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ABSTRACT
Current cable-road layouts for timber harvesting in steep terrain are often based on either manual 
planning or automated layouts generated from low-resolution GIS data, limiting potential benefits and 
informed decision-making. In this paper, we present a novel approach to improve cable-road design using 
multi-objective optimization based on realistic cable-road representations. We systematically compare the 
effectiveness of single-objective and multi-objective optimization methods for generating layouts using 
these representations. We implement and evaluate the performance of a weighted single-objective 
approach, the AUGMECON2 and NSGA-II multi-objective methods in comparison to a layout manually 
created by a forestry expert, taking into account installation costs, harvesting volumes, residual stand 
damage and lateral yarding workload. In addition to implementing the first linear programming multi- 
objective optimization for realistic cable-road representations by adapting AUGMECON2, we also present 
the first implementation of a multi-objective genetic algorithm (NSGA-II) with simulated annealing for this 
purpose and evaluate their respective strengths. We find that the use of multi-objective optimization 
provides advantages in terms of cost-effective, balanced and adaptable cable-road layouts while allowing 
economic and environmental considerations to be incorporated into the design phase.
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Introduction

Cable yarding remains a productive system for timber extrac
tion in steep terrain. Current European silvicultural strategies, 
coupled with environmental considerations, lead to smaller 
harvest areas and lower extraction volumes in recent years, 
shifting from clear-cutting to individual tree extraction. 
Notably, the time required for yarder installation, particularly 
in relation to the extraction time, has seen a significant 
increase, consequently raising the overall extraction costs 
(Schweier et al. 2020).

The digitalization of the cable-road planning process pro
mises to lower installation and extraction costs by enabling 
a global optimization of the cable-road layouts. Recent GIS- 
based layout planning methods, however, often fall short for 
real-world applications, primarily due to the inadequate reso
lution of most remote sensing data, which typically relies on 
vegetation-density estimations with a spatial resolution of 
around 10 m for most bands (Acito et al. 2022). The resulting 
inaccuracies make the generated cable-road layouts less realis
tic and less suited for practical applications, as the placement of 
the cable roads only relies on estimation of tree densities 
instead of a concrete feasibility computation for each cable- 
road.

To overcome these constraints, we employed personal laser 
scanning (PLS) technology to generate high-resolution tree 
maps (Gollob et al. 2024). This method allows for the precise 
determination of individual tree locations, trunk attributes, 

diameters, and heights. By integrating these detailed tree 
maps with comprehensive digital elevation models in our pre
vious work, we were able to compute precise cable-road repre
sentations. These cable roads include strategically placed 
intermediate supports and anchor points, ensuring cost- 
effectiveness and feasibility (Retzlaff et al. 2024).

In this paper, we extend our research by optimizing the 
selection of computed cable-road representations to design 
cost-efficient cable-road layouts. Initially, we quantify the 
costs and impacts associated with each cable-road, drawing 
on established productivity models outlined in previous studies 
(Ghaffariyan et al. 2009; Stampfer et al. 2013). We then create 
an optimized cable-road layout by selecting a combination of 
cable roads that efficiently cover the entire forest while mini
mizing multiple objectives (cost, residual stand damage, lateral 
yarding workload). To accomplish this, we employ a multi- 
objective approach, enabling us to balance the trade-offs 
between objectives and determine the most favorable overall 
outcome.

We compare a single-objective approach, a multi-objective 
optimization based on the epsilon-constraint method 
(AUGMECON) and a genetic algorithm (NSGA-II) with 
a layout created by an expert in forestry to show how these 
approaches can help create cost optimal layouts as well as 
allowing informed decision-making on the trade-offs between 
different objectives. This work contributes to the ongoing 
digital transformation in the field of smart forestry and aims 
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to show how we can balance economical, ecological and ergo
nomical factors (Holzinger et al. 2022). Our work draws on 
three major research areas. Firstly, LiDAR modeling to quickly 
create 3D models of a specific area. Secondly, the computation 
of possible cable roads while considering mechanical factors 
including rope tension and deflection, anchor-holding forces, 
and optimal support placement. Finally, linear optimization 
approaches for selecting an optimal subset of the computed 
possible cable roads, leading to cost-optimal coverage of an 
area.

LiDAR

LiDAR technology has become a valuable tool in forestry, 
providing high-resolution data of the forest environment 
through the creation of detailed 3D point clouds 
(Newnham et al. 2015; Marrs and Ni-Meister 2019). By 
emitting laser pulses and recording their reflections, LiDAR 
enables precise information about forest terrain, tree loca
tion, height, and canopy structure (Dubayah and Drake  
2000). Terrestrial LiDAR, which uses ground-based scanning 
systems, excels in capturing accurate tree-level data, making 
it ideal for fine-scale forest inventory and monitoring. In 
contrast, aerial LiDAR, deployed from airborne platforms, 
offers broader coverage of large forest areas but struggles to 
penetrate dense canopies, limiting information on individual 
tree attributes (Popescu and Wynne 2004). While LiDAR- 
based simulations have the potential to support planning and 
evaluation processes in forestry, data accuracy depends on 
factors such as instrument quality, point cloud density, and 
weather conditions (Hancock et al. 2014). Therefore, aerial 
LiDAR is generally considered inadequate for obtaining com
prehensive data on individual trees, while terrestrial LiDAR 
provides more precise tree-level information (Liang et al.  
2014).

Cable-road computation

The computation of the mechanical properties of cable roads in 
forestry has received considerable attention in research and 
was often improved alongside the optimization of cable-road 
layouts. The commonly found linear approach to modeling 
cable structures used in our previous work (Retzlaff et al.  
2024) is based on Pestal (1961), which is relatively easy and 
fast to compute, but also relies on simplified assumptions 
(Bont and Heinimann 2012). A notable approach that also 
incorporates nonlinear assumptions to design optimal inter
mediate support layouts is the “close-to-catenary” approach by 
Zweifel (1960).

