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Abstract
Background  Phosphorylated tau (p-tau) and amyloid beta (Aβ) in human plasma may provide an affordable 
and minimally invasive method to evaluate Alzheimer’s disease (AD) pathophysiology. The medial temporal lobe 
(MTL) is susceptible to changes in structural integrity that are indicative of the disease progression. Among healthy 
adults, higher dynamic network flexibility within the MTL was shown to mediate better generalization of prior 
learning, a measure which has been demonstrated to predict cognitive decline and neural changes in preclinical AD 
longitudinally. Recent developments in cognitive, neural, and blood-based biomarkers of AD risk that may correspond 
with MTL changes. However, there is no comprehensive study on how these generalization biomarkers, long-term 
memory, MTL dynamic network flexibility, and plasma biomarkers are interrelated. This study investigated (1) the 
relationship between long-term memory, generalization performance, and MTL dynamic network flexibility and (2) 
how plasma p-tau231, p-tau181, and Aβ42/Aβ40 influence generalization, long-term memory, and MTL dynamics in 
cognitively unimpaired older African Americans.

Methods  148 participants (Meanage: 70.88,SDage: 6.05) were drawn from the ongoing longitudinal study, Pathways 
to Healthy Aging in African Americans conducted at Rutgers University–Newark. Cognition was evaluated with the 
Rutgers Acquired Equivalence Task (generalization task) and Rey Auditory Learning Test (RAVLT) delayed recall. MTL 
dynamic network connectivity was measured from functional Magnetic Resonance Imaging data. Plasma p-tau231, 
p-tau181, and Aβ42/Aβ40 were measured from blood samples.

Results  There was a significant positive correlation between generalization performance and MTL Dynamic 
Network Flexibility (t = 3.372, β = 0.280, p < 0.001). There were significant negative correlations between generalization 
performance and plasma p-tau231 (t = -3.324, β = -0.265, p = 0.001) and p-tau181 (t = -2.408, β = -0.192, p = 0.017). A 
significant negative correlation was found between plasma p-tau231 and MTL Dynamic Network Flexibility (t = -2.825, 
β = -0.232, p = 0.005).
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Background
Alzheimer’s disease (AD) is a progressive neurodegen-
erative disease characterized by in its early stages the 
widespread neural deposition of amyloid-β (Aβ) plaques, 
followed by tau aggregation into neurofibrillary tangles 
in the regions such as entorhinal cortex which is part of 
Medial Temporal Lobe (MTL), and resulting in neuro-
degeneration, cognitive decline, and ultimately demen-
tia [1–3]. Approximately 6.7 million Americans aged 65 
and older (10.7%) have AD, and by 2060, the number is 
expected to nearly triple [4]. It is projected that the num-
ber of African Americans, aged 65 and older, affected by 
AD will double by 2030 [5]. Additionally, African Ameri-
can older adults are disproportionately affected by AD, 
exhibiting higher prevalence rates and earlier onset com-
pared to their White counterparts [6, 7]. This increased 
risk is influenced by a combination of biological, genetic, 
and social factors, including a higher prevalence of coex-
isting cerebrovascular pathologies, such as hyperten-
sion and diabetes, which can interact with AD pathology 
[8]. These non-AD co-pathologies may contribute to 
structural and functional differences in brain regions 
[9]. Moreover, social and contextual factors—includ-
ing socioeconomic disparities, reduced access to health-
care, and educational inequalities—further contribute 
to the elevated dementia risk among African Americans 
[8, 9]. One significant barrier to research participation 
among African Americans is the perceived invasiveness 
of certain procedures [10]. Although positron emission 
tomography (PET) imaging provides valuable biomarker 
information, it is often costly, time-intensive, and per-
ceived as intrusive [11]. Blood-based biomarkers present 
a more cost-effective and accessible alternative, poten-
tially increasing the willingness of African Americans 
and other underrepresented groups to engage in research 
studies [12, 13]. Despite the higher incidence and preva-
lence of AD among African Americans, this group con-
tinues to be underrepresented in AD research, especially 
in clinical trials.

The pathological processes underlying AD begin 
decades before the onset of clinical symptoms, starting 
with as an increase in amyloid plaque and tangle burden 
[14, 15]. Several in vivo biomarkers of neurofibrillary 
tangle development include PET and soluble phosphor-
ylated tau (p-tau) levels in human cerebrospinal fluid 
(CSF), and more recently p-tau in blood plasma [16]. PET 
biomarkers have the advantage of providing spatial infor-
mation on tracer binding throughout the brain but are 

