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Abstract Monitoring greenhouse gas (GHG) emissions is crucial for developing effective mitigation
strategies. Recent advances in satellite remote‐sensing measurements allow us to track greenhouse gas
emissions globally. This study assessed CO2 emissions from various point or local sources, particularly power
plants in India, using 8 years of concurrent high‐spatial resolution OCO‐2 satellite measurements. A Gaussian
plume (GP) model was used to evaluate the power plant emissions reported in the Carbon Brief (CB) database.
In total (39 cases), 42 different power plant CO2 emissions were assessed, with 26 of them being assessed more
than once. The estimated power plant CO2 emissions were within ± 25% of the emissions reported in the CB
database in 11 out of 39 cases and within± 50% in 18 cases. To evaluate the EDGAR and ODIACCO2 emission
inventories in terms of missing and highly underestimated sources, we estimated the cross‐sectional (CS) CO2
emission flux for 45 cases. We identified the possible omission of power plant emissions in three cases for both
inventories. Furthermore, we also showed 17 cases in which CO2 emissions from unknown (non‐power plant)
sources were highly underestimated in the EDGAR and ODIACCO2 emission inventories. Due to the simplicity
of the employed approaches and their lower computational requirements compared to other methods, they can
be applied to large data sets over extended time periods. This enables the acquisition of initial emission
estimates for various sources, including those that are unknown and underestimated.

Plain Language Summary Tracking greenhouse gas emissions from large sources is crucial for
combating climate change, and recent advances in space‐based remote sensing have enhanced our ability to
monitor these emissions. In this study, we utilized high‐resolution data from the OCO‐2 satellite to assess CO2
emissions from power plants in India over the past 8 years. We compared the satellite‐based CO2 emission
estimates with reported values from the Carbon Brief database. Our analysis indicated that the satellite‐based
estimates were generally close to the reported values, though some discrepancies were observed. Additionally,
we reviewed two CO2 emission databases, EDGAR and ODIAC, to identify any missing or underestimated
emissions. Our findings suggested that some power plant emissions might be absent from these databases and
that emissions from other sources were often underestimated. Our methods are simpler and less resource‐
intensive compared to other approaches, making them effective for analyzing large data sets over extended
periods. This approach provides initial estimates of emissions, even for sources that are poorly reported, and
supports efforts to enhance overall emission tracking and reporting.

1. Introduction
Carbon dioxide (CO2) is a greenhouse gas (GHG) that is known to be a crucial contributor to global
warming due to its high heat‐trapping ability (Pachauri et al., 2014). The current global averaged CO2
concentration in the atmosphere has increased by 47% since pre‐industrial levels (WMO, 2019, 2020).
Human activities such as rapid urbanization and industrialization are obvious causes of rising CO2 con-
centrations in the atmosphere. Climate change is strongly linked to global warming, and it has an impact on
ecosystem health as well as global economics. Monitoring and evaluating greenhouse gas emissions from
already known and unknown emission sources is hampered due to a lack of ground‐based measurements
(Boden et al., 2009; Chen et al., 2016, 2020; Dietrich et al., 2021; Fiehn et al., 2020; Forstmaier
et al., 2022; Jongaramrungruang et al., 2019; Kuhlmann et al., 2021; Lan et al., 2020; Ohyama et al., 2023;
Zhao et al., 2019). The bottom‐up approach has been used as a conventional emission estimation method, in
which emissions were calculated by applying emission factors to known point and diffuse sources (Boden
et al., 2009; Le Quéré et al., 2018). However, emission estimates from bottom‐up approaches differ
significantly at different spatial scales when compared to top‐down approaches that derive emissions from
real‐time atmospheric measurements (Gately & Hutyra, 2017; Gurney et al., 2019; Hutchins et al., 2017;
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Jones et al., 2021; Klausner et al., 2020; Z. Liu et al., 2015; Marland, 2012; Miller et al., 2013; Saunois
et al., 2020; Shekhar et al., 2020; Solazzo et al., 2021; R. Wang et al., 2013).

Space‐based remote sensing measurements are becoming increasingly capable of monitoring heterogeneous
emission sources at a suitable scale (Beirle et al., 2011; Brunner et al., 2023; Bovensmann et al., 2010; Ehret
et al., 2022; Heymann et al., 2017; Jacob et al., 2022; Rißmann et al., 2022; Kiel et al., 2021; Kuhlmann
et al., 2019; F. Liu et al., 2020; MacDonald et al., 2023; Reuter et al., 2014; Rey‐Pommier et al., 2023; Sadavarte
et al., 2021; S. Wang et al., 2018; Varon et al., 2019; Zhou et al., 2022). The column‐averaged dry‐air mole
fraction of CO2 (XCO2) retrievals from previous satellite measurements, such as SCIAMACHY and GOSAT,
have been shown to be useful in localizing CO2 enhancements from potential emission sources (Kort et al., 2012;
Schneising et al., 2008; Shim et al., 2019). The XCO2 retrievals from the Orbiting Carbon Observatory‐2 (OCO‐
2) satellite measurements are high‐resolution (≈ 1.29 km × 2.25 km) and high‐precision (≈1 ppm) data (Wunch
et al., 2017), when compared to previous satellite measurements. Despite the fact that the OCO‐2 mission was not
designed to monitor anthropogenic CO2 sources, studies have shown that OCO‐2 measurements can be used to
localize CO2 emissions at the subcontinental (Hakkarainen et al., 2016, 2019; Hwang & Um, 2016) and urban
scales (Labzovskii et al., 2019; Lei et al., 2021; Reuter et al., 2019; Schwandner et al., 2017; Wu et al., 2020; Ye
et al., 2017; B. Zheng et al., 2020). OCO‐2 measurements could also be used to estimate CO2 emission rates from
point sources such as power plants (Hakkarainen et al., 2023; Hu & Shi, 2021; Lin et al., 2023; Nassar et al., 2017,
2021, 2022, Zheng et al., 2019). In addition, OCO‐2 measurements can be used to detect wildfire emissions (Guo
et al., 2019; Reuter et al., 2019), and volcano emissions (Johnson et al., 2020). The main limitation of OCO‐2
measurements is the small swath width of about 10 km (Bhattacharjee & Chen, 2020); thus, most of the time,
the OCO‐2 satellite does not overpass over the desired study region, such as an urban core or power plant.
However, under certain conditions, the cross‐sectional downwind plume of CO2 emissions from the desired study
region could be captured by OCO‐2 when wind conditions are favorable (Reuter et al., 2019).