This approach takes into account the dynamic behavior of 
cables, considering factors such as cable tension, sag, and 
anchor point selection to ensure the structural integrity and 
stability of the cable-road system. Bont and Heinimann 
(2012) as well as the QGIS-plugin SEILAPLAN implement 
the approach by Zweifel and have been employed to solve 
cable-road layout problems at a large scale (Bont et al. 2022). 
SEILAPLAN allows considering various cable-road proper
ties, including cable span clearance, terrain conditions, and 

environmental impact, to optimize the placement of indivi
dual cable roads and determine the most cost-effective inter
mediate support locations. It is however limited to the 
manual placement of cable roads, as usually there is no 
accurate tree map available.

Layout optimization

There has been significant research on automatically determin
ing optimal cable-road layouts (Sessions 1992; Chung and 
Sessions 2003). The location-allocation problem, for example, 
which has also provided insights applicable to forestry, is 
a well-known problem in this regard and has been extensively 
researched since the 1960s in the field of operations research 
(Bont and Church 2018). In the last decades, various optimiza
tion methods were introduced to identify cost-minimal har
vesting units and allocate equipment, but approximation 
algorithms were still necessary for larger practical problems 
(Dykstra and Riggs 1977; Chung et al. 2004; Epstein et al.  
2006).

Later publications presented set-covering models for 
addressing large-scale cable-road layout challenges (Bont and 
Church 2018). However, the emergence of both ecological and 
cost pressures necessitated the consideration of multiple objec
tives for a balanced outcome for different stakeholders. The 
most straightforward method for balancing multiple objectives 
involves manually adjusting the weights of objectives in 
a unified objective function (also referred to as weighted sum
mation). Determining weights for this method is complex and 
typically relies on a blend of expert insights and experimenta
tion with various weights (Bont et al. 2019), which is why 
alternative strategies were developed to computationally iden
tify optimal solutions.

One of the first multi-objective approaches for balancing 
environmental impact and cost-effectiveness in forestry was 
presented by Bont et al. (2019). Multi-objective optimization 
aims to find a set of solutions that optimize multiple conflicting 
objectives simultaneously. Rather than finding a single optimal 
solution as described above, it identifies a range of solutions 
that represent trade-offs between these objectives, known as 
the Pareto front. The aim is to provide decision-makers with 
a range of options so that they can choose the most appropriate 
solution based on their preferences and priorities. A major 
limitation to the approach by Bont et al. (2019) was the reliance 
on low-resolution aerial GIS data, resulting in potentially infea
sible layouts. To overcome this, we proposed an approach for 
incorporating high-precision forest stand maps generated by 
personal laser scanning and simulating cable roads based on 
this information, which enhances the reliability and applicabil
ity of the cable-road layouts (Retzlaff et al. 2024).

Two important multi-objective optimization approaches in 
recent times are NSGA (Non-Dominated Sorting Genetic 
Algorithm) and Epsilon Constraints (EC). NSGA is an evolu
tionary algorithm that evaluates and compares solutions based 
on multiple objectives simultaneously using non-domination 
sorting. It aims to find a diverse set of solutions along the 
Pareto front, promoting convergence and diversity. In contrast, 
EC transforms the problem into a series of single-objective 
sub-problems by introducing epsilon constraints that define 
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acceptable ranges for each objective. It iteratively optimizes 
each objective subject to its corresponding epsilon constraint, 
exploring the feasible region of the objective space.

AUGMECON2 was introduced by Mavrotas and Florios 
(2013) and is an improved version of the EC method. The 
EC approach offers specific advantages over weighting sum
mation, particularly in cases involving discrete variables 
(Mixed Integer or Pure Integer problems). It helps to avoid 
weakly Pareto optimal solutions, leading to faster conver
gence by preventing redundant iterations, and has demon
strated its effectiveness in various applications (Sedighizadeh 
et al. 2018).

While EC generally offer a straightforward approach for 
optimization, non-linear objective functions or discontinu
ous variable space can cause them to not be efficient. In 
these cases, heuristic methods like genetic algorithms (GAs) 
can provide useful alternatives. GAs are based on the prin
ciples of natural selection and genetic evolution, generating 
and evaluating a population of potential solutions itera
tively. By exploring a wide range of solutions and employ
ing genetic operators like crossover and mutation, GAs can 
find optimal or near-optimal solutions in complex problem 
domains. Their flexibility and adaptability make them well- 
suited for addressing real-world optimization problems that 
classical methods struggle with (Verma et al. 2021).

NSGA-II is an enhanced variant of the non-dominated 
sorting genetic algorithm (NSGA) and addresses several 
limitations of its predecessor, including the absence of elit
ism, the need to define sharing parameters for diversity 
preservation, and high computational complexity (Yusoff 
et al. 2011). NSGA-II eliminates the requirement for shar
ing parameters by employing a crowding distance operator 
to maintain diversity. Solutions with larger crowding dis
tances have fewer neighboring solutions nearby, leading to 
a more diverse set of solutions. NSGA-II is also more 
computationally efficient as its overall complexity remains 
within an upper bound of O(MN2), where M represents the 
number of objective functions, and N denotes the popula
tion size (Verma et al. 2021).

NSGA and EC provide different approaches for multi- 
objective optimization, with NSGA focusing on diversity and 
EC on defined constraints, as illustrated by Bont and Church 
(2018). Furthermore, GAs like NSGA-II offer computational 
efficiency, as shown by Verma et al. (2021), addressing com
plex challenges with nonlinear objectives.