invasive and expensive. To address this, blood-based bio-
markers have emerged as a more accessible, noninvasive, 
and relatively inexpensive alternative [17]. Specifically, 
higher levels of plasma p-tau have been link to demen-
tia development, shown to improve risk stratification for 
AD dementia and have demonstrated specific diagnostic 
abilities to distinguish AD from other neurodegenerative 
diseases [18]. Mechanistically, several subtypes of p-tau 
markers, which differ at various phosphorylation sites, 
such as p-tau181, p-tau217, and p-tau231, have been 
recently introduced as valuable markers of AD [19, 20]. In 
particular, plasma p-tau231 has emerged among the most 
sensitive biomarkers for detecting early stages of preclini-
cal AD pathology [21]. While not as sensitive to preclini-
cal AD pathology, plasma p-tau181 may differentiate AD 
from non-AD neurodegenerative diseases and predict 
the progression of AD dementia [22]. Overall, this post-
translational modification of tau protein is implicated in 
the pathological processes of AD and serves as a critical 
marker for in vivo tau pathology. Elevated levels of p-tau 
in plasma and CSF correlate strongly with neurofibrillary 
tangles, a hallmark of AD pathology, thereby providing 
a non-invasive method to track tau-related neurodegen-
eration [23, 24]. Additionally, plasma Aβ has been used 
to assess amyloid pathology in AD [25]. While amyloid 
burden is upstream event in the AD pathological cascade 
[26], this deposition, particularly when evaluated along-
side tau markers, may provide a more comprehensive 
view of disease progression [27–30]. Furthermore, Aβ42/
Aβ40 ratio adjusts for inter-individual differences in the 
concentrations of the aggregation-prone Aβ42 peptide, 
making the ratio a more reliable indicator of Aβ plaque 
pathology compared with Aβ42 alone [31].

Complementary methods, such as resting-state func-
tional magnetic resonance imaging (rs-fMRI) coupled 
with cognitive testing, may help index the functions 
disrupted by such AD-related pathologies. The rs-fMRI 
approach, in particular, may help characterize dynamic 
functional connections of the MTL [32]. Tau accumu-
lation is first observed in the transentorhinal and ento-
rhinal cortex, later spreading into adjacent association 
and unimodal cortices [33–35]. The entorhinal cortex, a 
component of the MTL memory system, is the gateway 
for information entering and leaving the hippocampal 
formation [36]. Therefore, MTL dynamics may be cru-
cial to understand preclinical AD related pathological 
changes. MTL dynamic network flexibility refers to the 
ability of the MTL network to exhibit variable patterns 

Conclusions  Increased levels of p-tau231 are associated with impaired generalization abilities and reduced dynamic 
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and neural changes in cognitively unimpaired older African Americans.
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of connectivity over time, as measured by rs-fMRI [37–
39]. This approach highlights how connectivity within 
the MTL can dynamically change in response to differ-
ent states of rest, reflecting the network’s adaptability and 
functional reorganization over time. MTL dynamic flex-
ibility reflects the network’s ability to switch between dif-
ferent connectivity states, which is crucial for supporting 
various cognitive processes and maintaining flexibility 
in responding to new information [37, 40]. Older adults 
may show less variability in connectivity patterns, sug-
gesting reduced adaptability and capacity for functional 
reorganization within the MTL network. This reduc-
tion in dynamic flexibility may be linked to the cogni-
tive declines observed with age [41]. In the early stages 
of AD, changes in dynamic connectivity patterns in the 
MTL may serve as early indicators of AD pathology and 
may be associated with more pronounced cognitive defi-
cits and progression of neurodegenerative changes [42]. 
These subtle neural changes in the preclinical stage may 
underlie subtle cognitive alterations.

AD becomes increasingly prevalent as individuals live 
longer worldwide, and there is a critical need for strat-
egies to prevent or delay its onset. Early diagnosis of 
AD, even in the preclinical stage when symptoms are 
not yet present, could potentially lead to strategies to 
help individuals maintain their everyday functions [43]. 
Neuropsychological measures are used to detect early 
impairment and decline in preclinical AD [44]. However, 
traditional laboratory-based cognitive assessments can 
be expensive and time-consuming, or may lack sensitiv-
ity to early-stage changes [45]. Conversely, computational 
cognitive tests provide a more streamlined evaluation 
while maintaining or even enhancing sensitivity. Identify-
ing novel markers that are sensitive to the subtle changes 
associated with preclinical AD can facilitate early detec-
tion and offer more options for preventing the disease 
from progressing [46].

Generalization—the cognitive ability to apply learned 
knowledge or skills to novel situations—is a critical 
aspect of adaptive behavior and cognitive flexibility [40, 
47]. As individuals age, there is a notable decline in gen-
eralization capabilities. Research has shown that older 
adults may exhibit reduced flexibility in applying learned 
information to new contexts, which can manifest as dif-
ficulties in problem-solving and adapting to novel tasks 
[40]. Studies have demonstrated that individuals with 
preclinical AD, often identified through biomarkers and 
subtle cognitive changes, show impairments in the abil-
ity to generalize past experiences to new tasks [48, 49]. 
Generalization longitudinally predicts cognitive decline 
and neural changes in preclinical AD [50]. This decline 
in generalization is thought to be associated with age-
related changes in brain structures and functions, partic-
ularly in the MTL and prefrontal cortex, which are crucial 

for integrating and applying information across different 
contexts [51]. Early computational models by Gluck and 
Myers demonstrated that by altering task demands, MTL 
circuits may have difficulties with generalization of prior 
learning, despite intact initial learning of associations 
between stimuli [52]. More recently, higher dynamic net-
work flexibility within the MTL was shown to mediate 
better generalization of prior learning [37].

Currently, however, there is not a comprehensive 
understanding of how these cognitive (generalization) 
and neural biomarkers (MTL dynamic network flexibil-
ity) relate to validated blood-based biomarkers. No pre-
vious study has examined these markers of AD together 
as they relate to blood-based biomarkers nor within cog-
nitively unimpaired older African Americans at risk for 
AD. As such, the purpose of this study was to investigate: 
(1) the relationship between long-term memory, gener-
alization performance, and MTL dynamic network flex-
ibility and (2) how plasma p-tau231, p-tau181, and Aβ42/
Aβ40 influence the relationship between generalization, 
long-term memory, and MTL dynamics in cognitively 
unimpaired older African Americans.

