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RERE‑AS1 enhances the effect of CDK4/6 
inhibitor Ribociclib and suppresses malignant 
phenotype in breast cancer via MEK/ERK 
pathway
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Abstract 

Background  Currently, there is a lack of biomarkers to identify breast cancer (BC) patients who would benefit 
from CDK4/6 inhibitors. This study combined machine learning (ML) algorithms based on transcriptomic data 
with both in vivo and in vitro experiments to identify therapeutic efficacy-related biomarkers of the CDK4/6 inhibitor 
ribociclib from the perspective of long non-coding RNA (lncRNA).

Methods  We used the Genomics of Drug Sensitivity in Cancer database along with the “oncoPredict” algorithm 
to calculate the half maximal inhibitory concentration (IC50) values for ribociclib based on transcriptome data. ML 
algorithms were utilized to select key lncRNAs related to ribociclib and to establish a model which could be used 
for selection of potential beneficiaries of ribociclib. Cellular experiments were conducted to validate the ML analysis 
and explore the potential biological mechanisms by which RERE-AS1 influences ribociclib efficacy and malignant 
phenotype of BC cells. Correlation analysis with clinical pathological factors, RT-qPCR experiments on tissue speci-
mens, and pan-cancer analysis were carried out to explore the expression pattern, and the prognostic and diagnostic 
potential of RERE-AS1 in cancers.

Results  We have identified 11 key ribociclib-related lncRNAs and constructed an artificial neural network model 
(ANNM) based on lncRNA. Cellular experiments demonstrated that overexpression of RERE-AS1 promoted the anti-
tumor activity of ribociclib in BC cells. Furthermore, RERE-AS1 is crucial in suppressing the malignant traits of BC 
cells through the reduction of MEK and ERK phosphorylation levels. Patients with smaller primary tumors and lower 
pathological stage exhibited higher levels of RERE-AS1 expression. Lastly, a pan-cancer analysis revealed that RERE-
AS1 exhibits distinctly abnormal expression patterns, prognostic significance, and clinical diagnostic value in BC, 
compared to other cancers.

Conclusions  The ANNM established through ML algorithms can serve as predictive indicators for the efficacy 
of ribociclib in BC patients. LncRNA RERE-AS1, a newly discovered biomarker, holds significant promise for diagnosis, 
treatment, and enhancing the therapeutic response to ribociclib in BC.
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Background
The dysregulated cell cycle, a hallmark feature of can-
cer cells, are governed by several regulatory proteins 
[1]. CDK4/6 is particularly crucial in controlling the 
G1 phase progression during the early stages of the cell 
cycle. In recent years, novel therapeutics targeting the 
CDK4/6 protein have garnered significant interest as a 
promising strategy for cancer treatment [2]. Three inhibi-
tors targeting CDK4/6—ribociclib, palbociclib, and abe-
maciclib—have undergone development and clinical 
evaluation, demonstrating significant effectiveness and 
manageable toxicity profiles in cancer patients, particu-
larly in advanced breast cancer (BC) patients [2]. Phase 
III studies like MONALEESA-2 have shown that combin-
ing ribociclib with letrozole significantly extends progres-
sion-free survival (PFS) of BC patients compared to using 
letrozole alone, with results demonstrating a hazard ratio 
(HR) of 0.56 and a p-value of 3.29 × 10−6 [3].

Nevertheless, despite the enhanced prognosis from 
CDK4/6 inhibitor treatments, around 10% of tumors 
demonstrate initial resistance, resulting in poor outcomes 
[4]. The biomarkers related to resistance to CDK4/6 
inhibitors identified so far include regulators of the cell 
cycle, genes involved in oncogenic kinase pathways, and 

genes that influence the tumor microenvironment [5, 
6]. At present, the value of these biomarkers in improv-
ing drug sensitivity remains limited. Therefore, explor-
ing novel biomarkers to enhance and predict the efficacy 
of CDK4/6 inhibitors is of ongoing importance in clini-
cal practice [4, 7]. However, research on biomarkers that 
influence the anti-tumor activity of CDK4/6 inhibitors 
remains limited. This study aims to explore more poten-
tial biomarkers related to ribociclib, providing more pre-
clinical theoretical basis for enhancing patient treatment 
efficacy.