The overall objective of this work is to bridge the gap 
between realistic one-off cable-road planning based on 
individual trajectories and area-wide layout optimization 
relying on GIS data. This paper leverages the detailed cable- 
road representation from our previous publication (Retzlaff 
et al. 2024) to optimize cable-road layouts. The underlying 
code of this project can be found on GitHub (Retzlaff  
2023). We compare the outcomes of a combined-objective 
approach aimed at minimizing the cost as well as residual 
stand damage and lateral yarding workload of a cable-road 
layout with an EC multi-objective optimization process 
with those generated using the NSGA-II (Non-Dominated 
Sorting Genetic Algorithm) optimization approach. We 
evaluate our results against an expert-generated layout to 

identify areas where our approach can be enhanced and 
quantify the extent of improvement it offers compared to 
expert knowledge.

Materials and methods

The following section describes the underlying data of our 
optimization, methods used for quantifying the cable-road 
costs, as well as the approaches used for computing the opti
mization and details their implementation.

Underlying data

The data acquisition and processing involved scanning a 1.62  
ha forest stand using a GeoSLAM ZEB Horizon personal laser 
scanner, generating 3D point clouds using a SLAM algorithm, 
and extracting terrain and tree parameters using automatic 
routines developed with the R programming language. The 
scanning process requires around 40 min per hectare while 
also depending on factors like overall terrain difficulty and 
steepness.

The obtained parameters, including tree coordinates, 
height, volume, diameter at breast height (DBH), taper curves, 
and a digital terrain model, serve as the basis for optimizing the 
cable roads. The simulation of cable-road feasibility and para
meters incorporates established computational methods in 
forestry, as described in Bont (2012),Gollob (2022) and 
Stampfer (2000). A comprehensive overview of rope deflection 
computation methods and required parameters is provided by 
Bont (2012), while additional details on anchoring, rope ten
sions, and cable-road loads are derived from discussions with 
an expert in forest technology (Gollob 2022). Geometric 
approaches for determining cable-road loads and supports 
are based on Stampfer (2000).

The expert-layout was generated in an informal context by 
the expert relying on a map of the possible cable roads, trees 
and knowledge about the corresponding forest area (Gollob  
2022). The expert had 15 years of experience with cable yard
ing, owned a cable yarder, and had published one peer- 
reviewed manuscript in the field of cable yarding.

Parametrizing cable-road costs and impacts

We optimize our cable-road layout based on three major fac
tors (cost, residual stand damage, lateral yarding workload) to 
show how multi-objective optimization can help balance the 
inherent trade-offs between multiple objectives. The objective 
of residual stand damage helps to gauge the environmental 
impact a given layout has, while the lateral yarding workload 
objective helps to assess how much excess ergonomical work
load is placed on the forestry worker. In the following para
graphs, we describe the motivation for choosing the different 
objectives. The approaches for the computation of the various 
objectives and their implementation can be found in Section 
“Optimization and Constraints.”

The first factor we consider is total harvesting cost. The 
drive toward smaller harvest areas and lower extraction 
volumes for ecological considerations has led to higher 
extraction costs (Schweier et al. 2020), which creates 

446 C. O. RETZLAFF ET AL.



a major hurdle for the wider adoption of cable yarding 
systems. Therefore, we establish the primary goal of our 
optimization process as the reduction of total extraction 
expenses. We use the productivity models developed by 
Ghaffariyan et al. (2009) as well as the estimation of set- 
up and take-down time for cable roads by Stampfer et al. 
(2013) to estimate the costs associated with erecting a given 
cable-road as well as the cost efficiency (i.e. cost of m3 

wood) for harvesting the nearby trees. We used the pro
ductivity models of Ghaffariyan et al. (2009) to calculate 
harvesting costs, which were created for motor manual 
felling and topping of the trees and delimbing and bucking 
at the landing.

As a secondary objective for the multi-objective optimi
zation, we quantify environmental impacts to the forest 
stand by computing the residual stand damage (also 
referred to as stand damage) based on the lateral yarding 
distance beyond an established threshold. As the lateral 
yarding distance increases, so does the likelihood of 
damage to the remaining stand (Stampfer et al. 2003). 
This damage not only compromises the stand’s stability 
and vitality but also serves as an entry point for pathogens, 
which can lead to a decline in wood quality. The stability 
and vitality of a stand are key indicators for sustainable 
forest management (Kühmaier and Stampfer 2012). By 
measuring the lateral yarding distance, we can therefore 
gauge the potential residual stand damage and the subse
quent reduction in tree value. The use of residual stand 
damage to gauge ecological impacts aligns with the growing 
emphasis on sustainable forestry practices, which are cru
cial for preserving natural habitats, preventing soil erosion 
and maintaining biodiversity, while also enhancing the 
public perception of the forestry industry (Rametsteiner 
et al. 2011).

As a tertiary objective, we quantify the ergonomical 
strain placed on workers with the lateral yarding workload 
(also referred to as yarding workload) they experience with 
increasing lateral yarding distance. During the lateral pull 
phase, the choker setter has to pull the steel cable and 
attach the choke to the felled trees, which becomes more 
straining with higher distances (Berendt et al. 2020). The 
increased strain is not just a matter of worker comfort but 
also has significant safety implications, as higher strain 
levels have been associated with increased accident rates 
in the forestry sector (Hoffmann et al. 2016).

