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Abstract

ERBIN and phosphoglucomutase 3 (PGM3) mutations both lead to rare primary atopic disorders 

characterized by allergic disease and connective tissue abnormalities, though each disorder has 

its own rather unique pattern of multisystem presentations. Pathway studies show how ERBIN 

mutations allow for enhanced TGFb signaling, and prevent STAT3 from negative-regulating TGFb 

signaling. This likely explains many elements of clinical overlap between disorders of STAT3 

and TGFb signaling. The excessive TGFb signaling leading to increased IL-4 receptor expression 

also provides the rationale for precision-based therapy blocking the IL-4 receptor to treat the 

atopic disease. The mechanism by which PGM3 deficiency leads to atopic phenotypes is not well 

understood, nor is the broad variability in disease penetrance and expressivity, though preliminary 

studies suggest an overlap with IL-6 receptor signaling defects.

Introduction

Primary atopic disorders — monogenic causes of symptoms associated with the effector 

mechanisms of type-II immunity and allergy [1,2] — provide examples of how complex 

pathways normally prevent the development of allergic disease, and how disruption can 

cause it. Two examples, autosomal-dominant deficiency of ERBIN (Erbb2 interacting 

protein) and autosomal-recessive phosphoglucomutase 3 (PGM3) deficiency, lead to 

complex phenotypes, reflecting the known and unknown complex roles these genes, and 

the pathways they impact, serve. They also serve as excellent examples of the value in 

studying primary atopic disorders. By drawing our attention to the clinical overlap with 

other primary atopic disorders, detailed study of the overlap in cellular and biochemical 

immunopathogenic pathways helps clarify how each contributes to atopic disease and other 

clinical phenotypes.

ERBIN mutation

Normal Transforming Growth Factor Beta (TGF-β) signaling appears critical to control 

human allergic diseases such as eosinophilic esophagitis and asthma, as well as mouse 

models of atopy [3–7]. Increased TGFβ signaling is seen in certain atopic patients with 

connective tissue abnormalities [8,9]. Biallelic loss-of-function (LOF) mutations in TGFB1 

lead to loss of immune tolerance in the form of inflammatory bowel disease — in 
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addition to immune deficiency and CNS abnormalities [10], while gain-of-function (GOF) 

mutations lead to developmental defects and connective tissue abnormalities [11]. Neither 

is associated with a type 2 T helper (Th2) diathesis or atopic disease among the small 

number of affected patients. In contrast, substantial allergic disease has been observed in 

Loeys–Dietz syndrome (LDS) [12,13] — which is associated with multiple connective tissue 

phenotypes observed in patients with loss of Signal transducer and activator of transcription 

3 (STAT3) function [14–24]. LDS is caused by TGF beta receptor 1 (TGFBR1) and 

TGFBR2 missense mutations, and while enhanced Small Mothers Against Decapentaplegic 

(SMAD) 2/3 phosphorylation can be seen in patient tissue, models of acute proximal mutant 

receptor-mediated signaling lead to loss of function [25]. In a mouse model of LDS, loss 

of TGFβ signaling in esophageal epithelial cells leads to a tissue-intrinsic predisposition to 

developing eosinophilic esophagitis [26], while TGFβ signaling LDS lymphocytes has not 

yet been carefully measured, LDS patient-derived naive T cells skew toward a Th2 bias in 

the presence of TGFβ in a cell-intrinsic fashion [12]. A well-characterized polymorphism 

that increases TGFb1 transcription leads to a direct effect on epithelial cells, which increases 

mucosal permeability that is associated with allergic inflammation [7]. The conflicting 

observations regarding mutant TGFBR1 signaling in LDS mirror conflicting observations 

regarding the link between TGFβ and allergy risk derived from tissue studies and patients 

with monogenic disease.