The goal of this study was to identify XCO2 anomalies while also assessing CO2 emissions at the local scale over
India using high resolution OCO‐2 satellite measurements. India is the world's third largest CO2 emitting country,
with CO2 emissions reported to have increased 3.4 times in 2018 compared to 1990 due to rapid urbanization and
industrialization (Crippa et al., 2019). Coal‐consumption accounts for nearly 60% of total fossil fuel consumption
in India. This highlights the importance of real‐time CO2 emission monitoring in coal‐processing sectors.
Therefore, we primarily focused on power plant emissions in this study. We analyzed the OCO‐2 measurements
for the period from September 2014 to December 2022. To the best of our knowledge, no study has used long‐
term OCO‐2 satellite measurements to report XCO2 anomalies and emissions caused by different anthropogenic
CO2 sources over India, which has been done in this study. Studies, such as Nassar et al. (2017, 2022) have
already focused on estimating emissions from point sources such as power plants using Gaussian plume model.
We employed similar methods for estimating emissions, in addition, cross‐section emission flux method was
employed to verify the results. This study also discusses the advantages of combining both methods. Furthermore,
the emission inventories were used to interpret the emission estimates.

In addition, we aimed to evaluate global CO2 emission inventories at a local or point scale, with a focus on
identifying missing and significantly underestimated sources. To the best of the author's knowledge, no previous
studies have focused on this aspect over India.

2. Data Sets Used in This Study
In this study, we used bias‐corrected XCO2 retrievals from OCO‐2 satellite measurements (level‐2 & version‐11r)
from 6 September 2014 to 31 December 2022. When we conducted this study, the most recent version available
was OCO‐2 V11r. We noted that a new version of the data (version‐11.1r) was released during the publication of
this manuscript. However, this newer version is likely to impact XCO2 retrievals primarily over high latitudes
(>60°N). The OCO‐2 satellite overpass occurs approximately at 13.30 local time. The spatial resolution of XCO2
retrievals is ≈ 1.29 km × 2.25 km, with a ground‐track repeat time of 16 days. The XCO2 retrievals product from
the OCO‐2 satellite measurements consists of eight parallelogram‐shaped footprints across track, with a swath
width of about 10 km (Crisp et al., 2008). This product also includes total column vapor and surface pressure,
which we used to convert the modeled CO2 vertical column in grams per square meter (g m− 2) to parts per million
(ppm) (Equation 3). We applied quality filtering (qa = 0; recommended by Payne et al. (2022)) to the bias‐
corrected XCO2 retrievals before use.
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Emissions Database for Global Atmospheric Research, version: v7.0 (EDGAR) CO2 emission inventory (vari-
able: CO2 excl short‐cycle org C) was used in this study (Crippa et al., 2019). This includes emissions from fossil
sources such as fossil fuel combustion, non‐metallic mineral processes such as cement production, metal pro-
duction processes, urea production, agricultural liming and solvent use. The EDGAR CO2 emission inventory
provides CO2 emissions (kg m− 2 s− 1) at 0.1° × 0.1° spatial resolution for each year. The Open‐source Data
Inventory for Anthropogenic CO2, version: 2022 (ODIAC) data set was also used in this study (Oda et al., 2018).
The ODIAC emission inventory provides CO2 emissions in terms of tons of carbon per km2 per month. ODIAC
estimates fossil fuel CO2 emissions using satellite night‐time data and individual power plant emission profiles,
and provides data at 1 km ×1 km spatial resolution. The EDGAR and ODIAC inventories are available only until
2021. Therefore, for the year 2022, we used data from the most recent year (2021).

We used the “ERA‐5 hourly data on pressure levels” data set for wind speed and wind direction (Hersbach
et al., 2023). This data set contains wind data at 47 pressure levels with a spatial resolution of 0.25° × 0.25° and a
temporal resolution of one hour. Additionally, we used wind information from the Modern‐Era Retrospective
Analysis for Research and Applications, version 2 (MERRA‐2) data set (Molod et al., 2015), which has a spatial
resolution of 0.5° × 0.625° and a temporal resolution of 3 hr, including 42 pressure levels.

The coordinates (geo‐location) of power plants were obtained from the Global Energy Observatory (GEO)
database (GEO, 2018) and the Global Energy Monitor (GEM) wiki (GEM, 2023). Power plant CO2 emissions
were obtained from the Carbon Brief (CB) database (CarbonBrief, 2020). As a limitation, the CB database only
provides CO2 emission as annual CO2 emission (Mt year− 1), not adjusted for different years or months or days.

CO2 emissions from biomass burning and vegetation fires were collected from the CAMS data set (CAMS, 2023).
This data set was derived from two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, with
a spatial resolution of 0.1° × 0.1° for each day. This data set was utilized to analyze whether emissions from
biomass burning have an influence on the estimated emissions, as the CB database and emission inventories
solely encompass anthropogenic emissions.

3. Methods
3.1. Identification of XCO2 Anomalies

A 0.25‐degree moving window mean was calculated along each track of OCO‐2. Anomalies in XCO2 were
identified when the 0.25‐degree window mean exceeded the previous and next window mean by 1 ppm, followed
by a visual comparison. The identified anomalies were also compared with the albedo values given in the OCO‐2
product. If the albedo has a strong correlation with XCO2 enhancements, the identified XCO2 anomalies were not
considered in our study as they might be related to surface‐related bias in OCO‐2 retrievals.

To identify the possible sources of identified XCO2 anomalies, we looked for power plants in the upwind di-
rection, in conjunction with ERA‐5 wind information (e.g., Figure 3a). Power plant emissions were determined
using both the GP model and the cross‐sectional emission flux method, if conditions discussed below were met.
The majority of power plants in India are located far from densely populated areas (e.g., urban core). Therefore,
power plants located in the upwind direction could be the sole source of identified XCO2 anomalies. EDGAR and
ODIAC CO2 emission inventories were also used to determine whether emission sources other than power plants
had an influence on observed XCO2 anomalies. In cases where no power plants were seen in the upwind direction,
only the cross‐sectional emission flux method was used to estimate emissions, and the results were compared with
EDGAR and ODIAC.

3.2. Gaussian Plume Model

We simulated the expected CO2 enhancement for the corresponding CO2 emission reported in the CB database
for each power plant located in the upwind direction of the identified XCO2 anomaly using a GPmodel, described
in Bovensmann et al. (2010), as follows:

V(x,y) =
F

̅̅̅̅̅
2π

√
⋅ σy(x) ⋅U

⋅ e
− 1
2 (

y
σy (x)
)
2

, (1)
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σy(x) = a ⋅ x0.894, (2)

where V is the CO2 vertical column (g m− 2), F is the emission rate (g s− 1), σy(x) is the standard deviation in the y
direction, which depends on atmospheric stability parameter a in Equation 2. The atmospheric stability parameter
(a) was determined via the Pasquill‐Gifford stability class, which depends on surface wind, cloud cover, and time
of day (Hanna et al., 1982; Martin, 1976). It was calculated based on linear interpolation instead of stepwise
classification as followed in Nassar et al. (2021). Because OCO‐2 measurements were filtered for clear‐sky days,
we considered the clear‐sky category (strong insolation) to calculate the atmospheric stability parameter. Surface
wind information was obtained from ERA‐5. x and y refer to the along‐wind distance and across‐wind distance. In
Equation 2, x is specified in kilometer (km) to calculate the standard deviation in the across‐wind direction σy(x).
U represents the wind speed (m s− 1) at the height of plumemid line (smokestack height+ plume rise). We linearly
interpolated wind information from ERA‐5 that corresponds to the OCO‐2 overpass time and plume mid line.
Because information about the power plant smokestack height was unavailable, we assumed it to be 250 m
(Nassar et al., 2017). The plume rise was taken as 250 m, following Brunner et al. (2019). According to Nassar
et al. (2017), we manually adjusted the wind direction to match the influence of upwind sources with identified
anomaly. This was done by iteratively comparing modeled enhancements for different wind directions with
observed enhancements. Wind direction was chosen based on the higher correlation coefficient (R) between
observed and modeled enhancements, followed by a visual comparison. Wind direction rotation was allowed
within ± 60 degrees of the ERA‐5 values. This is due to the fact that we employed a reanalysis data set for wind
information, which may be biased. Modeled CO2 vertical column enhancement (V) in g m− 2 was converted to
ppm using the below Equation 3.

XCO2 = V ⋅
Mair
MCO2

⋅
g

Psurf − W ⋅ g
⋅ 1000, (3)

where M is the molecular weight (kg mol− 1), g is the gravitational acceleration (m s− 2), Psurf is the surface
pressure (Pa) and W is the total column vapor (kg m− 2). Psurf and W values were obtained from the OCO‐2
product.

CO2 emission rate was estimated by weighted linear least square fitting between the modeled XCO2 enhance-
ments (sum of all upwind power plants) and the observed XCO2 enhancements from OCO‐2. The reciprocal of
uncertainty of XCO2 retrievals was used as weight. When performing the fit, we only considered the emission
plume. The geographical locations of the emission plume were defined by a cutoff of at least 1% of modeled
enhancements, as described in Nassar et al. (2017). The emission rate was estimated by scaling the emission
reported in the CB database by a scaling factor determined from a least squares fit. This approach was used in
studies, such as Hu and Shi (2021), Nassar et al. (2021, 2017), to compute the emissions from a single power
plant. However, we found that other upwind power plants had a significant influence on observed enhancements
in several cases. Therefore, when there were multiple power plants in an upwind direction that influence the
observations, we considered them as a power plant cluster and scale their emissions together (Chen et al., 2020).

3.3. Cross‐Sectional Emission Flux

To verify the results of emissions estimated using GP model, we estimated the CO2 emission using another
method called cross‐sectional (CS) emission flux. In addition, CS emission flux method was used to assess the
EDGAR and ODIAC CO2 emission inventories in terms of missing and highly underestimated sources. As
emissions are represented as area sources in the EDGAR and ODIAC emission inventories, GP model cannot be
applied. However, the following CS emission flux method can only be applied to the identified XCO2 anomalies
with an isolated and single downwind plume peak (e.g., Figure B1). The following equation was fitted to the
XCO2 anomalies to estimate the CS CO2 emission flux.

y = m ⋅ x + b +
F

σ ⋅
̅̅̅̅̅
2π

√ ⋅ e
− (x− μ)2

2(σ)2 , (4)
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where y is XCO2 (ppm), F, μ and σ are the unknown parameters (scaling constant, shift and standard deviation,
respectively) that define a GP with a single peak, determined from nonlinear curve‐fitting. The part of equation
m ⋅ x + b describes the linear change in background, where x is the distance along the OCO‐2 track. The cross‐
sectional CO2 emission flux (g s− 1) was estimated by multiplying the area (g m− 1) under the fitted curve after
subtracting the background with wind speed normal to the OCO‐2 track (e.g., Figure B2); please refer to Reuter
et al. (2019) and B. Zheng et al. (2020) for the detailed description of the method. In power plant cases, the wind
speed value that corresponds to the plume midline was taken. For non‐power plant cases, the average wind speed
below 500 m (effective wind speed) was used (B. Zheng et al., 2020). We also rejected the case if R value between
observed enhancements and fitted curve is less than 0.5. Given that our objective was to identify missing or highly
underestimated sources, the estimated cross‐sectional CO2 emission flux was then compared with the inventory
CO2 emissions within a 50‐km upwind range. The 50‐km upwind range was chosen based on the previous study
(B. Zheng et al., 2020), which demonstrated that relating the CS emission flux with emission sources in the 50‐km
upwind range is reasonable. Due to the unavailability of temporal (diurnal/weekly/seasonal) changes of CO2
emissions, we directly extrapolated this instantaneous CS emission flux (g s− 1) to annual mean emissions (Mt
year− 1).

3.4. Background Selection

To calculate the observed XCO2 enhancements, the background was removed from XCO2 retrievals by assuming
that the background is linear along the OCO‐2 track (Reuter et al., 2019; B. Zheng et al., 2020). This was done by
fitting Equation 4 to the observed XCO2 measurements, and then subtracting the linear componentm ⋅ x+ b from
the observed XCO2 measurements (e.g., Figure B2).

3.5. Uncertainty Estimation

The uncertainty in the background concentration is the major uncertainty in calculating the observed enhance-
ment, whereas the uncertainty in the wind speed leads to the major uncertainty in modeling the enhancement. In
addition, emission uncertainties related to plume rise were also considered. The emission uncertainty was
calculated as follows (Nassar et al., 2022),

ϵ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϵ2w + ϵ2b + ϵ2pr
√

, (5)

where ϵw represents the uncertainty due to the wind speed, calculated as the difference in emission estimate for
wind speed from ERA‐5 values and MERRA‐2. The term ϵb represents the uncertainty due to the background,
calculated as the standard deviation in emission estimates for the four different background choices instead of a
linear fit. The four different choices of background were chosen at random by taking the 10 km mean outside of
the emission plume (e.g., Figure B2). Emission uncertainties related to plume rise are represented as ϵpr. This
value was calculated as the standard deviation in emission estimates for the plume rise values of an ensemble of
emission estimates, assuming plume rise values of 100, 200, 250, 300, and 400 m (Nassar et al., 2021). For non‐
power plant cases, ϵpr was not considered.

4. Results
4.1. Mean Spatio‐Temporal Variation of XCO2 and XCO2 Anomalies Over India

First, we examined the mean spatio‐temporal variation of XCO2 and XCO2 anomalies over India (Figures 1 and
2). The temporal variation in mean XCO2 provides insight into the variation in background CO2 concentration,
whereas the spatial variability of XCO2 anomalies provides insight into the presence of potential large scale
sources (Hakkarainen et al., 2016, 2019). We considered all days between 6 September 2014 and 31 December
2022 with at least 500 OCO‐2 measurements on a single day to create the mean spatio‐temporal variability of
XCO2 and XCO2 anomalies over India. The daily mean of XCO2 retrievals fromOCO‐2measurements over India
is shown in Figure 1. The intra‐annual variability of XCO2 retrievals from OCO‐2 measurements follows an
expected seasonal cycle, with a steady increase from October to April and a steady decrease from May to
September (Singh et al., 2022). This is primarily driven by the plants through the processes of photosynthesis
(sink of CO2) in the spring and summer, and respiration (source of CO2) in the fall and winter. Furthermore,
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higher fossil‐fuel consumption in the winter due to heating purposes con-
tributes to higher CO2 concentrations in the winter. It is important to note that
the number of available OCO‐2 measurements was lower in the summer due
to the presence of clouds in the monsoon season (Sen Roy et al., 2015). As
reported (WMO, 2019, 2020), CO2 levels have been rising; the average year‐
to‐year increase rate of XCO2 from OCO‐2 over India was about 2.45 ppm
over the study period. WMO (2020) reported a global increase of 2.37 ppm
per year over the last decade.