The following paragraphs describe how the costs of all 
viable cable roads in the area are determined, which creates 
the basis for creating an optimal layout by selecting the cable 
roads with the lowest costs and best tree coverage. Equation 1 
denotes the time per cycle required to fell and process a tree as 
per Ghaffariyan et al. (2009). The yarding distance in meters is 
the distance over which logs are transported. Each meter of 
yarding distance from the carriage to the tower yarder con
tributes 0.007 units to the minimum time per cycle. The lateral 
yarding distance in m is the horizontal distance from the yard
ing line to the tree. Each meter of lateral yarding distance from 
the carriage to the tree adds 0.043 units to the minimum time 

per cycle. The tree volume in cubic meters is the volume of the 
tree being harvested. The contribution of tree volume to the 
minimum time per cycle is inversely proportional to the cube 
root of the volume, with a coefficient of 1.307. The harvest 
intensity in percent is the percentage of trees being harvested 
from the overall stand. Each percentage point of harvest inten
sity adds 0.029 units to the minimum time per cycle. The slope 
in percent is the steepness of the terrain. Note that convention
ally, cycle time decreases with higher harvesting intensity, due 
to reduced concern for damaging residual trees while harvest
ing. However, this coefficient indicates the opposite, ie. that 
higher harvest intensity leads to increased cycle time. Despite 
this unexpected relation, we found that the model by 
Ghaffaryian et al. (2009) provides the best overall predictions 
for cycle time. We hypothesize that the harvest intensity coeffi
cient is either too weak to significantly impact the model’s 
predictive accuracy or may capture other unobserved interac
tions. Each percentage point of the slope contributes 0.038 
units to the minimum time per cycle. Equation 1: 

In keeping with the established practice of assigning the 
trees within a 15-m lateral distance to the cable-road 
(Ghaffariyan et al. 2009), we adopted a strategy that 
imposes a penalty on the cost efficiency of tree assignment 
to the cable-road (refer to Equation 2). To ensure that we 
do not overly constrain the optimization by ignoring trees 
slightly over 15 m, we penalize rather than constrain the 
tree assignment, allowing more flexibility in the cable-road 
layout planning. Consequently, for trees located more than 
15 m from the cable-road, the excess distance is added as 
a penalty to the harvesting cost. Equation 2 defines this 
computation with d as the distance from tree to the cable- 
road and pc as the resulting penalty to cost, which makes 
trees farther from the cable-road comparatively more 
expensive to assign. This approach allows for the assign
ment of these trees if their location offers benefits that 
outweigh the additional felling costs and ensures 
a balance between cost efficiency and operational flexibility. 
Equation 2: 

The cost of set-up and take-down time of a cable-road is 
determined as per Stampfer et al. (2013) with the sum of 
Equations 3 and 4. The set-up time, measured in hours, is 
calculated as the exponential of a sum of factors. These 
factors include the cable-road length (in meters) multiplied 
by 0.00229, the intermediate support height (in meters) mul
tiplied by 0.03, the corridor type (1 for first, 0 for subsequent 
installations to the same tower) multiplied by 0.256, the 
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extraction direction (1 for uphill, 0 for downhill) subtracted 
by 0.65, the yarder size (in meters) multiplied by 0.11, and 
the product of the extraction direction and yarder size multi
plied by 0.491.

Similarly, the take-down time, also measured in hours, is 
calculated as the exponential of a sum of factors. These factors 
include the corridor length (in meters) multiplied by 0.00233, 
the extraction direction subtracted by 0.31, the number of 
intermediate supports subtracted by 0.31, and the yarder size 
multiplied by 0.33. All these factors are summed and added to 
a constant of 0.96. These equations model the set-up and take- 
down times as exponential functions of these factors, each 
multiplied by its respective coefficient.

Note that the computed times are simplified models and 
actual times may vary based on other factors not included in 
these models and different environments, as different tree 
species, machinery, terrain and worker qualification can lead 
to vastly different set-up and take-down times.
Equation 3: 

Equation 4: 

Both the productivity time per cycle and the set-up and take- 
down time for the cable roads are multiplied with the cost per 
man-hour, which is set to $44 USD ($60 USD adjusted for 
inflation in 2024) as per Stampfer et al. (2013).

We support both clear-cut and selective cutting as harvest
ing approaches. We implemented the A-value approach to 
select trees to fell based on the distance of trees clustered 
around a central Z-tree. The A-value is based primarily on 
two key factors: the height-to-diameter ratio (H/D) of the 
Z-tree and the diameter and proximity of neighboring trees. 
Johann (1982) formulated the A-value based on the following 
considerations: The stature of a Z-tree directly influences its 
spatial requirements within the stand. A neighboring tree 
assumes a competitive role (K) by infringing upon the space 
occupied by the Z-trunk (Z). When the height (H) of the 
competitor corresponds to that of the Z-tree, signifying an 
equivalent social position, the competitive pressure escalates 
as the tree height increases and the distance (E) between them 
decreases (H/E). Conversely, a tree of lesser stature or social 
standing exerts relatively lower competitive pressure on the 
Z-trunk than a more robust tree. This observation can be 
expressed as the ratio of the competitor’s diameter (d) to that 

of the Z-trunk (D). Given those considerations, a competitor 
tree in a cluster is removed when its distance from the Z-tree 
falls below a specified critical distance (GD), provided a fixed 
A-value criterion is met Equation 5: 

We utilize Equation 5 to automatically select all trees which fall 
below the threshold for cutting, allowing to easily adapt our 
approach to selective cutting.

Optimization approaches

As described previously, we employ three different optimiza
tion approaches to create an optimal layout of cable roads.