Of note, patients with loss of function of the IL-11 receptor and gp130 (a co-receptor for 

IL-11R, among others) — both of which signal through STAT3 — develop skeletal and 

dental abnormalities that overlap significantly with that seen in patients with dominant 

negative STAT3 mutations (STAT3DN) mutations. Patients with certain recessive or 

dominant IL6ST loss-of-function mutations have significant allergic inflammation and 

elevated immunoglobulin E (IgE) as well [27–30]. The IL-11R/gp130/STAT3 signaling 

pathway — and how it might interface with TGFβ signaling — is therefore of great interest 

to study in understanding the overlap between congenital connective tissue abnormalities 

and allergic disease.

The commonality between patients with TGFB mutations and STAT3 loss of function may 

in part be explained by insight found in a family with a unique missense mutation in 

erbb2- interacting protein, encoding ERBIN. The patients presented with connective tissue 

abnormalities, including joint hypermobility and aneurysm formation, bacterial infections, 

significant eosinophilic gastrointestinal disease (EGID), IgE elevation, and allergen-specific 

reactivity [31]. Common genomic variation in ERBIN is also associated with scoliosis [32], 

a major connective tissue abnormality seen in LDS and STAT3DN patients.

ERBIN appears to be a key mediator of the cross-talk between STAT3 and TGFβ 
signaling, in that it is induced by STAT3 and complexes with it to impair SMAD2/3 

nuclear localization and propagation of the TGFBR signal. While this pathway may have 

important consequences within connective tissue, which could explain the overlap of 

connective tissue symptoms in STAT3DN, TGFBR mutations, and ERBIN LOF mutation, 

another key outcome of the excess signaling appears to be increased interleukin-4 (IL-4) 

receptor alpha (IL4Rα) expression [33]. The excessive IL4Rα activation can promote 

allergic inflammation, switching to IgE and pruritus [34,35], and may explain the allergic 
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inflammation and IgE elevation seen in TGFB/STAT3DN/ERBIN patients [36–38]. Notably 

— treatment of STAT3DN and ERBIN LOF patients with IL4Rα blockade (dupilumab) led 

to marked success in treating the otherwise refractory skin and gut inflammation seen in 

these patients [39–45].

ERBIN mutations may also contribute to the atopic diathesis in an epithelium-specific 

fashion. Patients with loss of function in the epithelial barrier protein desmoglein (DSG1) 

develop severe atopic dermatitis, allergic inflammation and hypersensitivity and metabolic 

wasting (SAM) syndrome, another primary atopic disorder characterized by severe atopic 

dermatitis, allergic inflammation and hypersensitivity, and metabolic wasting. Mechanistic 

study suggests that DSG1 appears to drive normal ERBIN localization in epithelial cells, and 

as such, ERBIN dysfunction may contribute to the atopic phenotypes in SAM syndrome and 

related entities [46].

Phosphoglucomutase 3 deficiency

Autosomal-recessive hypomorphic mutations in PGM3 can lead to a glycosylation disorder 

with a variety of clinical outcomes with variable penetrance and expressivity. Immune 

dysregulation, connective tissue abnormalities, and neurodevelopmental deficits have been 

described. In those with sufficient effector immune function (unlike those PGM3-deficient 

patients with severe combined immunodeficiency), the immune dys-regulation includes 

substantial allergic disease ranging from severe atopic dermatitis, to food allergy, immediate 

and delayed hypersensitivity to medications, EGID, asthma, seasonal allergy, allergic 

bronchopulmonary aspergillosis, allergic fungal mastoiditis, and non-IgE-mediated, specific 

food-induced enteropathy [47–51]. PGM3 is required for the pathway that produces uridine 

diphosphate N-acetylglucosamine (UDP-GlcNAc) [50,52], which is essential for both N- 

and O-linked glycosylation, and complete absence of PGM3 is embryonically lethal. 

Hypomorphic PGM3 function leads to reduced cytosolic UDP-GlcNAc that then variably 

impacts critical proteins throughout the body. Naive T cells appear more sensitive to reduced 

UDP-GlcNAc compared with memory T cells, presumably due to the lack of compensatory 

metabolic states [50,52].