To obtain the mean spatial variability of XCO2 enhancements (XCO2
anomalies) caused by the potential emission sources over India (Figure 2a),
we subtracted the background concentration from the daily XCO2 retrievals.
For each specific overpass, we chose the median value of XCO2 over India as
the background concentration (Hakkarainen et al., 2016). The estimated
XCO2 anomalies were then spatially averaged over the study period. Positive
XCO2 anomalies were most noticeable over Northern India. The main two
hotspots (A and B in Figure 2a) were identified over India; A refers to the
Indian states of Punjab and Haryana, while B refers to West Bengal, Jhark-
hand, Odisha, and Chhattisgarh. Both of these hotspot regions have a high
density of coal‐fired power plants (refer to https://vedas.sac.gov.in/ener-
gymap/view/powergis.jsp). Hotspot (A) also coincides with the location of
extensive crop residue burning, which is further corroborated by MODIS

satellite measurements (T. Liu et al., 2021). Although hotspots A and B coincide with higher emissions as given in
EDGAR (Figure 2b), it can be seen that XCO2 enhancements in southern India did not show higher emissions as
depicted in EDGAR. One possible reason is that southern India has very few coal power plants; therefore, OCO‐2
is not able to detect enhancements from diffuse area sources effectively.

4.2. Assessment of the CO2 Emission Rate

According to the method described in Section 3.1 (identification of XCO2 anomalies), we examined 955 days of
available OCO‐2 measurements over India, from 6 September 2014, to 31 December 2022, to identify XCO2
anomalies at each overpass. In total, 39 XCO2 anomalies (cases) were considered to estimate emissions from
power plants using the GP model. These 39 cases were chosen based on four conditions: 1. Power plants were
located within 50 km of the observed plume. 2. Wind direction was not parallel to the OCO‐2 track. This is
because the assumption of a linear background along the OCO‐2 track is no longer valid when the wind flows

Figure 1. Inter and intra‐annual XCO2 variability over India (8–36.5°N,
67.5–98°E). The daily mean of XCO2 retrievals from OCO‐2 measurements
is shown for the period from 6 September 2014 to 31 December 2022. The table
inset show the yearly mean XCO2 (row 2), and a year‐to‐year increase of XCO2
compared to the previous year (row 3).

Figure 2. (a) Mean spatial variability of XCO2 anomalies for the period from 6 September 2014 to 31 December 2022 at 0.5‐degree grid (only with at least 5
measurements over each grid are shown). A refers to the Indian states of Punjab and Haryana. B refers to West Bengal, Jharkhand, Odisha, and Chhattisgarh.
(b) EDGAR CO2 emission inventory for 2021‐year.
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along the OCO‐2 track. 3. Wind speed at plume mid line was more than 1 m/s because in lower wind speed
conditions, wind information are expected to be more uncertain. 4. The correlation coefficient between modeled
and observed enhancements was more than 0.5.

From these 39 cases, we identified emission signals from 42 different power plants, 26 of which were assessed
multiple times (refer to Table C1). These 42 power plants were grouped into 12 clusters, and three single power
plant cases (refer to Table C2). In the main text, we focused on three clusters (Cluster 1, 2, and 11). Cluster 1 and 2
were selected as prime examples to showcase OCO‐2's capability in detecting emission changes resulting from
the addition of new units or new power plants. Cluster 11 was also discussed in the main text, demonstrating that
estimated emissions using the GP model were affected by sources other than power plants. Remaining clusters
and single power plant cases were discussed in the Appendix A.

4.2.1. Cluster 1

On 23 October 2014, the OCO‐2 satellite passed over the Sasan Ultra Mega Coal Power Plant in Madhya Pradesh
state (Figure 3a). The observed XCO2 enhancements reached up to 14 ppm, with most of the enhancements being
within 5 ppm (Figure 3d). However, in the upwind direction, we noticed a group of power plants, which may had
an impact on the observed XCO2 enhancements. The influence of upwind power plant emissions on the observed
XCO2 enhancements depends on the emission strength and location. We used the GP model to simulate the
expected XCO2 enhancements using previously reported CO2 emissions in the CB database for each power plant.

Figure 3. (a) XCO2 retrievals from OCO‐2 measurements on 23 October 2014 were overlaid on the EDGAR CO2 emission inventory. White arrow represents wind data
from ERA‐5 at the OCO‐2 overpass. Power plant locations were represented by red stars. (b) XCO2 retrievals were plotted against the distance between the peak of
observed XCO2 and OCO‐2measurements. (c) Observed XCO2 enhancements were overlaid on the modeled XCO2 enhancements (sum of all upwind power plant signals).
(d) Comparison between modeled and observed XCO2 enhancements.
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The reported CO2 emissions in the CB database for the Sasan Ultra Mega Power Plant, Vindhyachal STPS Coal
Power Plant, Singrauli Super Coal Power Plant, Rihand Coal Power Plant, Renusagar Power Station, Anpara Coal
Power Plant and Anpara‐C Power Station were 16.45, 23.76, 11.42, 14.17, 4.32, 8.94, and 5.08 Mt year− 1,
respectively. Sasan Ultra Mega Power Plant, Vindhyachal STPS Coal Power Plant and Singrauli Super Coal
Power Plant were the main contributors for the observed plume. Despite being 18 and 30 km away from the peak
XCO2 enhancement, the Rihand, Renusagar and Anpara power plants collectively exert an influence of up to 2–
2.5 ppm on OCO‐2 measurement locations. Therefore, the observed plume from OCO‐2 was influenced by all
seven power plants. The model simulations captured these enhancements well as shown in Figure 3d. The cor-
relation coefficient (R) between modeled and observed plume XCO2 enhancements was 0.738. The estimated
CO2 emission rate (64.78 ± 17.6 Mt year− 1) using the GP model was lower than that in the CB database
(84.14 Mt year− 1). Both the Sasan Ultra Mega Power Plant (Unit‐6) and the Vindhyachal STPS Coal Power Plant
(Unit‐13) commissioned new units in 2015 (refer to https://www.gem.wiki/Sasan_Ultra_Mega_Power_Project
and https://www.gem.wiki/Vindhyachal_power_station). The emission rate provided for these power plants in
the CB database includes these new units, which were not present during the 2014 measurements. Therefore, the
estimated emission rate on 23 October 2014, is lower than that in the CB database.