Non-coding RNAs (ncRNAs) offer a new dimension 
for exploring cancer mechanisms and devising thera-
peutic and preventive strategies [8]. Previous studies 
have shown that targeting miRNA can improve the 
resistance of CDK4/6 inhibitors [4]. In triple-negative 
BC (TNBC) cells, miR-29b-3p, negatively regulated by 
c-myc, further activates CDK6, leading to decreased 
sensitivity to palbociclib treatment [9]. miR-3613-3p 
induces cell senescence by directly targeting SMAD2 
and EZH2, mediating sensitivity of TNBC cells to Pal-
bociclib [10]. Additionally, in CDK4/6 inhibitor-resist-
ant BC cell lines, miR-432-5p was found to increase 
CDK6 expression by inhibiting the TGF-β pathway 
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[11]. However, there is scant investigation into the 
impact of lncRNA on the efficacy of CDK4/6 inhibitors 
and predictive role of lncRNA in identifying potential 
beneficiaries of CDK4/6 inhibitors in BC. This study 
innovatively utilized machine learning (ML) algo-
rithms to identify and screen lncRNAs that can predict 
the efficacy of ribociclib and to construct a model for 
screening beneficiary groups. Additionally, through cel-
lular and animal experiments, this research elucidated 
the mechanisms by which the novel biomarker RERE-
AS1 regulates the sensitivity to ribociclib, providing a 
theoretical basis for clinical research and future medi-
cal decision-making.

Materials and methods
Prediction of half‑maximal inhibitory concentration (IC50) 
values for ribociclib
We obtained transcriptome data and clinicopathologi-
cal factors and survival data of patients with cancers 
through the Cancer Genome Atlas (TCGA) database. 
The raw data was then processed by converting the 
counts into transcripts per million and normalizing 
these values using the formula log2 (TPM + 1).

Utilizing the normalized transcriptome data of 
TCGA-BRCA along with the Genomics of Drug Sensi-
tivity in Cancer v2 (GDSC2) database, we determined 
the IC50 value of ribociclib for each BC patient by 
employing the “oncoPredict” R package. The “oncoPre-
dict” R package uses in vitro gene expression and drug 
sensitivity data to train models, which are then used to 
predict drug sensitivity in new gene expression datasets 
[12]. Using the R package “survminer”, we identified the 
optimal cutoff value for classifying patients into groups 
of drug sensitivity and insensitivity.

Screening of lncRNAs related to ribociclib
We utilized Spearman correlation analysis and the 
“limma” R package to identify lncRNAs associated with 
ribociclib. Differential analysis and prognostic analysis 
were further used to screen lncRNA. The random forest 
and lasso algorithms were employed utilizing the “ran-
domForest” and “glmnet” R packages, respectively, to 
identify the lncRNAs that are most critical for classifi-
cation or prediction. A Venn diagram was created using 
the “ggplot2” and “VennDiagram” R packages to display 
the overlap of lncRNAs that were identified using both 
random forest and lasso algorithms. The receiver oper-
ating characteristic (ROC) curve and area under the 
curve (AUC) value for the lncRNA data was conducted 
using the “pROC” package.

Construction and validation of artificial neural network 
model (ANNM)
Patients were randomly divided into training and vali-
dation sets at a 7:3 ratio using the “createDataPartition” 
function from the “caret” package. The “neuralnet” R 
package was utilized to build ANNM. The “NeuralNet-
Tools” R package facilitated the visualization and evalu-
ation of the constructed models, providing insights into 
their structure and performance. The accuracy of ANNM 
was assessed by employing ROC curve analysis, facili-
tated by the “pROC” package.

Correlation analysis of RERE‑AS1 with signatures of cancer 
hallmarks and clinical pathological characteristics
Cancer hallmark-related gene sets were compiled and 
analyzed using the “GSVA” package in R, with the 
“ssgsea” method set as the parameter [13]. Ultimately, the 
relationship between RERE-AS1 and the scores for can-
cer hallmarks was evaluated through Spearman correla-
tion analysis.

We used the R package “pheatmap” to generate a heat-
map illustrating the differences of clinical pathological 
characteristics between the high and low expression lev-
els of RERE-AS1. In addition, we analyzed the discrep-
ancies in RERE-AS1 expression between different T and 
pathological stages with the “stats” and “car” R package. 
Then, we visualized the results with box plots using the 
“ggplot2” package. To further explore clinical applica-
tion of RERE-AS1, we employed the “survival” and “rms” 
packages to construct nomograms and to plot calibration 
curves. The “ggDCA” package was used to perform deci-
sion curve analysis (DCA).

Construction of RERE‑AS1‑mediated ceRNA network
We obtained data on the interaction between lncRNAs 
and miRNAs from miRcode (http://​www.​mirco​de.​org/​
index.​php), targetscan (http://​www.​targe​tscan.​org/​vert_​
80/), and miRanda (www.​micro​RNA.​org) databases. 
Additionally, data on the interaction between miR-
NAs and mRNAs were acquired from miRWalk (http://​
129.​206.7.​150/) and the Encyclopedia of RNA Inter-
actomes (http://​starb​ase.​sysu.​edu.​cn/​index.​php) data-
bases. Finally, based on the results derived from these 
databases, we visualized the ceRNA interaction network 
using the software of CytoScape (version 3.9.1).