Single-Objective Optimization (SOO): We apply a single- 
objective optimization approach to cable-road layout design 
with the weighted addition of individual objectives. Leveraging 
the Python packages spopt (Feng et al. 2022) and pulp 
(Mitchell 2011), we formulate the optimization problem, mod
eling cable-road placement as a linear programming task. We 
use the Coin-OR solver to determine an optimal cable-road 
layout which offers the lowest installation expenses, balanced 
with the secondary objectives. Finding weights for this 
approach is challenging and often based on a mixture of expert 
knowledge and experimenting with different weights (Bont 
et al. 2019). This process can be tedious and fails to discover 
all optimal solutions, which motivates the move toward true 
multi-objective approaches. We employ SOO in this work to 
have a comparative baseline for more advanced approaches, as 
well as to compute Nadir points, i.e. the worst possible objec
tive values found in the Pareto front, for the individual objec
tives, as required by AUGMECON2 (Mavrotas and Florios  
2013). As reference point for the other approach, we imple
ment a combined-objective approach (see Equation 6) which 
minimizes the equally weighted sum of the individual objec
tives (Equations 9, 10, 11). The equation minimizes the sum of 
the cost objective, the residual stand damage objective and the 
lateral yarding workload objective. This simple addition of 
different factors is the established way to combine objectives 
and is usually fine-tuned by adjusting the individual objective 
weights in an iterative way and with the help of expert knowl
edge (Yang 2014) Equation 6: 

AUGMECON2: Secondly, we apply a slightly modified version 
of the AUGMECON2 multi-objective optimization algorithm 
to the cost optimization problem. AUGMECON is part of the 
family of epsilon-constraint approaches and formulates sec
ondary objectives as constraints, which allows considering 
secondary objectives alongside the primary cost objective 
(Mavrotas and Florios 2013). AUGMECON enables 
a systematic evaluation of cable-road layouts with different 
objective weightings and provides a balance on the spectrum 
of implementation effort and performance between manually 
weighting objectives as in SOO and more elaborate Genetic 
Algorithms like NSGA-II. We chose to not adapt the 
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AUGMECON2 version of formulating the optimization objec
tive over the original AUGMECON implementation, as the 
secondary objectives are equally important in our application. 
We furthermore modify the objective function to minimize 
instead of maximizing the objective. We selected a step-size 
of four for the grid-point search, which results in 16 evalua
tions at most and provides a balance between fine-grained 
results and computation time. See Equation 7 for the objective 
function and Equation 8 for the constraints. In Equation 7, we 
minimize the main function f1(x), which corresponds to the 
cost function in our case, while also minimizing the product of 
the surplus variable S (how much the objective is better, i.e. 
lower, than the expected value) divided by the range r (the 
globally minimized value of this objective) of all other objec
tives. This is subject to a lower limit (Equation 8), where the 
objective value of the secondary functions minus the surplus 
variable has to be equal to the expected value e (which is 
determined by a grid of target objective values from least to 
most desirable objective value). Equations 7 and 8: 

NSGA-II: To complement the previous approaches, we also 
implement the NSGA-II (Non-dominated Sorting Genetic 
Algorithm II) method for cable-road layout design. Unlike 
the AUGMECON approach, NSGA-II operates through 
a genetic algorithm paradigm, introducing variability and 
exploration in the optimization process. We frame the optimi
zation as a binary decision problem, where each cable-road can 
be either open or closed and the algorithm starts with only one 
randomly selected cable road. For selecting cable roads within 
the genetic algorithm, we implement the simulated annealing 
optimization approach. We first define a temperature t that 
decreases with each iteration. The difference between the 
objective function values before and after a new solution is 
proposed and is calculated as diff_objectives. The metropolis 
criterion, a probability that depends on this difference and the 
current temperature, is then calculated. If the new solution 
improves the objective function, it is accepted. If not, it is still 
accepted with a probability given by the metropolis criterion. 
This allows the algorithm to avoid local minima by occasion
ally accepting worse solutions. If the new solution is not 
accepted according to these conditions, it is rejected. This 
process is repeated until a stopping criterion is met, 
a sufficiently low temperature or, in our case, more than 100 
iterations. This probabilistic optimization scheme is used in 
various applications and is known for fast convergence and its 
relative simplicity (Suman and Kumar 2006). Code Listing 1:

t = temp/iteration
diff_objectives = objective_before – objective_after metropo

lis_criterion = exp^(-diff_objectives/t)
if objective_after < objective_before:
accept_new_solution()
elif rand(0,1) < metropolis_criterion:
accept_new_solution()
else:

reject_new_solution() 

We run the NSGA-II algorithm with 10 different solutions for 
20 generations, which in our case resulted in optimal results, as 
indicated by decreasing changes in the objectives around the 
12th generation and converging at the final generations.

NSGA-II holds the potential advantage over AUGMECON 
with its ability to explore a wider solution space even in non- 
convex spaces. The random mutation strategy in NSGA-II 
introduces an element of randomness that can help escape 
local optima and discover a diverse set of solutions. This con
trasts with AUGMECON’s more linear and systematic 
approach.

Optimization and constraints

In the following section, we describe how the objectives and 
constraints described in the previous sections were implemented 
to solve the problem of optimal cable-road layouts. The main 
objective is defined in Equation 9 and is also referred to as cost 
objective. It minimizes the overall cost for all cable roads selected 
(f multiplied by a binary select variable), as well as the cost of 
retrieving the trees assigned to each cable-road (c multiplied by 
the corresponding binary assign variables) Equation 9: 

The second objective (see Equation 10), also referred to as the 
residual stand damage objective, minimizes environmental 
impact by considering yarding distances above 10 m as ecolo
gically unfavorable. The established average lateral yarding 
distance in thinning operations is 10 m (resulting in an 20 m 
rope alley spacing), because damage to the remaining stand 
increases disproportionately at higher lateral draw distances 
(Stampfer et al. 2003; FHP Kooperationsplattform Forst - Holz 
- Papier 2019). We classify these damages as exponentially 
detrimental according to (Stampfer et al. 2003)), and, therefore, 
penalize lateral yarding distances over the established thresh
old with the square of the excess distance. Equation 10 mini
mizes the sum of yarding distances by the select variables, i.e. 
the selected trees, as well as their corresponding lateral dis
tances to their cable road if larger than 10 m, squared 
Equation 10: 