We also found three more XCO2 anomalies that were influenced by all seven power plants at different time
periods (1 February 2017, 5 March 2017 and 13 January 2021). Apart from the new units in Sasan Ultra Mega
Power Plant (Unit‐6) and Vindhyachal STPS Coal Power Plant (Unit‐13), a new power plant, Anpara‐D Power
Station, was commissioned in 2015. Which was commissioned in 2015, with 4.32 Mt year− 1 emission rate re-
ported in the CB database. For these three cases, which occurred after 2015, we included the Anpara‐D Power
Station into our model. The estimated CO2 emission rates using GPmodel were 114.8± 33.58Mt year− 1, 99.85±
30.04 Mt year− 1 and 91.02 ± 28.27 Mt year− 1, for 1 February 2017, 5 March 2017 and 13 January 2021 cases
(Figure 4). The emission estimates of these days were higher compared to those on 23 October 2014. This can be
attributed to the emissions from new units and a new power plant. The estimated emission rates from the 7 power
plants were also slightly higher than in the CB database (88.37 Mt year− 1) for these three cases. The uncertainties
associated with these estimates were 29.25%, 30.01%, and 31% respectively. For the above discussed cases,
uncertainties from different components, according to Equation 5 given in Table B1. It can be seen that the
uncertainty from the choice of background dominates the total uncertainty, followed by the uncertainty due to
wind speed.

Only the 13 January 2021 case allowed us to estimate the CS CO2 emission flux (75.32 ± 27.4 Mt year− 1). The
other three cases, did not satisfy the conditions for applying the CS method (e.g., Figure B1a). It is important to
note that these results were also influenced by the fact that some power plants emitted higher/lower emission than
reported in the CB database. Power plant emissions vary depending on energy demand, as well as the type of coal
used. These information are not publicly available, and are not adjusted in emissions provided by CB database.

Figure 4. Modeled and observed XCO2 enhancements for the case referred in Figure 3, but for different days. In addition to the power plants considered in Figure 3,
Anpara‐D Power Station emission was included in the model for these three cases as it was commissioned after 2015.
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4.2.2. Cluster 2

We found six cases in Telangana state that allowed us to estimate the CO2 emissions over different time periods
(Figure 5). We considered the Ramagundam Power Station and the Ramagundam B (RTS‐B) Coal Power Station
for the overpass on 16 January 2015. Additionally, we included the Pegadapalli Power Station for the remaining
five cases since it was commissioned in 2016. For all cases, the estimated emissions using the GP model were
within ± 50% of the reported emission: the estimated scaling factor ranges between 0.55 and 1.24. The cross‐
sectional CO2 emission flux for these cases can also be estimated because OCO‐2 captures the downwind
plume with a single and isolated peak. The estimated CS CO2 emission fluxes for these six cases were 18.41 ±
5.99 Mt year− 1, 7.92 ± 4.31 Mt year− 1, 29.6 ± 12.85 Mt year− 1, 19.32 ± 12.01 Mt year− 1, 24.9 ± 13.4 Mt year− 1

and 25.2± 5.36Mt year− 1, respectively. These CS emission estimates were comparable to the emission estimated
using GP model. For the 20 December 2016 case, the estimated emission using the GP model was significantly
lower than the reported emission, a result further supported by the CS emission flux method. Data from the GEM
and CB databases indicate that the Pegadapalli Power Station began operating in 2016. On 20 December 2016, the
lower estimated emissions could indicate that either the Pegadapalli Power Station had not yet started operating or
that it was shut down in Ramagundam or Pegadapalli Power Station.

4.2.3. Cluster 8

We observed three emission plumes corresponding to a cluster of four plants in West Bengal state (Dur-
gapur Steel City Power Station, Durgapur SAIL Power Station, Durgapur Projects Limited Power Station
and Mejia Power Station) on 19 November 2014, 16 March 2017, and 29 December 2017. The estimated
emissions for these three cases were significantly higher (56.77 ± 12.98, 71.33 ± 36.71, and 55.38 ±

19.3 Mt year− 1, respectively) than the reported emissions in the CB database (20.98 Mt year− 1). In fact, the
estimated emissions were about 2–3 times higher than the reported values. Based on the information from
GEM, no new units or power plants were commissioned/planned. In the EDGAR emission inventory, the
emissions provided within a radius of approximately 50 km in the upwind direction of the observed plume

Figure 5. Observed XCO2 measurements from OCO‐2 (blue points) and fitted curve points (red points) based on the Equation 4 for the case of Ramagundam STPS Coal
Power Station, Ramagundam B (RTS‐B) Coal Power Station and Pegadapalli (Jaipur Mandal) Power Station. The Pegadapalli (Jaipur Mandal) Power Station was not
commissioned in 2015, therefore its emissions were not included in the model for the 1 January 2015 case.
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were 53.84, 76.01, and 61.86 Mt year− 1, on 19 November 2014, 16 March 2017, and 29 December 2017,
respectively. Since the estimated emissions were high, the higher EDGAR emissions might also suggest the
existence of other emission sources besides the considered power plants. However, the emissions provided
in the ODIAC were 19.67, 25.08, and 23.07 Mt year− 1, on 19 November 2014, 16 March 2017, and 29
December 2017, respectively, which is approximately equal to the emissions provided in the CB database.
This suggests that possibly the ODIAC did not take into account the other emission sources around the
power plants. Furthermore, we examined emissions from biomass within a radius of approximately 50 km
in the upwind direction of the observed plume. However, the emissions from biomass were found to be
very low. The emissions from biomass on these 3 days were 0, 0, and 0.12 Mt year− 1, respectively.

4.2.4. Summary

In Table S1 in Supporting Information S1, the dates and locations of identified anomalies, reported emissions in
the CB database, estimated emissions using the GP model and CS flux method, and emissions reported in
EDGAR, ODIAC and CAMS biomass data are provided for power plant cases. Figures similar to Figure 3 for all
analyzed cases are provided in the Supporting Information S1. Through analyzing all 39 cases, it was observed
that OCO‐2 measurements were able to detect small to large CO2 enhancements (≈1–14 ppm) caused by various
sources. The estimated CO2 emissions from these sources range from 8.05 to 114.8 Mt year− 1 in our study. This
highlights its capability in detecting a wide range of sources. Out of 39 cases, 11 cases showed estimated
emissions were within ±25% of the emissions reported in the CB database, while 18 cases were within ±50%
(Figure 6). On the other hand, 17 cases exhibited very high emissions (above 2 times the reported emissions),
potentially influenced by other emission sources alongside power plants. The CS emission flux was also estimated
for 28 cases out of the 39, and it demonstrated strong agreement with the emissions estimated from the GP model.
In particular, the CS emission flux method confirmed cases with higher emission rates from the GP model
compared to the CB database (Figure 6b). Though without uncertainty of wind information, in many cases,
applied methods along with OCO‐2 measurements were able to detect the changes in emissions due to the addition
of new units or new power plants (e.g., cluster 1, 2, and 3).