Methods
Participants
Participants were drawn from the ongoing longitudinal 
study, Pathways to Healthy Aging in African Americans 
conducted at Rutgers University–Newark. The Pathways 
study enrolls African Americans aged 60 and older and 
investigates relationships between cognition, health, life-
style, genetics, brain structure and function, and sociode-
mographic variables. The Aging & Brain Health Alliance, 
a university-community partnership founded in 2006 
with a membership consisting of community members 
from senior centers, public and subsidized housing asso-
ciations, religious institutions, health and wellness orga-
nizations, and other organizations that respond to the 
well-being of the residents of greater Newark, was uti-
lized to recruit participants.

Participants who were aged 60 years or older, identi-
fied as black or African American; met the criteria of a 
Mini-Mental State Examination (MMSE) score of 24 or 
above, and had undergone a rs-fMRI scan were included 
in the study. Participants who had any neurodegenera-
tive disorders, took medications commonly prescribed 
for the treatment of dementia (e.g. Namenda, Razadyne, 
Aricept), had learning disabilities, self-reported abusing 
alcohol and/or drugs excessively, had a medical proce-
dure that required general anesthesia in the past three 
months; reported having of MRI contraindications (e.g., 
cardiac pacemaker, metallic stent, claustrophobia); had 
color blindness (as certain tasks relied on distinguishing 
colors for cues) and/or declined to undergo a blood draw 
were excluded from the study. The Rutgers University 
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Institutional Review Board approved the study as ethi-
cal. All methods were performed in accordance with the 
ethical standards as established in the 1964 Declaration 
of Helsinki and its later amendments or comparable ethi-
cal standards.

Procedure
Candidates were telephone screened to determine initial 
eligibility. After providing informed consent, participants 
who passed the in-person examinations for color blind-
ness and mental status proceeded on to a full laboratory 
visit that consisted of cognitive assessments. Participants 
provided a blood sample for p-tau231, p-tau181, and 
Aβ42/Aβ40 levels and returned for a neuroimaging ses-
sion within two weeks of the initial laboratory visit.

Measures
Rutgers acquired equivalence task
Rutgers Acquired Equivalence Task was developed by 
the senior author (Gluck) and colleagues at Rutgers 
University-Newark. Generalization, the ability to apply 
previously learned rules to new situations and contexts, 
is subserved by the MTL [53–56]. Generalization trials 
require the adaptive application of associative knowl-
edge, which involves the integrative encoding of informa-
tion and its recombination during the retrieval process. 
Mnemonic flexibility, which is essential for successful 
generalization, relies heavily on the structural and func-
tional integrity of the MTL [57]. Research indicates that 
individuals with MTL alterations linked to prodromal 
AD exhibit intact learning but show significant deficits in 
generalization performance [54, 55, 58, 59]. In this task, 
participants learn six pairs of stimulus-response relations 
in the acquisition phase of the task, stimuli are presented 
and responses are collected using laptop computer. 
Antecedent stimuli are drawings of four faces (2 women 
faces, 2 men faces). The consequents are drawings of red, 
orange, purple and pink fish. For each participant, faces 
and fish were randomly assigned as antecedent and con-
sequent stimuli. The selected fish drawing is circled and 
corrective feedback is given (Fig. 2). The left-right order 
of the fish drawings is randomized across subjects. There 
are three phases in the acquisition phase (Table  1). The 
participant is not informed that a new phase has started 
and is not made aware of the existence of new associa-
tions. The transfer phase consists of 48 trials, 12 of which 
are new associations to test learned equivalence and 36 
of which are old associations trained in the acquisition 
phase. Dependent measures are the average number 
of errors in the acquisition phase and the proportion of 
incorrect responses in the transfer phase [59].

In Stage 1 of the experimental protocol, participants 
engage in the acquisition of knowledge pertaining to 
the initial two pairings involving distinct individuals (A 

and B), and specific fish stimuli (X and Y). Participants 
become linked to the same fish stimuli in Stage 2, show-
ing stimulus equivalence. Subsequently, in Stage 3, new 
consequents are introduced into the learning process. 
During the transfer phase, participants are subjected to 
testing not only on the associations cultivated in Stages 
1 to 3 but also on entirely new associations that were not 
part of the initial learning in these stages but have arisen 
as a result of stimulus equivalence. This phase of stimulus 
generalization is closely linked with the MTL, while the 
learning occurring in Stages 1 to 3 is predominantly asso-
ciated with the basal ganglia [59].

The task involves a sequence of trials wherein par-
ticipants are presented with one face image alongside 
two fish stimuli, all concurrently displayed. Below this 
arrangement, participants are provided with a directive, 
instructing them to select either the left or right fish by 
using the corresponding key label for input. Initially, par-
ticipants are required to make a random selection. Sub-
sequent to their choice, the selected fish is circled, and 
immediate feedback is presented in the form of either 
“Correct” or “Incorrect.” This feedback, in conjunction 
with the face image, the two fish stimuli, and the encircle-
ment, remains visible on the screen for a duration of 1 s. 
Following this, the screen undergoes a 1-second intertrial 
interval with a blank display prior to the initiation of the 
subsequent trial, featuring a novel face image and a new 
pair of fish stimuli (Table 1).

