the TCGA–OSCC dataset is presented using a Kaplan–Meier curve,

demonstrating that high SPINK5 expression is associated with better patient prognosis
(P < 0.05). The Y-axis shows patient survival probability, and the X-axis shows patient
survival time. i The violin plot depicts the expression of the transcription factor PITX1
across different epithelial subtypes, with the Y-axis indicating the expression levels.
j–l Immunofluorescence staining validates the expression of AIM2 and CASP14 in
tumor tissues. jTheco-expressionofAIM2andCASP14 in tumor tissues,while (k) and
(l) show the expression of these markers in tumor epithelial clusters.
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Fig. 7 | Evidence of interaction between Epithelial02 tumor cell clusters and
OSCC–Normal. a, e The spatial transcriptomics display the distribution of Epi-
thelial02 and OSCC_Normal in OSCC samples. The top of each panel shows the
expression intensity for each cell cluster, with darker colors indicating higher
intensity. b GSEA analysis results display the biological processes activated in Epi-
thelial02. cGSEA results show the enrichment scores of EMT in Epithelial02. d The
violin plot presents the expression of EMT genes in epithelial cells. f The violin plot

shows the expression of GPX2, AKR1C1, and AKR1C3 in epithelial subtype cells.
g Specific transcriptional regulators in Epithelial02. h The violin plot illustrates the
expression of transcription factor FOXO1 in epithelial subtype cells. i HE-stained
tumor sections, including the invasive front, lymphocyte-positive stromal region,
and lymphocyte-negative stromal region. j, k Immunofluorescence staining high-
lights the specific genes in Epithelial02 and OSCC_Normal (AKR1C3, MFAP4,
PLA2G2A, and ADH1B). The nuclei of the cells were stained blue with DAPI.
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Fig. 8 | The potential role of the IGF1–IGF1R/(ITGA6+ ITGB4) signaling
network in OSCC progression. a Signal interaction strengths between different cell
types, with circles representing cell clusters and lines representing communication
signals. The thicker the line, the stronger the interaction signal. b Heatmap dis-
playing all cell signaling pathways occurring in OSCC, totaling 93 cell–cell signaling
pathways. The red box highlights the IGF pathway, and darker colors within the
heatmap indicate higher communication flow intensity. cAnalysis of the insulin-like
growth factor (IGF) signaling network. d, eThe interactions within the IGF signaling
network are revealed, including the mutual signals between IGF–IGFR1 and
IGF–(ITGA6+ ITGB4) receptor pairs. “Source” denotes the signaling cell

subpopulation, while “Target” indicates the receiving cell. The color of the circles
represents different cell types. f Analysis of the relative contribution of the
IGF–IGFR1 and IGF–(ITGA6+ ITGB4) ligand–receptor pairs to the overall IGF
signaling pathway communication. This is shown as the ratio of each
ligand–receptor pair’s inferred network communication probability to the total
pathway communication probability. g HE staining of OSCC tissue is shown, with
white dashed lines indicating tumor cell aggregates surrounded by stromal tissue.
h Multiplex immunofluorescence staining marked Epithelial02 and the receptors
(AKR1C3, IGF1R, ITGB4, ITGA6), with blue DAPI staining indicating cell nuclei.
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Identifying whether a CAF promotes or inhibits tumor function
remains challenging, requiring multiple lines of evidence to demonstrate
simultaneously. Our transcriptional regulatory network identified a CAF
subtype inOSCC,OSCC_Normal, whose gene expressionmatrix resembles
other CAF subtypes in OSCC but is regulated similarly to normal fibro-
blasts, hence named as such. We hypothesize that OSCC_Normal CAFs
combat epithelial invasion, as normalfibroblasts have been shown to inhibit
cancer progression85. However, finding a subgroup of CAFs with inhibitory
functions within the tumor ECM is challenging.We identified transcription
factors like HOXA4, ALX1, ALX3, ALX4, and HOXB4 that determine the
identity ofOSCC_Normal cells. TheproportionofOSCC_Normal accounts
for ~5%of the entire CAF population (254/4576). However, in scRNAdata,
cellular function, and proportion are not linearly related. For example,
during tooth development, many early differentiated progenitor cells are
present in low proportions. Similarly, in single-cell data for sepsis, IL1R2+
immature neutrophils constitute less than 0.2% of all neutrophils, yet they
play a crucial role in regulating sepsis86. We analyzed the trajectory fate of
CAFs in OSCC, which shows a continuous state of change, with OSCC_-
Normal indeed being at an initial stage. We hypothesize that if other CAFs
could be reverted to the OSCC_Normal state through intervention, it could
be decisive in inhibiting tumor invasion. Currently, some researchers have
successfully targeted CAFs to inhibit tumors. For instance, in rectal cancer,
neoadjuvant chemotherapy has been used to remodel CAF populations,
regulating the TME through spatial recruitment and crosstalk, activating
immunity, and inhibiting tumor progression via various cytokines,
including CXCL12, SLIT2, and DCN87.