The third objective (see Equation 11), also referred to as the 
lateral yarding workload objective, minimizes the physical 
workload of the worker by penalizing lateral yarding distances 
over 15 m, oriented at the lateral yarding distance considera
tions for worker productivity by Ghaffariyan et al. (2009). 
During the yarding operation, the choker setter has to pull 
a steel cable and attach the choker to the felled trees, which 
becomes increasingly strenuous as the distance increases and 
has been associated with higher accident rates in the forestry 
sector (Hoffmann et al. 2016; Berendt et al. 2020). We choose 
to set this threshold similarly to the yarding cost estimation, 
acknowledging the direct connection between both operations 
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and their linear increase with excess distance. Equation 11 
minimizes the sum of lateral yarding distances for all trees 
which are enabled by the select variable multiplied by their 
corresponding lateral yarding distance, if it is larger than 
15 m Equation 11: 

The optimization is constrained by Equation 12 to ensure that 
all trees are assigned to exactly one cable-road, and by 
Equation 13 to ensure that each cable-road which has a tree 
assigned must be selected. Equation 12 defines that the sum of 
each assign variable, where the assign variables are a matrix of 
binary variables for each tree to each cable corridor, has to be 
exactly 1, which forces the algorithm to assign each tree to 
exactly one cable-road Equation 12: 

Equation 13 requires that if tree I is assigned to a cable-road j, 
the select variable must be 1, i.e. the cable-road must be built 
Equation 13: 

In the process of the AUGMECON implementation, we are 
iteratively solving the optimization problem in Equations 
14, with SS being the slack of the stand damage objective, 
RS being the range of the stand damage objective, DS the 
yarding workload objective, RS the yarding workload range 
and e the corresponding expected value in the linear grid 
from maximal to minimal objective value. The secondary 
and tertiary objectives are reframed as weighted constraints 
(see Equation 15). Deviating from the implementation by 
Mavrotas and Florios (2013), we convert the problem to a 
minimization problem as opposed to a maximization in the 
original AUGMECON approach and chose to keep an equal 
weighting of the secondary objectives as opposed to 
AUGMECON2 Equations 14 and 15: 

. . .                                   SSRSDSRSe 

To iteratively constrain the secondary objectives, 
AUGMECON needs to define minimum- and maximum 
values for the secondary objectives. For finding the range of 
these parameters with a single-objective optimization, we limit 
the maximum number of cable roads to a given number (five in 
our case) to prevent the algorithm from simply selecting all 
cable roads when only minimizing the secondary objectives 
(see Equations 11 and 12). The underlying code and the results 
of the planning process are publicly available in the GitHub 
repository (Retzlaff 2023).

Results

The results of the different optimizations are summarized in 
Table 1 to provide a comprehensive overview of the various 
cable-road optimization approaches employed in this study, 
including the single-objective optimization (SOO), 
AUGMECON2, NSGA-II, and the expert-designed layout. 
See Appendix Figure S1 for a visual comparison of these results 
and Figure 1 for how the corresponding layout looks like 
applied to our forest. Appendix Figure S2 shows a 3D view of 
the AUGMECON-00 layout plotted on the ground surface 
point cloud. Appendix Figures S3 to S14 show the correspond
ing large-scale version of the layout of each model. Since many 
similar solutions were generated, we show only three results 
per approach in Table 1, while Appendix Table S1 provides an 
extended version with all model results. Similar to the 
approach from Bont et al. (2019), we show the results as 
relative maximal impact by comparing the best case of each 
objective within the other scenarios. This has the benefit of 
removing the need for manually weighting the objectives as in 
the SOO approach, and instead focusing on the relative impact 
to the best and worst case for each objective.

For single-objective SOO layouts, four distinct approaches 
were considered: SOO Cost, focusing solely on cost optimiza
tion; SOO Stand Damage, emphasizing the minimization of 
ecologically unfavorable distances; and SOO Yarding 

Table 1. Comparison of the relative impact of each approach for the objective cost, residual stand damage and 
yarding workload. The numbers in percent show how much each objective is fulfilled in comparison to the best 
possible solution, focusing on only one objective. I.E. when expert layout 1 achieves a 63%, it has 37% higher costs 
than the 100% cost objective only solution.

Model name
Cost 

Objective
Stand Damage 

Objective
Yarding Workload 

Objective

SOO Cost Objective 100 57 60
SOO Stand Damage Objective 80 100 100
SOO Yarding Workload Objective 76 95 100
SSO Combined Objective 93 77 83
NSGA-II 5 93 78 82
NSGA-II 0 91 85 90
NSGA-II 6 93 79 78
Augmecon 00 100 57 60
Augmecon 04 88 88 96
Augmecon 40 85 99 100
Expert Layout 1 63 19 11
Expert Layout 2 69 47 39
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Workload, prioritizing the minimization of ergonomically 
unfavorable yarding distances. The SOO Combined Objective 
is an equally weighted combined objective. In the following, we 
refer to the cost objective as per Equation 9, the residual stand 
damage objective as per Equation 10 and lateral yarding work
load objective as per Equation 11. Then, we show three selected 
results by NSGA-II and from the AUGMECON approach (see 
B for all resulting layouts). Finally, we evaluate two cable-road 

layouts generated by a forestry expert with the help of an 
interactive tool.