To calculate the accuracy score in the Rutgers Acquired 
Equivalence Task, each subject’s performance is assessed 
based on their correct responses during the acquisition 
and transfer phases. The accuracy score is the percentage 
of correct responses relative to the total number of trials. 
This can be calculated by dividing the number of correct 
trials by the total trials attempted and then multiplying 
by 100 to express the value as a percentage. Higher scores 
indicate better performance. Automated scoring tools 
were used to streamline and ensure consistency. For pub-
licly available codes please see ​h​t​t​​p​s​:​/​​/​g​i​​t​h​​u​b​.​​c​o​m​/​​A​g​i​​n​g​​
-​a​n​d​-​B​r​a​i​n​-​H​e​a​l​t​h​-​A​l​l​i​a​n​c​e​/​G​l​u​c​k​L​a​b​​​​​.​​

Rey auditory learning test
The Rey Auditory Verbal Learning Test (RAVLT) is 
a widely recognized neuropsychological assessment 
designed to evaluate episodic memory, with particular 
sensitivity to verbal memory impairments commonly 
seen in neurological conditions such as AD. The RAVLT 
involves the sequential presentation of a 15-word list 
across five trials, during which the examiner reads the 
words aloud, and the participant is asked to recall as 
many words as possible immediately after each trial (Tri-
als 1–5). Following these trials, a second, interference list 
(List B) of 15 new words is introduced, and the partici-
pant is again asked to recall the words. Subsequently, in 
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Trial 6, the participant is prompted to recall the original 
list without further exposure. After a 20-minute delay, 
during which other cognitive tasks are administered, the 
participant is asked to recall the original list once more 
(delayed recall).

The present study utilized the RAVLT recall score. 
It was selected for it’s ability to capture distinct facet of 
episodic memory—memory retention over time (RAVLT 
Percent Forgetting)— which is critical in AD pathology. 
Previous studies have demonstrated significant corre-
lations between the RAVLT delayed recall and AD pro-
gression, underscoring it’s relevance in our investigation 
[60–62]. Higher delayed recall scores indicate better epi-
sodic memory performance.

Blood sample collection and plasma analysis
Blood samples were collected by a phlebotomist at the 
Clinical Research Unit at the Rutgers New Jersey Medi-
cal School using 6–10 mL EDTA tubes with all biosafety 

protocols in place. Samples were brought to the Fitzger-
ald-Bocarsly lab at NJMS, centrifuged within one hour 
and plasma was collected and aliquoted into 0.5 mL poly-
propylene tubes with screw caps, then directly frozen at 
-80 °C. One 0.5 mL aliquot of EDTA plasma per partici-
pant were transported on dry ice to the Clinical Neuro-
chemistry Laboratory at the University of Gothenburg 
for analyses. Plasma p-tau231, p-tau181, and Aβ42/Aβ40 
ratio (pg/mL) were measured using Single molecule array 
(Simoa) assays on an HD-X analyzer (Quanterix), as pre-
viously described [20].

MRI data acquisition
Participants in the study underwent magnetic resonance 
imaging (MRI) procedures at the Rutgers University 
Brain Imaging Center (RUBIC) at Rutgers University-
Newark through a 3T Siemens TRIO with a 32-chan-
nel Multiband parallel encoding coil. Each participant 
underwent a high-resolution 3D magnetization-prepared 

Table 1  The acquired equivalence paradigm. During training stage 1, participants learn the first two associations between different faces (A1, B1) and 
fishes (X1, Y1). During training stage 2, different faces (A2, B2) are associated with the same fish, whereas during stage 3, new fishes (X2, Y2) are added. 
During the test phase, participants are tested on retention of the associations learned in training stages 1–3, and also on generalization to new pairings 
of faces and fishes (i. e., A2 → X2, B2 → Y2). Retention and generalization pairs were interleaved randomly during the test phase
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rapid gradient echo (MP-RAGE) structural scan and 
resting-state MRI in the sagittal plane. The scanning 
parameters were configured to attain optimal results: a 
repetition time (TR) of 1900 milliseconds, an echo time 
(TE) of 2.52 milliseconds, a precise 9-degree flip angle, 
176 contiguous slices (without any inter-slice gap), voxel 
dimensions of 1.0 × 1.0 × 1.2  mm, and a field of view 
(FOV) measuring 270 × 254 × 212. This careful calibra-
tion led to a total acquisition time of 9  min, ensuring 
high-quality data collection. High-resolution Multiband 
echo-planar imaging techniques were configured with a 
FOV spanning 208 × 208 × 125, a TR of 664 milliseconds, 
an TE of 30 milliseconds, a 30-degree flip angle, an iso-
tropic resolution of 1.8 mm with no interslice gap, and a 
Multiband acceleration factor of 5. The imaging protocol 
encompassed 45 axial slices, acquired in a simultaneous 
multiband parallel imaging, which facilitated the acquisi-
tion of high-resolution functional images while curtailing 
acquisition time and minimizing susceptibility-induced 
distortions. Furthermore, the high temporal efficiency 
demonstrated by this methodology conferred greater sta-
tistical power to the study’s analytical framework [63].