Additionally, we observed high specificity within epithelial cells,
leveraging spatial transcriptomics to model the potential roles of epithelial
subtype during tumor invasion. Our primary focus was on Epithelial02,
which exhibited thehighestCNVvariation and clinical risk, characterized by
activatedEMTsignals, oxidative stress states, andunique spatial localization.
This subtype potentially represents the core driving cell cluster of tumor
invasion. Research reports indicate that themarker AKR1C3 in Epithelial02
promotes proliferation and metastasis in hepatocellular carcinoma88 and
prostate cancer61. Additionally, the most specific transcription factor in
Epithelial02, SHOX2, has been extensively reported to promote tumor
invasion and metastasis in various cancers, such as prostate cancer89, breast
cancer90, and lung cancer91. Throughout tumor development, cancer cells
must endure oxidative stress, including during tumorigenesis, EMT,
metastasis, and disease recurrence. Tumor cells employ various adaptive
strategies to mitigate the cytotoxicity of high ROS levels, maintaining ROS
within a dynamic range to preserve high proliferative activity andmetabolic
levels while avoiding cell death from oxidative stress overload.

During the early stages of cancer initiation, cancer cells typically
experiencehigh and sustainedROS loads, necessitatingupregulationof their
antioxidant defense systems. Notably, different ROS concentrations impact
tumor cells differently. Acute, high ROS levels induce apoptosis or necrosis
by oxidatively damaging proteins, lipids, and even DNA. Moderate ROS
levels can temporarily or permanently arrest cells at specific cell cycle stages,
eventually leading to differentiation through physiological responses.
Chronic, low ROS levels promote cell proliferation and increase genomic
instability in newly formed cells, fostering tumorigenesis.

Cells adapt to oxidative stress in the short term through metabolic
reprogramming and in the long term through genetic reprogramming92.
Glucose-6-phosphate dehydrogenase (G6PD)-produced NADPH plays a
crucial role in alleviating oxidative stress during acute stimulation, as
NADPH depletion occurs due to ROS-induced stress93,94. Metabolic
reprogramming within a short to medium term involves the abundance
and/or subcellular distribution of hypoxia-inducible factor 1α (HIF-1α).
This process includes hypoxia and oxidation of Cys-326 in PHD2, stabi-
lizing HIF-1α, leading to transcriptional changes, and shifting from glucose
oxidation to glycolysis95. Prolonged oxidative stimulationmay cause cancer
cells to open redox switches to ensure their survival and proliferation.
Several transcription factors, including NRF2, P53, HSF1, NF-KB, FOXO,
and PGC-1α, regulate intracellular redox states96–98.

Epithelial02 exhibited invasive capabilities under abnormal ROS
conditions.We discovered that the antioxidant transcription factor FOXO1
mediated oxidative stress adaptation in Epithelial02. Activation of the
IGF1R leads tophosphorylationandactivationof PI3KandAKT.AKT then
phosphorylates FOXO, causing it to exit the nucleus and become tran-
scriptionally inactive67,69,99. Through cell communication analysis, we found
that OSCC_Normal CAFs inactivate the FOXO1 redox switch in Epithe-
lial02 via their IGF1/IGF1R/PI3K/AKT signaling axis, disrupting the redox
homeostasis in invasive Epithelial02. Interestingly, Epithelial02 exploits this
resistancemechanism of OSCC_Normal CAFs by consuming IGF1 ligands
through (ITGA6+ ITGB4) to reduce oxidative stress interference from
host cells.

The IGF1/(ITGA6+ ITGB4) signaling axis also promotes cancer cell
invasion and resistance to oxidative stress. Epithelial cells connect to the
basement membrane via focal adhesions and hemidesmosomes. Integrin
α6β4, as a cell adhesion molecule, anchors cells to the basement mem-
brane through hemidesmosomes, crucial formaintaining the basal-lateral
polarity and tissue homeostasis of epithelial cells. During cancer pro-
gression, integrin α6β4 is released from hemidesmosomes, altering sig-
naling pathways and stimulating tumor progression through multiple
avenues, including sustained proliferative signaling, invasion and
metastasis, apoptosis evasion, and angiogenesis100–103. Studies have shown
that ITGA6 and ITGB4 can resist intracellular oxidative stress levels71–73,
but further research is needed to explore the regulatory mechanisms
involved.

In conclusion, this study provides a multi-omics perspective on the
ecological map of tumor cells and CAFs. We explored the potential inter-
actions between OSCC_Normal and Epithelial02, contributing to a com-
prehensive understanding of cell components during OSCC progression
and offeringmolecular intervention strategies for cell interactions in OSCC
treatment.