Notably, patients can present with immune deficiency or atopic disease alone, without 

infection or developmental abnormalities, and hematopoietic stem cell transplant can fully 

restore normal immune function [53,54]. While these rather critical observations highlight 

the tissue-specific variability in penetrance and expressivity of disease, they also suggest 

that PGM3 variation could contribute to common allergic disease. A small screen of L-PHA 

(phytohemagglutinin) binding in naive T cells derived from nonsyndromic patients with 

atopic dermatitis showed no difference from healthy controls, nor was there overlap with the 

lower range seen in PGM3 deficiency [48]. However, further studies of larger populations 

could help determine if lower L-PHA binding in naive cells correlates with atopic disease 

risk.

The relevance of the PGM3 pathway in atopy and immune disorders may be all the more 

relevant given that exogenous GlcNAc treatment of PGM3mut cells can improve the lower 

cytosolic UDP-GlcNAc levels observed in PGM3 mutant cells — suggesting a potential 
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precision therapeutic for PGM3mut patients, and in theory, those with impairments of the 

pathway, which lead to clinically relevant disease of any sort [50].

How any of the focal glycosylation defects in different immune cells lead to allergic 

disease is not understood. Measured glycosylation moieties on patient-derived IgE are 

normal [55], arguing against major B-cell-intrinsic glycosylation roles. One theory put 

forth suggests that adequate N-glycosylation of gp130 is required for its surface expression 

[56]. Reduction in N-glycosylation in relevant cells could therefore impair gp130-dependent 

cytokine signaling, leading to the overlap seen between PGM3 mutation and gp130/

IL6ST LOF, including bacterial infection, connective tissue abnormalities, high IgE 

and allergic hypersensitivity, and inflammation, keratitis, neurodevelopmental delay, and 

other phenotypes [27–30]. While complicated by the fact that recently activated and/or 

effector T cells — that are enriched in PGM3-deficient patients — have lower gp130 

surface expression in general, it nonetheless highlights the need to identify the focal 

pathways impacted, as they will likely unlock fundamental understanding of allergic disease 

pathogenesis.

Conclusion

ERBIN mutation and PGM3 deficiency are examples of very rare diseases that are 

nonetheless highly instructive to the biology behind multisystem syndromes impacting the 

immune system and allergy. Both point to potential precision diagnostics and therapies 

for the specific disorders, as well as the potential for relevance of those with common 

immunologic disease whose pathophysiology might overlap with these rare disorders. In 

addition, preliminary studies are suggestive of interactions with the IL-6/STAT3 signaling 

pathway in both disorders (Figure 1), potentially explaining the overlap of atopic and 

connective tissue abnormalities seen in patients with pathogenic mutations in ERBIN, 

PGM3, and the IL-6/STAT3 pathway. Further study of these patients, and expansion of 

the cohorts of those with pathogenic mutants in either gene, will help better define the 

mechanisms and impact of these mutations in allergic and immune disorders.
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Abbreviations

PIDD primary immunodeficiency disease

TCR T cell receptor

pMHC peptide-major histocompatibility complex

Th1 type 1 T helper
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Th17 type 17 T helper

Th2 type 2 T helper

SCID severe combined immunodeficiency

mTORC1 mammalian target of rapamycin complex 1

Treg regulatory T cell deaminase

STAT3DN dominant negative STAT3 mutations

STAT5BGOF gain-of-function

LDS Loeys-Dietz syndrome

EGID eosinophilic gastrointestinal disease

JAK1GOF gain-of-function JAK1 mutations

UDP-GlcNAc uridine diphosphate N-acetylglucosamine

ABPA allergic bronchopulmonary aspergillosis

FPIES food-protein induced enteropathy syndrome

SAM severe atopic dermatitis, allergic inflammation and 

hypersensitivity and metabolic wasting
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Figure 1. 
Il-6-mediated signaling via IL-6R and gp130 leads to activation of STAT3, which leads to 

transcription of ERBIN and physical complexing of STAT3/ERBIN/SMAD2/3, sequestering 

SMAD2/3 away from the nucleus, and normally preventing IL-4 receptor upregulation 

on the surface of lymphocytes, and therefore Th2-related phenotypes. PGM3 produces a 

precursor sugar amine required for N-linked glycosylation that provides stability for surface 

gp130 expression. Created with BioRender.com.
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