fMRI data analysis
Preprocessing
The Analysis of Functional NeuroImages (AFNI) soft-
ware was conducted to preprocess and analyze all neu-
roimaging data on a Linux platform. The standard 
afni_proc.py pipeline was predominantly utilized for data 
processing. The data preprocessing pipeline employed in 
this study adhered to standardized procedures for robust 
analyses. Initially, the functional data underwent several 
essential preprocessing steps. Outliers were mitigated 
through despiking (3dDespike), temporal alignment 
was executed via slice timing correction (3dtshift), and 
precise anatomical registration was achieved with MP-
RAGE images using the align_epi_anat.py tool. Subse-
quently, motion artifacts were diligently corrected using 
3dvolreg, followed by spatial smoothing with a Gauss-
ian FWHM kernel to attain a 2 mm isotropic resolution 
(3dmerge). For improved data quality, an automatic brain 
mask (3dautomask) was applied to exclude extraneous 
voxels outside the brain. To ensure data integrity, a cus-
tom script was implemented to exclude trials exhibiting 
motion exceeding 0.3 mm from the time series, thereby 
enhancing the reliability of our analyses. Moreover, we 
incorporated a signal regression approach to address 
motion and scanner-related noise [64]. ANATICOR, 
which uses local white matter and ventricular signal esti-
mations to the neighboring gray matter voxels, was used 
to regress out signal fluctuations [65]. Functional scans 
were registered to each subject’s skull-stripped MP-
RAGE image using the align_epi_anat.py tool. Final voxel 
time courses were estimated using univariate regression 

(3dDeconvolve), which incorporated nuisance variables 
for the effects of six motion parameters (pitch, roll, and 
yaw; x, y, and z frame displacement) and linear scanner 
drift. To achieve a common anatomical reference frame 
across participants, the Advanced Normalization Tools 
(ANTs) were utilized, employing a diffeomorphic non-
linear registration algorithm (SyN) to warp each partici-
pant’s structural scan into an in-house high-resolution 
0.65 mm isotropic template [66]. The coplanar functional 
data, derived from the aforementioned regression, were 
processed using these transformation parameters to align 
them with the custom template, facilitating both individ-
ual and group-level analyses.

Dynamic network construction
The investigation of dynamic functional connectivity in 
the MTL encompassed cortical and hippocampal sub-
fields (subiculum, CA1, and DG/CA3), as well as the 
perirhinal cortex (PRC), parahippocampal cortex (PHC), 
posteromedial entorhinal cortex (pMEC), and anterolat-
eral entorhinal cortex (aLEC). The perirhinal and para-
hippocampal regions, respectively, provide input to the 
lateral and medial entorhinal cortices, which ultimately 
supply input to the hippocampus. Evidence suggests an 
anterolateral to posteromedial functional division in the 
human EC [67, 68]. According to prior studies, there are 
functional distinctions between the lateral and medial 
EC [69]. This study consequently regarded the pmEC 
and alEC as separate regions of interest (ROIs) within 
the MTL network. For each ROI (3dmaskave), the aver-
age time series of 812 time points was derived. The time 
series were subsequently separated into sub-blocks of 
50-time points (33  s), yielding a total of 16 time win-
dows, in order to evaluate the dynamic connectivity 
between ROIs. The initial six and the last six time points 
were omitted. The time window’s duration was set to be 
long enough to allow for an accurate assessment of cor-
relations throughout frequencies present in the wavelet 
band of interest (0.06–0.12 Hz), yet brief enough to allow 
for a fine-grained measurement of temporal evolution 
over the whole session [70]. According to previous stud-
ies, connectivity was then determined for each of the 16 
sub-blocks as the magnitude squared spectral coherence 
between each pair of ROIs to measure modularity over 
time frames [71–73]. Subject-specific 7 × 7 × 16 connec-
tivity matrices with coherence values ranging from 0 to 
1 were constructed for 7 ROIs and 16-time windows. 
Coherence was used to quantify frequency-specific linear 
correlations between time series, which has been demon-
strated to be effective in the context of fMRI data [74]. 
A multilayer network technique was utilized to investi-
gate changes in functional brain network architecture. 
In this methodology, each layer of the network was built 
up from connectivity matrices representing distinct time 
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windows, allowing for the analysis of temporal changes in 
network properties [75]. For each participant, multilayer 
networks were constructed by linking nodes in the con-
nectivity matrix of one time window to their correspond-
ing nodes in the matrices of adjacent time windows [76]. 
This inter-layer connectivity facilitated the creation of a 
time-dependent network structure, wherein each node 
was connected to its equivalent in previous and sub-
sequent time slices. Consequently, this representation 
enabled the identification of densely interconnected sub-
groups, referred to as communities or modules, whose 
identities were consistently tracked across temporal 
frames. This approach provides a robust framework for 
examining dynamic changes in brain connectivity and 
network modularity over time [72, 77].

Dynamic community detection
A Louvain-like locally greedy community detection algo-
rithm for optimizing multilayer modularity was used to 
partition each multilayer network into temporally con-
nected modules [77]. A community assignment for each 
node and time frame, representing the module allegiance, 
was generated by optimizing multilayer modularity. The 
flexibility of each node was defined as the extent to which 
it altered its module allegiance throughout the set of time 
frames represented by the multilayer network to enable it 
to measure changes in the composition of communities 
across time [71]. Therefore, flexibility was calculated for 
each of our 7 ROIs (PRC, PHC, pMEC, aLEC, subiculum, 
CA1, DG/CA3) as the number of times a node indicated 
a change in community assignment, normalized by the 
total number of changes that may occur. The dynamic 
flexibility of the MTL network was then computed as the 
mean flexibility over all nodes.