Our results are presented in terms of relative negative 
impact, indicating the percentage difference from the best 
achievable value as per the single-objective approach, which 
always achieves the overall minimum objective value. This 
means that, for example, an 88% solution for the cost objective 
requires 12% more costs than the most cost-effective solution 

(a) Expert Layout 1 (b) Expert Layout 2  (c) SOO Combined 

(d) SOO Cost 
Workload 

(e) SOO Stand Damage (f) SOO Yarding 

(g) AUGMECON 00 (h) AUGMECON 04 (i) AUGMECON 40 

(j) NSGA 3 (k) NSGA 0 (l) NSGA 6
Figure 1. Comparison grid of cable-road layouts per technique. The dots represent trees, and their color the cable-road they are assigned to. The long black lines denote 
activated cable roads, and the three smaller lines their anchoring configuration.
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possible. Solution “SOO Stand Damage Objective” optimizes 
only for ecological factors and offers a well-balanced solution 
with only a 20% penalty from optimal costs. Conversely, “SOO 
Yarding Workload Objective” optimizes for ergonomic factors 
in isolation and yields suboptimal solutions, as the optimiza
tion process terminates prematurely upon reaching the mini
mum for lateral yarding workload.

The manually combined objective approach (“SOO 
Combined Objective”) results in a 7% reduction in costs 
while simultaneously improving the stand damage and yarding 
workload objectives by 20% and 23%, respectively, striking 
a favorable trade-off.

AUGMECON’s stepwise approach offers the flexibility to 
trade off objectives systematically, a valuable feature in opti
mization. We can see that the stand damage and yarding work
load objectives are becoming improved in higher iterations, 
trading the cost objective. We evaluated five steps for 
AUGMECON, while a more fine-grained approach can be 
used to discover the true Pareto frontier. A solution like 
“Augmecon 40” for example shows how with a 1% drop of 
the stand damage objective, the cost objective can be improved 
by 5%. AUGMECON, while computationally expensive, helped 
to explore the entire decision space.

NSGA exhibits efficiency in terms of computational speed 
while also providing viable optimization results. For instance, 
the “NSGA-II 5” solution closely approximates the “SOO 
Combined Objective” solution, showing that it approximates 
global optima. Furthermore, the “NSGA-II 0” solution illus
trates the feasible trade-offs between objectives. An example of 
this is how a minor increase in cost (a penalty of 2%) can lead 
to substantial improvements in the stand damage objective (by 
7%) and the yarding workload objective (by 9%). This high
lights the algorithm’s ability to balance multiple objectives 
effectively and come up with unique solutions.

The expert layout, which is visually selected based on a 2D 
and 3D model of the area, incurs a substantial profit sacrifice 
(up to 31%) and has much higher relative negative stand 
damage (47%) and yarding workload (39%) impact. One 
should note, however, that the overall layout closely resembles 
optimal solutions. Since the forestry expert has less of an over
view of how costly the individual computed cable roads are, 
this shows that both the forestry expert and the optimization 
algorithm “agree” on what a good layout should broadly look 
like.

Table 2 gives an overview of the computation times for each 
optimization approach and how they scale with an increasing 
number of objects.

For the full layout, the SOO approaches require 17 s in total, 
while the NSGA approaches, with 10 populations and 20 

generations, take 29 s. In contrast, AUGMECON necessitates 
2 min and 45 s. The computation time per solution in 
AUGMECON aligns with that of SOO, but the larger set of 
solutions accounts for the longer overall computation time. 
AUGMECON provides the strongest option for an exact com
putation of the Pareto frontier, while NSGA-II scales better in 
larger settings. It, however, also comes with a longer set-up 
time for smaller layouts, since it initially requires loading a lot 
of data. The expert needed a negligible time for deciding on 
their layouts in comparison with the computation time of the 
other approaches.

Discussion

We found that NSGA-II is a valuable tool for optimizing the 
cable-road layout, as it exhibited a good performance and 
found near-optimal solutions in our cable-road layout optimi
zation task. However, implementing NSGA-II was 
a demanding process, requiring a significant investment of 
effort and expertise, since mutation, repair and crossover 
operations must be manually defined. This is different from 
the conventional location allocation problem formulation (as 
implemented with our single-objective approach), which 
already has many comparable implementations available. We 
find that NSGA is particularly promising for larger-scale opti
mizations, which comes at the cost of development time and 
effort. Utilizing simulated annealing further opens up new 
cable-road combinations, making the approach less likely to 
get stuck in local minima. During the implementation process, 
we found several possible improvements of the NSGA imple
mentation, which could further improve the performance and 
quality of results. Both mutation and crossover implementa
tions could aim to directly minimize the distances of the cable 
roads to the trees instead of semi-randomly selecting new 
mutations, likely increasing the speed of convergence, but at 
the cost of discovering all possible solutions.

Generally, we show how a multi-objective approach can 
balance costs, residual stand damage and lateral yarding work
load. We quantify residual stand damage with lateral yarding 
distance, and its association with residual stand damage. We, 
however, want to highlight that we ultimately want to measure 
the overall environmental impact to the forest stand, instead of 
just the residual stand damage, which would encompass var
ious other factors besides stand damage and the associated 
vitality and health of the trees. Our focus on stand damage 
highlights the importance of stand health in our target audi
ence for forestry as well as the ability to quantify it appropri
ately with lateral yarding distance. Further research could 
encompass other factors into the calculation of the environ
mental impact such as soil damage, impacts on ecological 
diversity, nutrient loss, erosion, detriments to water quality, 
etc. Similarly, we propose to move toward quantifying the 
overall ergonomical impact of a layout on forestry workers 
with factors such as worker heart rate above a healthy range 
(Arman et al. 2021) as well as accident rates (for example, 
accidents per million cubic meters of wood harvested). This, 
however, also creates the necessity for research in how to 
quantify these impacts depending on factors in the cable 

Table 2. Comparison of execution times. SOO and AUGMECON quickly get slower 
with increasing number of cable roads and trees. NSGA-II performs worse with 
less cable roads and trees, as it stalls with searching for improved configurations 
in this too small decision space but has a better performance for larger areas.