For power plant cases, the EDGAR emission inventory agreed well when compared to GP estimates, especially in
cases influenced by additional emission sources other than power plants (Figure 7). On the other hand, ODIAC
showed poor agreement, notably indicating lower emissions in cases with high estimated emissions from the GP
model. This implies that ODIAC might not have included the emission sources surrounding the power plants. It
should be noted that both EDGAR and ODIAC did not include or highly underestimated the emissions from Tata
Mundra Ultra Mega Power Project, Mundra Thermal Power Project, and Kawai Thermal Power Project.

Figure 6. (a) Comparison between CO2 emissions estimated using the Gaussian plume (GP) model and emission reported in the Carbon Brief (CB) database for power
plants (39 cases). (b) Comparison between CO2 emissions estimated using Gaussian plume (GP) model and cross‐sectional (CS) emission flux method (28 cases). The
cases in which the estimated CO2 emissions from the GP model higher or lower than ( ± ) 50% of the reported emission in the CB database are marked with red markers in
(a) and (b).
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Additionally, Dongamahua Captive Power Plant and Tamnar Power Station might not be included or highly
underestimated in the ODIAC emission inventories.

5. Missing and Highly Underestimated Sources in EDGAR and ODIAC Emission
Inventories
In total, the CS emission flux was estimated for 45 cases with single and isolated peaks, 28 of which corresponded
to the power plant emission cases discussed above. The missing and highly underestimated power plant emissions
in EDGAR and ODIAC inventories were discussed in the previous section. In this section, we compared the CS
emission flux of non‐power plant cases (17 cases) with EDGAR and ODIAC (Figure 8).

The estimated CS emission flux ranged between 4.68 and 67.58Mt year− 1. These emissions were 1.3–108.6 times
higher than the emissions provided in the EDGAR inventory, whereas they were 2.26–35.25 times higher than the
emissions provided in the ODIAC inventory. In these cases, it can be seen that there is a presence of a source over
the upwind region of the observed plume (e.g., Figure 9). This implies a high underestimation of emissions over
these regions. In further studies, the type of sources will be investigated. For non‐power plant cases, in Table S2

Figure 7. Comparison between CO2 emissions estimated using the Gaussian plume (GP) model and the emission reported in EDGAR (a) and ODIAC (b) emission
inventories within 50‐km upwind range (Power plant cases: 39 cases). The cases in which the estimated CO2 emissions using the Gaussian plume (GP) model higher or
lower than ( ± ) 50% of the reported emission in the Carbon Brief database are marked with red markers.

Figure 8. Comparison between CO2 emissions estimated using cross‐sectional (CS) flux method and the emission reported in EDGAR and ODIAC emission inventories
within 50‐km upwind range (non power plant cases: 17 cases).
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and Figure S1 in Supporting Information S1, the dates and locations of identified anomalies are provided, along
with the estimated emissions using the CS flux method, reported emissions in EDGAR, ODIAC, and CAMS
biomass data. It can also be noted that biomass events have a very small impact on these identified anomalies.

The discrepancies between estimated emissions and those provided in inventories are not surprising, considering
that studies such as Gately and Hutyra (2017) and Gurney et al. (2019) have revealed that global inventories
typically exhibit high uncertainty at the local scale. EDGAR and ODIAC use different approaches to estimate
emissions: EDGAR uses activity data with spatial proxies such as population and road density, whereas ODIAC
primarily uses space‐based nighttime light data, which may underestimate CO2 emissions (Gately &
Hutyra, 2017).

Figure 9. The example two cases where CS emission estimates from OCO‐2 were significantly higher than emissions provided in the EDGAR and ODIAC inventories.
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6. Conclusions
This study assessed the anthropogenic CO2 emissions, particularly from power plants, using concurrent high‐
resolution OCO‐2 measurements over India. We examined the data from September 2014 to December 2022, a
period of more than 8 years. We considered 39 XCO2 cases that were influenced by power plants. The GP model
was used to estimate the power plants emission. In 11 out of 39 cases,we found that the estimatedCO2 emissions for
power plants using GP model were within ± 25% of the CO2 emission reported in the CB database, whereas 18
cases within ± 50%. In total, 42 different power plants were considered in our study, with 26 of them being
considered more than once. Our study also showed that the cases with high emissions were strongly influenced by
emission sources other than power plants. Emission estimations based on the CS emission flux method, including
knowledge from multiple sources such as emission inventories, may be used to conform to these cases. We also
demonstrated the capability of OCO‐2 in detecting cases with changes in emissions due to the addition of new units
or new power plants.

To evaluate the EDGAR and ODIAC CO2 emission inventories, we selected 45 cases with isolated and single
peak downwind plumes to estimate the cross‐section (CS) emission flux. When comparing our CS emission
estimate for power plants, EDGAR showed better agreement than ODIAC. Besides the absence of power plant
emissions in both the EDGAR and ODIAC inventories (3 cases), we also identified 17 highly underestimated and
missing sources in the inventory. These sources will be studied in future research.

Although the GP model is commonly used to model point source emission, it can fail over longer distances
because it assumes constant wind speed and wind direction. The main source of uncertainty in modeling the
expected enhancements and CS emission estimates was wind data, that is, emission estimates are directly pro-
portional to wind speed. The study relies on hourly ERA 5 reanalysis data, which is comprehensive; however, it
would benefit from additional uncertainty information to improve the precision of emission estimation. Accurate
wind measurements or extensive transport modeling work could reduce errors in calculating emissions. Because
our method requires less computation than other methods, it can be used as a first step toward discovering the
missing or underestimated emission source and its initial emission, from which more advanced methods, such as
Bayesian inversion combined with extensive transport modeling, such as STILT and XSTILT, to estimate
emission with less uncertainty can be conducted. The missing and highly underestimated sources in emission
inventories and databases can then be routinely updated.

Given these findings, utilizing OCO‐2 data for Measuring, Reporting, and Verification (MRV) systems for CO2
emissions presents a valuable addition as it can be used for a wide range of sources. However, the OCO‐2 satellite
has a ground‐track repeat time of 16 days with a small swath width, which hinders the continuous monitoring of
specific emission sources. In addition, its measurements are influenced by cloud cover and other atmospheric
conditions, potentially affecting data quality and availability. These factors must be considered when integrating
OCO‐2 data into MRV frameworks. The enhanced possibility of continuous monitoring of local‐scale CO2
emission sources is achievable with high spatial and temporal resolution satellite measurements with a wide swath
width. Recent and upcoming satellite missions, such as OCO‐3 (in SAMmode), Microcarb, Geocarb, CO2Image,
Tansat‐2, and CO2M, aim to achieve this.