Statistical analysis
IBM SPSS (Statistical Package for Social Science) version 
29.0 was used for statistical analysis. Summary statistics 

and histograms were generated to explore the distribu-
tions of data, providing insights into central tendencies 
and variability. Outliers were identified through visual 
inspection and statistical criteria; specifically, values 
exceeding two times the interquartile range (IQR) from 
first and third quartiles were flagged as potential outliers. 
Additionally, standardized residuals exceeding ± 2.0 were 
evaluated. However, no extreme outliers were found to 
significantly affect the results, therefore, all data points 
were retained for analysis. A series of linear regression 
analyses were conducted to examine: (1) the relation-
ship between long-term memory, generalization perfor-
mance, and MTL dynamic network flexibility, and (2) the 
influence of plasma p-tau231, p-tau181 and Aβ42/Aβ40 
on generalization performance, long-term memory, and 
MTL dynamics in cognitively unimpaired older African 
Americans. Age, sex, and education level (and Acquisi-
tion score was only used for Rutgers Acquired Equvalence 
Task) were included as covariates to control for potential 
condounfing factors. Prior to conducting the regression 
analyses, assumptions of linearity, normality, homosce-
dasticity, and independence were verified. The overall 
model fit was assessed using R² values and F-statistics.
The significance value was accepted as p < 0.05.

Power analysis
The sample size was determined using the G*power sam-
ple size calculator [78]. The sample size was calculated 
as 71 subjects using “Correlation: Point biserial model” 
design with two tails and a power of 95% (α = 0.05, 
β = 0.95, t = 1.994) and effect size of 0.40.

Results
Demographics
Demographics of the 148 participants (98 women) 
are shown in Table  2. Participants were ages 60 to 88 
years old and completed on average, fourteen years of 
education.

Relationship between cognitive measures and MTL 
dynamic network flexibility
A statistically significant positive correlation was found 
between Rutgers Acquired Equivalence Task and MTL 
Dynamic Network Flexibility with generalization accu-
racy score emerging as a significant predictor (t = 3.372, 
β = 0.280, p < 0.001). The overall regression model was sig-
nificant (F(5, 141) = 5.430, p < 0.001), accounting for 16.1% 
of the variance in MTL Dynamic Network Flexibility (R² 
= 0.161), with a model strength of R = 0.402 (Fig. 1). There 
was no statistically significant correlation between MTL 
Dynamic Network Flexibility and RAVLT Delayed Recall 
(t = 0.803, β = 0.067, p = 0.423).

Table 2  Distribution of demographic data
(N = 148) Avg ± SD
Age (years) 70.88 ± 6.05
Gender (n (%)) Women 98 (66.21)

Men 50 (33.79)
Education (years) 13.90 ± 2.47
MMSE 26.98 ± 2.14
MTL Dynamic Network Flexibility 0.34 ± 0.26
Rutgers Acquired Equivalence Task Accuracy 0.57 ± 0.24
RAVLT Delayed Recall 7.93 ± 3.60
Plasma p-tau231 (pg/mL) 20.39 ± 11.99
Plasma p-tau181 (pg/mL) 18.68 ± 9.49
Aβ42/Aβ40 ratio (pg/mL) 0.06 ± 0.00
MMSE = Mini-Mental State Examination; MTL = Medial Temporal Lobe; 
RAVLT = Rey Auditory Learning Test, Aβ = Amyloid Beta, Avg = Average; 
SD = Standard Deviation
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Relationship between plasma biomarkers and 
generalization performance
There was a statistically significant negative correlation 
between plasma p-tau231 levels and Rutgers Acquired 
Equivalence Task with plasma p-tau231 levels emerg-
ing as a significant predictor (t = -3.324, β = -0.265, 
p = 0.001). The overall regression model was significant 
(F(5, 141) = 7.064, p < 0.001), accounting for 20% of the vari-
ance in generalization performance (R² = 0.200), with a 
model strength of R = 0.448 (Fig. 2a). A statistically signif-
icant negative correlation was observed between plasma 
p-tau181 levels and generalization performance with 
plasma p-tau181 levels emerging as a significant predic-
tor (t = -2.408, β = -0.192, p = 0.017). The overall regres-
sion model was significant (F(5, 141) = 5.846, p < 0.001), 
accounting for 17.2% of the variance in generalization 
performance (R² = 0.172), with a model strength of 

R = 0.414 (Fig.  2b). No statistically significant correla-
tion was found between generalization performance and 
Aβ42/Aβ40 ratio (t = − 0.352, β = − 0.028, p = 0.726).

Relationship between plasma biomarkers and RAVLT 
delayed recall
There was no statistically significant correlation was 
found between RAVLT delayed recall and p-tau231 (t = 
-1.350, β = − 0.113, p = 0.179), p-tau181 (t = -1.399, β = 
− 0.114, p = 0.164), and Aβ42/Aβ40 ratio (t = − 0.228, β = 
− 0.018, p = 0.820).

Relationship between plasma biomarkers and MTL 
dynamic network flexibility
A statistically significant negative correlation between 
plasma p-tau231 levels and MTL Dynamic Network 
Flexibility with plasma p-tau231 levels emerging as a 

Fig. 2  Lower generalization performance is associated with a) Elevated plasma p-tau231 b) Elevated plasma p-tau181

 

Fig. 1  Better generalization performance is associated with higher Medical Temporal Lobe Dynamic Network Flexibility
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significant predictor (t = -2.825, β = -0.232, p = 0.005). The 
overall regression model was significant (F(4, 143) = 6.051, 
p < 0.001), accounting for 14.5% of the variance in MTL 
Dynamic Network Flexibility (R² = 0.145), with a model 
strength of R = 0.380 (Fig.  3). There was no statistically 
significant correlation between MTL Dynamic Network 
Flexibility and p-tau181 (t = -1.338, β = -0.110, p = 0.183), 
and Aβ42/Aβ40 ratio (t = − 0.464, β = − 0.038, p = 0.643).