Model Name
100 Trees 

10 Cable Roads
200 Trees 

50 Cable Roads
500 Trees 

70 Cable Roads

SOO 0.007s 2.3s 12.3s
NSGA-II 23.9s 12.7s 38.2s
AUGMECON 5.5s 30.2s 227.1s
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yarding process (amount of supports, height of the cable above 
ground, total length of cable corridors, etc.).

One factor that we highlight for environmental impact 
specifically is full vs. partial suspension of the felled tree since 
dragging the stem across the ground can significantly impact 
soil health (Spinelli et al. 2021). When considering the envir
onmental impact caused by the stems being dragged across the 
ground, we, however, argue that it is not sufficient to only 
consider the deflection of the cable-road. The weight and 
height of the log to be moved, which are not known ahead of 
time, should also be taken into account. A simplified approach 
could be to compute a standard load (e.g. a log of certain DBH, 
length, and weight) and then compare the length of the section 
where it would have skidded across the forest floor. To quantify 
factors such as worker heart rate, it would be beneficial to 
conduct a study investigating its correlation with other, easily 
computable factors such as the size of the felled trees, the 
condition of the terrain (including aspects like steepness), 
and the yarding distance, which could in turn allow a better 
quantification of the ergonomic impact of forestry operations. 
For future work, we recommend conducting a literature review 
and assembling a multidisciplinary team to explore possible 
factors and ways to quantify them.

We furthermore note that both residual stand damage and 
lateral yarding workload are modeled based on lateral yarding 
distance, which leads to a potential correspondence between 
both factors. We argue that the difference in penalty thresholds 
as well as different growth patterns (exponentially for residual 
stand damage as per Stampfer et al (2003), linear for lateral 
yarding workload as per Berendt et al. (2020)) leads to 
a different weighting of the impacts but still recommend the 
inclusion of other suitable and quantifiable factors in further 
work.

A general limitation of our approach is that it relies heavily 
on the quality and availability of data, since the accuracy and 
reliability of the solutions we generate are directly influenced 
by the data used as input for the computation of the cable 
roads. Therefore, if the data is incomplete or of poor quality, it 
can negatively impact the effectiveness of our solutions. 
Furthermore, to apply our optimization process to other 
areas, terrestrial LiDAR data must be acquired for a given 
area, which requires both personnel with expertise with PLS- 
devices and costs for manual labor and equipment. Analyzing 
LiDAR data, which takes approximately 4 h of computational 
time for every 40 min of scanning per hectare, as well as 
affording a 30.000€ laser scanning device (as used by Gollob 
et al. 2024) presents a significant challenge for less technically 
involved users. Furthermore, the expertise and methodologies 
for interpreting LiDAR data are predominantly confined to 
specialized academic circles and a handful of commercial 
operators, which prevents the wider public from accessing 
LiDAR scanning across a range of practical applications. To 
overcome these obstacles, it is crucial to simplify access to 
LiDAR data processing techniques beyond mainly academical 
applications.

Another limitation relates to the comparison of our results 
against those of a forest expert. While within our optimization 
domain, we strive to achieve the best possible solution, it does 

not necessarily guarantee that our results will be superior in 
real-world scenarios. It is important to acknowledge that the 
expertise and experience of a forest expert can still provide 
valuable insights and considerations that may not be captured 
solely through optimization. Therefore, although we may have 
achieved optimal solutions within our domain, their real-world 
performance and superiority may still require further evalua
tion and validation.

Finally, the underlying assumptions for determining the 
cable-road costs could be further improved to generate more 
realistic results. The function for determining the set-up and 
take-down time by Stampfer et al. (2013) was adopted for large 
distances between cable-road and trees found in our model, 
while trees more than 15 m away are simply not considered in 
their model. The same applies to the cost-efficiency model by 
Ghaffariyan et al. (2009), which is not intended for larger 
distances as found in our model. We confirmed in our discus
sion with a forestry expert that those assumptions are still 
reasonable, but a more fine-grained model for determining 
the costs will greatly help with better results. In particular, 
given the great diversity of forests around the world and the 
associated changes in harvesting times, set-up times, residual 
stand damage, etc., we emphasize the need to adapt the under
lying assumptions of our models to the given situation.

Conclusions

Our research focused on the optimization of cable-road layouts 
using terrestrial LiDAR data. We conducted a comprehensive 
analysis of different multi-objective cable-road layout optimiza
tion approaches based on set-up and take-down times, produc
tivity costs, residual stand damage and lateral yarding workload. 
We compared single-objective linear optimization with 
AUGMECON and NSGA-II and a layout set by a forestry expert. 
The results showed that both AUGMECON and NSGA pro
duced commendable results, with NSGA standing out for its 
significantly faster performance, while the layout proposed by 
the forest expert imposed high penalties on all objectives, while 
broadly resembling the results of a combined-objective approach.

We find that the notable strength of our approach is its 
ability to highlight the trade-offs inherent in the optimization 
process, which provides valuable insights into the decision- 
making dynamics within the field of cable-road layout design, 
allowing, for example, small cost increases to be traded off 
against large reductions in residual stand damage or lateral 
yarding workload.

Looking ahead, we propose to develop interactive interfaces 
to provide in-depth explanations of the inner workings of our 
solutions. In addition, we aim to validate and test our 
approaches in real-world settings, bridging the gap between 
theory and practice. We hope that these results will also con
tribute to the wider adoption and impact of optimization 
approaches in the field of forestry and cable-road design.
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