The detection of unknown and underestimated emission sources underscores the necessity for more compre-
hensive emission inventories. Policymakers can use these findings to implement mitigation strategies targeting
non‐compliant emission sources, thereby aiding India's adherence to international climate commitments for
emission reduction. Moreover, transitioning to cleaner technologies and implementing emission reduction stra-
tegies can lead to more sustainable energy production, directly benefiting socioeconomic conditions and human
health.

Appendix A: Assessment of Emission Rate
The emission assessment for the remaining nine clusters and three individual power plants is discussed here.

A1. Cluster 3

Chandrapur Thermal Power Station, Dhariwal Power Station and Ghugus Power Station were identified as the
sources of the observed plume on 16 January 2015. The estimated emission using GP model (12.31 ±
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9.08 Mt year− 1) was significantly lower than in the CB database (20.19 Mt year− 1). The cross‐sectional emission
flux method also supported this finding, with an estimated emission of 13.4 ± 8.8 Mt year− 1 for this particular
case. The commissioning of new units took place at Chandrapur Thermal Power Station. Unit‐8 commenced
operations after May 2015, and unit‐9 followed in March 2016. However, the emission data provided in the CB
database for Chandrapur Thermal Power Station included all units, which explains the discrepancy in the esti-
mates. On 22 December 2016, the Chandrapur Thermal Power Station was the only source of the observed plume,
with all units expected to be operational. The estimated emission using the GP model was found to be 12.97 ±
8.65 Mt year− 1, which is 0.9 times the emission provided in the CB database (14.42 Mt year− 1). However, the CS
emission flux yields a low emission (7.3 ± 6.2 Mt year− 1).

A2. Cluster 4

On 25 January 2017, the estimated emission using the GP model (23.83 ± 10.94 Mt year− 1) for the case of Angul
Power Station and Talcher Kaniha Super Thermal Power Station was 1.22 times the emission reported
(19.54 Mt year− 1) in the CB database. On 15 November 2019, there was an additional source to consider, Angul
Steel Power Station, but its influence was relatively low (less than 0.5 ppm). The estimated emission using GP
model (10.43 ± 4.7 Mt year− 1) on 15 November 2019 was significantly lower than in the CB database
(23.72 Mt year− 1). The information on coal consumption/power production and maintenance might explain this
discrepancy. It is also important to note that biomass burning (≈1.5 Mt year− 1) also had a small influence on these
two overpasses (Table S1 in Supporting Information S1).

A3. Cluster 5

The emission rate of the Tata Mundra Ultra Mega Power Project and the Mundra Thermal Power Project
(considered as a cluster of two power plants) was estimated on 3 October 2018. It was found to be 1.4 times the
reported emission in the CB database, amounting to 51.89 ± 8.54 Mt year− 1, whereas the CB database reported
37.07 Mt year− 1. The emission rate was calculated using the CS emission flux method, resulting in an estimate of
57.04 ± 14.92 Mt year− 1. It is important to emphasize that the emissions provided in the EDGAR and ODIAC
inventories within 50 km radius of the observed plume in the upwind direction were 2.99 and 1.27 Mt year− 1

respectively. This suggests that either these two power plants were not included, or they were significantly
underestimated in both inventories.

A4. Cluster 6

A cluster of two power plants (Dongamahua Captive Power Plant and Tamnar Power Station) identified as a
source for the identified anomaly on 13 January 2021, with a scaling factor of 1.41 from the GP model (26.29 ±
15.85 Mt year− 1). The CS emission flux was 25.44 ± 15.43 Mt year− 1. It is important to note that the emissions
provided in the ODIAC inventory within 50 km of the observed plume in the upwind direction was
3.28 Mt year− 1, which is too low compared to the estimated emissions and reported emission in the CB database.
This indicates that these power plants were either not included or highly underestimated in the ODIAC inventory.
On other hand, the emissions provided in the EDGAR inventory within 50 km of the observed plume in the
upwind direction was 38.88 Mt year− 1.

A5. Cluster 7

On 10 January 2018, the estimated emission using the GP model (10.65± 6.7 Mt year− 1) for Khaperkheda Power
Station and Koradi Thermal Power Station was lower than the reported emission in the CB database
(17.76 Mt year− 1). The reason for this discrepancy is unknown and requires further investigation. To clarify the
situation and explain the lower emission, it is essential to cross‐check the data with coal consumption/power
production and maintenance information for both power stations.
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A6. Cluster 9

Over Jharkhand state, we examined the emissions of Jojobera Power Plant, JamshedpurWorks Power Station, and
Adityapur Works Power Station (as a cluster of three power plants) on 18 January 2017, 28 November 2020, and
31 October 2022. In addition to the aforementioned power plants, the Mahadev Prasad Super Thermal Power
Plant also had an influence on the observed plume on 7 January 2018. The estimated emissions from the GPmodel
were 8.32, 8.15, 5.2, and 5.52 times higher than in the CB database, respectively. The CS emission flux method
also confirms this findings (Table S1 in Supporting Information S1). The EDGAR emission inventory indicated
high emissions around the observed plume, potentially suggesting the existence of other emission sources. In
contrast, ODIAC indicates no potential emission sources besides power plants.

A7. Cluster 10

We have also identified another power plant cluster over the Jharkhand state, consisting of Bokaro Steel City
Thermal Power Station and Chandrapura Power Station, with emission signatures on three different dates: 30
December 2014, 31 January 2015, and 18 January 2022. The estimated scaling factors from the GP model for
these cases were 2.65, 5.5, and 6.39, respectively. Additionally, on 31 January 2021, the Santaldih Thermal Power
Station contributed to the observed plume, with an estimated scaling factor of 6.1. Notably, the emission esti-
mated using the GP model on 30 December 2014 was lower compared to the other overpasses, a finding that was
supported by the CS emission flux method (Table S1 in Supporting Information S1). The higher emissions
observed over this power plant cluster can be explained by EDGAR's report, which indicated the presence of other
emission sources (Table S1 in Supporting Information S1). Similar to the latter discussed cases, ODIAC reported
emissions approximately equal to the CB database, possibly indicating the exclusion of secondary emission
sources apart from power plants.

A8. Cluster 11

Similar to cluster 9 and 10, a case for the cluster of two power plants (Bellary Thermal Power Station and JSW
Vijayanagar Toranagallu Power Station), different scaling factors (1.48, 5.7, and 2.97; 17.87 ± 1.38, 68.85 ±
15.82 and 35.87 ± 4.1 Mt year− 1) were estimated on 4 March 2018, 18 January 2019, and 24 February 2021. The
CS emission fluxes also show similar variation during these days. The emission in upwind direction of these
observed anomalies was ≈30 Mt year− 1 in the EDGAR and 8 Mt year− 1 in the ODIAC inventories. This scenario
is similar to clusters 9 and 10 in that EDGAR suggests the presence of secondary emission sources, whereas
ODIAC does not.