Discussion
In this study, we found that [1] better generalization 
performance was associated with higher MTL dynamic 
network flexibility [2], elevated plasma p-tau231 and 
p-tau181 levels were associated with reduced generaliza-
tion performance, and [3] elevated plasma p-tau 231 lev-
els was associated with reduced MTL dynamic network 
flexibility in a cohort of cognitively unimpaired older 
African Americans. We conclude that elevated levels of 
plasma biomarkers may reflect underlying neurodegener-
ative processes that impair cognitive function as captured 
by novel measures, and underscores the potential impact 
of plasma p-tau pathology on neural dynamics within 
the MTL among cognitively unimpaired older African 
Americans.

In preclinical AD, memory decline may manifest 
subtly, as individuals in this stage often remain cogni-
tively unimpaired according to standard clinical crite-
ria [79]. However, memory deficits can emerge in tasks 
like delayed recall [80]. The delayed recall score of the 
RAVLT captures the ability to retain and retrieve infor-
mation after a delay, which is often compromised in indi-
viduals with AD-related pathology [81]. Generalization 

serves as a critical cognitive function that is affected 
by aging, neurodegeneration, and early stages of AD. 
Understanding how generalization is impacted in these 
contexts provides valuable insights into the progres-
sion of cognitive decline and highlights the potential for 
using generalization deficits as a cognitive biomarker 
for early detection and monitoring of neurodegenerative 
diseases. Generalization is unable to occur without an 
accurate neural representation of stimulus interactions 
[82]. As such, Sinha and colleagues (2021) investigated 
the relationship between generalization and the MTL, a 
major site of neuroplasticity [37]. They concluded that 
the MTL is sensitive to generalization and is one of the 
earliest brain regions impacted by AD. In this study, we 
observed a positive relationship between generalization 
accuracy performance and MTL Dynamic Network Flex-
ibility, suggesting that greater network adaptability in the 
MTL may support cognitive flexibility and generalization 
abilities. Interestingly, there was no relationship between 
RAVLT delayed recall and Dynamic Network Flexibil-
ity. This lack of association may indicate that while MTL 
network flexibility plays a role in tasks requiring cogni-
tive flexibility, it may not be as strongly linked to long-
term memory consolidation, as measured by the RAVLT 
delayed recall.

Delayed recall, a critical component of long-term epi-
sodic memory, reflects an individual’s ability to retrieve 
previously learned information after a period of time 
[83]. Older African Americans obtain significantly 
lower scores on measures of verbal and nonverbal learn-
ing and memory compared to White counterparts [84]. 
On the other hand, Petok et al. (2018) observed that 

Fig. 3  Elevated plasma p-tau 231 is associated with reduced Medical Temporal Lobe Dynamic Network Flexibility
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generalization deficits on the Rutgers Acquired Equiva-
lence Task appear years before overt symptoms of cog-
nitive decline, suggesting that generalization tests could 
more accurately capture subtle differences than standard 
diagnostic methods such as a neuropsychological assess-
ments [48]. In the context of aging, increased p-tau and 
Aβ levels are associated with cognitive impairment and 
accelerated cognitive decline [85]. In light of the emer-
gence of plasma p-tau231, p-tau181, and Aβ42/Aβ40 
as sensitive biomarkers for AD risk, linking plasma bio-
markers and generalization performance can play a 
critical role in detecting AD at the preclinical stage. In 
the present study, we examined the influence of plasma 
biomarkers on generalization performance and RAVLT 
delayed recall. We found negative relationships between 
plasma biomarkers (p-tau231 and p-tau181) and gener-
alization performance. However, there was no relation-
ship between plasma Aβ42/Aβ40 and generalization 
performance. Research has demonstrated that higher 
plasma p-tau levels is linked with reduced cognitive 
performance in domains such as episodic memory and 
executive function, reflecting its role in the early detec-
tion of AD pathology before clinical symptoms become 
apparent [86]. However, we observed no relationship 
between plasma biomarkers and RAVLT delayed recall, 
as a marker of episodic memory dysfunction. A recent 
study emphasized that plasma p-tau231 may be a more 
robust indicator of Aβ and tau pathologies in preclinical 
disease than p-tau181 [19]. In parallel with this result, we 
observed that the relationship between plasma p-tau231 
levels and generalization performance was stronger 
compared to the relationship with plasma p-tau181 lev-
els. This differential effect may suggest that p-tau231 is 
a more sensitive marker of cognitive flexibility, particu-
larly in processes related to generalization, in cognitively 
unimpaired older African Americans. This result under-
scores the potential of plasma p-tau231 as a biomarker 
to detect subtle cognitive changes prior to the clinical 
symptoms of AD.