Functional enrichment analysis
We performed Gene Ontology (GO) functional enrich-
ment analysis and GO classification annotation for 
mRNA in the ceRNA network using the GO database 
(https://​www.​geneo​ntolo​gy.​org/), and “clusterProfiler” 
R package. This database was utilized to identify the 

http://www.mircode.org/index.php
http://www.mircode.org/index.php
http://www.targetscan.org/vert_80/
http://www.targetscan.org/vert_80/
http://www.microRNA.org
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http://starbase.sysu.edu.cn/index.php
https://www.geneontology.org/
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biological functions represented by enriched GO terms. 
Additionally, we utilized the “clusterProfiler” R package 
to conduct Gene Set Enrichment Analysis (GSEA).

Analysis of differentially expressed genes
We used transcriptome sequencing data of RERE-AS1 
overexpressing cell lines and control cell lines to obtain 
differentially expressed genes using the “limma” R 
package, and created a heatmap to visualize these genes 
employing the “pheatmap” package. Additionally, we 
utilized the “ggplot2” package to construct a volcano 
plot illustrating the upregulation and downregulation 
of differential genes.

Pan‑cancer analysis of RERE‑AS1
We used differential analysis to investigate the differ-
ence in expression levels of RERE-AS1 between nor-
mal and cancerous tissues. The “survival” package was 
employed to assess the prognostic role, employing both 
univariate Cox regression analysis and log-rank analy-
sis based on outcomes including overall survival (OS), 
recurrence-free survival (RFS), disease-specific survival 
(DSS), and PFS. The diagnostic value across different 
cancers was evaluated using ROC analysis.

Cell lines, cell culture, and transfection
Human breast cancer cell lines (T47D, MCF-7, 
BT474, SUM159PT, MDA-MB-231, MDA-MB-453, 
MDA-MB-468, BT-549, and Hs578T) along with the 
HEK293T cell line were acquired from Pricella Life Sci-
ence & Technology Co., Ltd (China). Cell lines such as 
MCF-7, MDA-MB-231, MDA-MB-453, MDA-MB-468, 
Hs578T, and HEK293T were propagated in Dulbecco’s 
Modified Eagle Medium (DMEM, Biological Indus-
tries), whereas T47D, BT474, SUM159PT, and BT-549 
were grown in Roswell Park Memorial Institute-1640 
(RPMI-1640, Biological Industries) medium. Each 
medium was supplemented with additional fetal bovine 
serum (Biological Industries) and penicillin/streptomy-
cin (Solarbio, China).

Human OE-RERE-AS1 lentivirus was obtained from 
GeneChem (China). MCF-7 cells underwent lentiviral 
infection at a multiplicity of infection (MOI) of 20, and 
MDA-MB-231 cells were infected at an MOI of 10. Len-
tivirus containing vector was used as a negative control 
for all cell infections. Transfection was carried out using 
HiTransG P transfection reagent (GeneChem, China), 
followed by treatment with puromycin-containing 
medium (MedChemExpress, USA) for one week to estab-
lish stable RERE-AS1 overexpressing BC cells.

Reverse transcription quantitative polymerase chain 
reaction (RT‑qPCR)
RNA was isolated using TRIzol reagent (TAKARA, 
Japan) and subsequently converted to cDNA with a 
reverse transcription kit from TAKARA (Japan). mRNA 
levels were quantified using the 2−∆∆Ct method, nor-
malized against the housekeeping gene GAPDH. The 
sequences of the PCR primers are listed in Additional 
file1: Table  S1. Additionally, nuclear and cytoplasmic 
fractions were separated using the Cytoplasmic and 
Nuclear RNA Purification Kit from Norgen Biotek Corp 
(Canada).

Tissue specimens
The frozen tissues from 20 cases of tumor specimens and 
13 cases of the non-tumoral surrounding tissue speci-
mens were used for RT-qPCR assay. All samples were 
stored at − 80 °C from the time of harvest. The study was 
approved by the Ethics Committee of Tianjin Medical 
University Cancer Institute and Hospital (bc20240081) 
and was conducted in accordance with the Declaration of 
Helsinki.

Cell viability assay
Cells were plated in 96-well plates at a density of 1000 
cells per well. Under light-protected conditions, 10 μL of 
Cell Counting Kit-8 (CCK-8) reagent (Solarbio, China) 
was added to each well, followed by light-protected incu-
bation in a cell culture incubator for 2 h. cell viability was 
measured by reading the absorbance at 450  nm using a 
microplate reader (Bio-Rad, USA). The concentration of 
ribociclib necessary to achieve a 50% inhibition of cell 
growth was determined using viability curves obtained 
from the CCK-8 assay.