A9. Cluster 12

On 24 February 2015, the emission rate for a cluster of three power plants (Neyveli Thermal Power Station I,
Neyveli Thermal Power Station II and Neyveli Zero power station) from the GP model were estimated (37.55 ±
9.29 Mt year− 1), which is 1.94 times the reported emission in the CB database (19.96 Mt year− 1). The CS
emission flux yielded similar findings (38.8 ± 12.15 Mt year− 1). Both EDGAR and ODIAC data also provides
high emission (36 and 40 Mt year− 1) in the upwind direction of observed plume within 50 km, suggesting the
presence of possible other emission sources.

A10. Sipat Power Station

The estimated emission for the Sipat Power Station on 1 March 2018, using the GP model (14.24 ±

8.54 Mt year− 1) and the CS emission flux method (17.1 ± 10.46 Mt year− 1), were comparable to the emission
reported in the CB database (12.95 Mt year− 1).

A11. Kawai Thermal Power Project

On 30 January 2017, the emission rate for the Kawai Thermal Power Project was estimated using both the GP
model and the CS emission flux method, resulting in estimates of 9.31 ± 3.34 Mt year− 1 and 12.14 ±
3.61 Mt year− 1, respectively. These estimates were found to be higher (1.7 and 2.2 times, respectively) than the
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emission rate provided in the CB database (5.48 Mt year− 1). It should be noted that the emissions provided in
EDGAR and ODIAC within 50 km of the observed plume in the upwind direction were 0.5 and 1 Mt year− 1,
respectively. This suggests that the Kawai Thermal Power Project was not included in either the EDGAR or
ODIAC inventories, or its emissions may have been highly underestimated in the CB database.

A12. Bhilai Steel Power Station

Wehave found different scaling factors (14.7, 2.54, 3.76, and 16.42) for the Bhilai Steel Power Station from theGP
model on four different dates: 7 January 2017, 8 February 2017, 14 February 2019, and 10 February 2020. The CS
emission flux aligned well with the estimates from the GP model. According to the EDGAR inventory, there is a
significant emission source in the vicinity of observed plume in the upwind direction, amounting to≈ 58Mt year− 1.
On the other hand, ODIAC data suggests the presence of a source of around ≈15 Mt year− 1. All these values were
higher than the emission rate provided in the CB database for the Bhilai Steel Power Station, which was
3.17 Mt year− 1.

Appendix B: Methodology
The example cases illustrate the methodology for selecting cases in the CS emission flux method, as seen in
Figure B1, and demonstrate background estimation as depicted in Figure B2a. Additionally, Figure B2a repre-
sents background uncertainty, while Figure B2b illustrates CS emission flux estimation.

Figure B1. (a) The case, referred to Figure 3, where Gaussian plume (GP) with single peak is not satisfied. (b) The case, referred to Figure 5e, where GP with single peak
is satisfied. Fitted curve points are based on the Equation 4.
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Appendix C: Power Plants
The power plants considered in this study are listed in Table C1, and they are clustered based on the identified
anomalies, as shown in Table C2.

Figure B2. (a) The case referred to in Figure 5e is where the Gaussian plume with a single peak is satisfied (blue), and the fitted curve points are based on Equation 4
(red), along with the linear component of the fitted curve based on Equation 4 (yellow). (b) The fitted curve area after removing the background by assuming that the
background is linear along the OCO‐2 track.

Table B1
Uncertainty From Different Components According to Equation 5 for Cluster 1

Date Uncertainty (Mt year− 1) ϵw (Mt year− 1) ϵb (Mt year− 1) ϵpr (Mt year− 1)

23 October 2014 17.66 7.14 14.80 6.45

1 February 2017 33.58 15 25.1 16.6

5 February 2017 30.04 16.1 24.9 5.1

13 January 2021 28.27 8.5 27 2

Table C1
List of Power Plants Were Analyzed in This Study

S No. Power plants name (number of time emissions are assessed)

1. Adityapur Works Power Station (4)

2. Angul Power Station (2)

3. Angul Steel Power Station (1)

4. Anpara Power Station (5)

5. Anpara‐C Power Station (5)

6. Anpara‐D Power Station (5)

7. Bellary Thermal Power Station (5)

8. Bhilai Steel Power Station (4)

9. Bokaro Steel City Thermal Power Station (4)

10. Chandrapur Thermal Power Station (2)

11. Chandrapura Power Station (4)

12. Dhariwal Power Station (1)

13. Dongamahua Captive Power Plant (1)
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Table C1
Continued

S No. Power plants name (number of time emissions are assessed)

14. Durgapur Projects Limited Power Station (3)

15. Durgapur SAIL Power Station (3)

16. Durgapur Steel City Power Station (3)

17. Ghugus Power Station (1)

18. Jamshedpur Works Power Station (4)

19. Jojobera Power Plant (4)

20. JSW Vijayanagar Toranagallu Power Station (3)

21. Kawai Thermal Power Project (1)

22. Khaperkheda Power Station (1)

23. Koradi Thermal Power Station (1)

24. Mahadev Prasad Super Thermal Power Plant (1)

25. Mejia Power Station (3)

26. Mundra Thermal Power Project (1)

27. Neyveli Thermal Power Station I (1)

28. Neyveli Thermal Power Station II (1)

29. Neyveli Zero Power Station (1)

30. Pegadapalli (Jaipur Mandal) Power Station (5)

31. Ramagundam Power Station (6)

32. Ramagundam‐B Power Station (6)

33. Renusagar Power Station (5)

34. Rihand Power Station (5)

35. Santaldih Thermal Power Station (1)

36. Sasan Ultra Mega Power Project (4)

37. Singrauli Super Thermal Power Station (5)

38. Sipat Power Station (1)

39. Talcher Kaniha Super Thermal Power Station (2)

40. Tamnar Power Station (1)

41. Tata Mundra Ultra Mega Power Project (1)

42. Vindhyachal Power Station (4)

Table C2
Power Plant Clusters and Their Corresponding List of Power Plants

Cluster no. Power plants name

Cluster 1 Sasan Ultra Mega Coal Power Plant
Vindhyachal STPS Coal Power Plant
Singrauli Super Coal Power Plant

Rihand Coal Power Plant
Renusagar Power Station
Anpara Coal Power Plant
Anpara‐C Power Station
Anpara‐D Power Station

Cluster 2 Ramagundam Power Station
Ramagundam B (RTS‐B) Coal Power Station

Pegadapalli Power Station
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Data Availability Statement
The manuscript (OCO‐2/OCO‐3, 2022) utilized XCO2 retrievals from OCO‐2 satellite measurements, accessible
upon registration. Hourly ERA5 wind information from the fifth generation ECMWF reanalysis is credited to
Hersbach et al. (2023) and can be accessed with registration. Global emission inventory data, such as EDGAR
(Alfredo et al., 2022) and ODIAC (Oda & Maksyutov, 2022), were employed and are accessible without
registration.
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