Recent advances in plasma-based assays allow for 
the detection of tau phosphorylation at different resi-
dues, such as p-tau231 and p-tau181, offering insight 
into tau pathology progression, and were thus worth 
investigating in relation to measures of generaliza-
tion performance and MTL dynamic network flexibility 
[87]. Plasma p-tau231 has emerged as an early marker 
of tau deposition in the brain, particularly in regions 
such as the entorhinal cortex, which is closely linked to 
MTL function [20]. Higher levels of p-tau231 in cogni-
tively unimpaired individuals have been associated with 
greater MTL atrophy, a hallmark of AD progression [88]. 
This is especially relevant for African American popula-
tions, who are understudied in AD research, yet dispro-
portionately affected by the disease. Plasma p-tau181, a 

well-established marker for AD-related neurodegenera-
tion, is also significantly elevated in individuals at risk 
for AD [89]. Plasma p-tau181 may reflects tau pathol-
ogy spread from the hippocampal regions into broader 
cortical areas [90]. In contrast, plasma Aβ42/Aβ40 ratio 
has been used to assess amyloid pathology in AD [91]. 
While amyloid plaques have been traditionally viewed as 
upstream events in the AD pathological cascade, recent 
studies have suggested that amyloid deposition, particu-
larly when evaluated alongside tau markers, may pro-
vide a more comprehensive view of disease progression 
[29, 46, 92]. We found a significant negative relationship 
between plasma p-tau231 and MTL dynamic network 
flexibility, which may indicate that elevated p-tau231 
interferes with the neural adaptability needed for general-
ization, a key cognitive process for learning and memory. 
In line with these findings, our results show a negative 
association between plasma p-tau181 and generalization 
performance, further implicating tau pathology in cogni-
tive decline during the preclinical stages of AD. Though 
the current study did not find significant direct effects of 
Aβ42/Aβ40 on generalization or MTL dynamics, these 
ratios remain a critical factor when evaluating overall AD 
risk, particularly as amyloid and tau pathologies interact 
across the continuum of disease progression. Notably, 
these results highlight the possibility that p-tau181 and 
p-tau231 capture distinct aspects of tau-related neuro-
degeneration, with p-tau231 potentially reflecting ear-
lier or more localized tau accumulation in the MTL, and 
p-tau181 capturing broader cortical involvement. These 
findings underscore the importance of early plasma bio-
markers in detecting AD risk, particularly in populations 
like African Americans who are at elevated risk but often 
underrepresented in research. Plasma biomarkers such 
as p-tau231 and p-tau181 not only offer a minimally 
invasive alternative to PET imaging to track AD-related 
changes in the brain but may also serve as key indicators 
of cognitive decline related to MTL dysfunction. Recent 
advances in the development of AD blood tests provide 
a simple and cost-effective way to detect AD pathology 
and have the potential to increase access of minoritized 
groups to AD biomarker testing, whereas PET scans are 
expensive, involve exposure to low levels of radiation, 
and available only at specialized medical centers [93, 94]. 
Future studies are recommended to explore the interac-
tion between plasma amyloid and plasma tau biomarkers 
in modulating MTL dynamics and generalization perfor-
mance, expanding on the mechanistic underpinnings of 
AD progression.

Despite the increased risk of AD, African Americans 
have been historically underrepresented in biomarker, 
cognitive, and neuroimaging research on AD, limiting 
our understanding of disease mechanisms in this popu-
lation [95]. Investigating plasma biomarkers and their 
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association with cognitive performance and MTL network 
dynamics in African Americans provides crucial insights 
into early pathological processes that may underlie cogni-
tive decline. These findings are particularly relevant given 
the emerging evidence that tau pathology may manifest 
differently across racial and ethnic groups [96]. By focus-
ing on a cohort of cognitively unimpaired older African 
Americans, this study addresses critical gaps in the litera-
ture, offering valuable data on the early neural and cog-
nitive correlates of AD in this population. Such insights 
could inform the development of more targeted diagnos-
tic and therapeutic approaches, ultimately contributing to 
efforts to reduce health disparities in AD outcomes [97].

Our study is not without limitations. First, female par-
ticipants comprised the majority of the analytic sample. 
Future studies should recruit higher proportions of males 
in order to test for sex differences in the interrelation-
ships between plasma biomarkers, generalization perfor-
mance, long-term memory, and MTL dynamic network 
flexibility. Second, we did not include genetic biomarkers, 
such as APOE and/or ABCA7 into our analysis. Future 
studies including genetic biomarkers into the analysis 
are recommended to more comprehensively assess AD 
risk. Furthermore, the underrepresentation of older Afri-
can Americans in broader AD research hinders ability to 
most adequately situate these research findings for the 
purposes for addressing health disparities immediately. 
There is an imperative need to more comprehensively 
understand of AD related biomarkers within this popula-
tion to guide the development of targeted treatments and 
potential interventions that address the needs of diverse 
older adults.

Conclusions
AD will continue to present a tremendous challenge, 
especially among African Americans who bear a dis-
proportionate burden of the disease. There is a need for 
a better understanding of early changes associated with 
preclinical AD to facilitate early detection and interven-
tion. This study highlights (1) the importance of neural 
plasticity in optimizing learning and memory, (2) that 
elevated tau biomarkers may reflect neurodegenera-
tive processes that impair cognitive function, and (3) the 
potential impact of tau pathology on neural dynamics in 
MTL among cognitively unimpaired older African Amer-
icans. Future studies are recommended to investigate tar-
geted intervention strategies aimed at mitigating plasma 
tau-induced neurodegenerative changes in at-risk popu-
lations such as African Americans for early diagnosis of 
AD.
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