Methods
Data preprocessing and integration
We downloaded two scRNA-seq datasets, GSE172577104 and GSE18191974,
from the GEO database. The inclusion criteria were sequencing samples
originating from the oral cavity that had not been processed. The raw data
were processed using STARsolo’s upstream analysis, resulting in 18 raw
sparse matrices from single-cell sequencing. During the single-cell analysis,
weusedSeurat version4.4 tomerge all data and further screened low-quality
cells with thresholds of nFeature >200, <6000, andmitochondrial transcript
percentage <25%. We selected 2000 highly variable genes and used Har-
mony for batch correction and data integration, ensuring the reliability of
the analysis results.

Gene regulatory network (GRN) analysis
We employed pySCENIC105 to explore cell state transitions andGRNs. This
method leverages transcription factors and cis-regulatory sequences to
guide cell state analysis in single-cell RNA-seqdata.We establishedGRNs in
OSCC and identified different cell states, quantifying each regulon’s activity
using the AUCell algorithm. We marked characteristic regulons between
groups and cell types through variance decomposition to further investigate
complex regulatory relationships in OSCC.

Cell trajectory analysis
We used Palantir to simulate the trajectory of epithelial cells and fibroblasts
in OSCC and measured cell plasticity along the trajectory using entropy.
Basedonpseudo-timeordering,we assigned each cell state theprobabilityof
differentiating into each terminal state106 (https://github.com/JarningGau/
scutilsR).

InferCNV for inferring copy number variations
We used the R package inferCNV to study large-scale chromosomal copy
number changes in OSCC somatic cells. Using default parameters, we
analyzed T/NK cells and macrophages as reference groups to explore gene
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expression intensities at different genomic locations, inferring chromoso-
mal changes and displaying the results in a heatmap.

Clinical prognostic analysis
We calculated the marker genes for each epithelial subtype and initially
screened characteristic genes for each subtype using a threshold of P < 10−6

and FC > 2. Based on the RNA expression matrix and clinical information
from TCGA–OSCC, sourced from TCGA_HNSCC datasets, we selected
samples from the oral cavity. Prognostic analysis was conducted using KM
survival analysis with log-rank tests for statistical significance. We incor-
porated subtype characteristic genes into Lasso regression, performing
multivariate Cox regression analysis on genes appearing more than 45
times, and calculated HR and risk scores for each subtype.

Spatial transcriptomics analysis
Weapplied theRCTD107method, a supervised learning approach, tomap the
spatial information of cell subtype defined in single-cell data onto spatial
transcriptomics data. The data were sourced from GSE208253, and we
referenced theannotation results fromtheauthors’data explorationplatform.

Cell–cell communication
CellChat108, a tool for quantitatively inferring and analyzing cell–cell com-
munication networks from scRNA-seq data, was used to construct com-
munication patterns and ligand–receptor networks amongOSCC.We used
the “cellchatDB” ligand–receptor database with default parameters to
analyze and create heatmaps displaying signal strength and calculate the
relative weight of each ligand–receptor pair within each signal.

Clinical sample collection
Tumor tissues and adjacent normal tissues were collected from OSCC
patients, with approval from theMedical Ethics Committee of the Affiliated
Stomatology Hospital of Kunming Medical University. All patients signed
informed consent forms.

Ethics approval
The study was conducted in accordance with the Declaration of Helsinki
and under the approval of the Ethics Committee of Stomatology Hospital
Affiliated to Kunming Medical University (Approval Number:
KYKQ2024MEC0066). The patients signed written informed consent,
agreeing to the anonymized use of their clinical and molecular data for
research purposes.

Immunofluorescence staining
Tissue samples were obtained fromOSCC surgery patients at the Affiliated
StomatologyHospital ofKunmingMedicalUniversity. Tissueswerefixed in
4% paraformaldehyde for 24 h, dehydrated, embedded, and sectioned into
4 μm slices for staining. After blocking with 3% BSA, sections were incu-
bated overnight at 4 °C with primary antibodies AKRIC3 (Bioss, 11401R,
1:300), ADH1B (Bioss, 10591R, 1:300), MFAP4 (Bioss, 18824R, 1:300),
PLA2G2A (Bioss, 20483R, 1:300),AIM2 (Bioss, 5986R, 1:300), andCASP14
(Bioss, 10136R, 1:300).AfterwashingwithTBST, sectionswere incubated at
room temperature for 2 h with goat anti-rabbit secondary antibodies and
imaged using a fluorescence microscope.

Data availability
The datasets used in this paper are available online, as described in the
“Methods” section.

Code availability
The underlying code for this study is available in GitHub and can be
accessed via this link https://github.com/Zhang-hr666/OSCC_code. No
new algorithms were developed for this article.
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