Colony formation assay
A total of 1 × 103 cells were placed into each well of 6-well 
plates and grown for a period of 7 to 21 days. After vis-
ible clone formation, the culture medium was discarded, 
and the cells were fixed with 4% paraformaldehyde for 
15  min, stained with 1% crystal violet for 10  min, and 
then counted. These experiments were conducted in trip-
licate, with statistical significance determined by the Stu-
dent’s t-test.

5‑Ethynyl‑2′‑deoxyuridine (EdU) incorporation assay
15 × 104 cells were inoculated into a 12-well plate and cul-
tured overnight. Cells were added with 50 µM EdU rea-
gent (Beyotime, China), incubated in the incubator for 
2  h, fixed with 4% paraformaldehyde, and stained with 
594 azide. The nucleic acid was stained with Hoechst 
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33342. Capture images using an inverted fluorescence 
microscope (Olympus) and analyze staining results using 
ImageJ software.

Transwell assay
Migration and invasion experiments were conducted 
using 24-well plates with chambers (Corning, USA) 
with a pore size of 8 μm. In the invasion assay, the upper 
chamber was added with 200 μL of MCF-7 at a concen-
tration of 10 × 105 cells/mL and 200 μL of MDA-MB-231 
at a concentration of 5 × 105 cells/mL. In the migration 
assay, the upper chamber was loaded with 200 μL of 
MCF-7 at a concentration of 5 × 105 cells/mL and 200 μL 
of MDA-MB-231 at a concentration of 2.5 × 105 cells/mL. 
The lower chamber was filled with 600 μL of medium 
containing 20% serum. MCF-7 were cultured for 72 h and 
MDA-MB-231 cells for 12 h [14, 15]. Cells that migrated 
through the chambers were fixed with 4% paraformalde-
hyde and stained with 0.1% crystal violet. Ten random 
fields were captured using an inverted optical micro-
scope (Olympus), and cell numbers were quantified using 
ImageJ software.

Scratch test
Approximately 100 × 104 cells were seeded into each well 
of a 6-well plate and cultured overnight. Using a 20  µl 
pipette tip, scratches were made vertically across the con-
fluent cell layer at the bottom of the culture dish. After 
washing with PBS, images were captured under a micro-
scope. The scratches were photographed again at 24 and 
48  h after cultivation. The migration area of the cells 
was measured using both Adobe Photoshop and ImageJ 
software.

Western blot
Cell and tissue proteins were extracted using pre-pre-
pared RIPA buffer (Beyotime, Shanghai, China) sup-
plemented with proteinase and phosphatase inhibitors. 
Following protein denaturation, the cell lysates were 
subjected to electrophoresis on polyacrylamide gels 
(Epizyme, Shanghai, China). After electrophoresis, pro-
teins were transferred onto a nitrocellulose membrane 
(Millipore, Germany). The membrane was blocked with 
5% bovine serum albumin, Tris-buffered saline, and 0.2% 
Tween, and then incubated overnight at 4  °C with pri-
mary antibodies. This was followed by incubation with 
horseradish peroxidase-conjugated secondary antibodies 
(ZSGB-BIO, #ZB-2305 and ZB-2306) for 45 min at room 
temperature. The bands were visualized using the Immo-
bilon Western HRP Substrate (Millipore, Germany) and 
detected with an ImageQuant LAS4000 system (GE 
Healthcare Life Sciences). Details of the antibodies used 
are listed in Additional file1: Table S2.

Subcutaneous xenograft models
To establish an ex  vivo xenograft tumor model, we 
selected 16 NOD/ShiLtJGpt mice (NCG mice) from 
GemPharmatech Co., Ltd. (China) and divided them into 
two groups (control group and overexpression group). 
MDA-MB-231 cells were orthotopically inoculated into 
the abdominal mammary fat pad of 6-week-old female 
NCG mice, with each mouse receiving an injection of 
5 × 106 cells in suspension. Tumor volume was assessed 
weekly using digital calipers. At the conclusion of the 
animal experiments, euthanasia was performed on the 
mice, and tumor tissues were excised for weighing and 
photography. The mouse experiments were conducted 
in accordance with the protocol approved by The Animal 
Ethical and Welfare Committee of Tianjin Medical Uni-
versity Cancer Institute & Hospital.

Statistical analysis
Statistical analyses were conducted using Prism 9.5.1 and 
R software 4.2.2. The Spearman’s correlation test was 
employed to assess the relationships between numerical 
variables. Pairwise comparisons were made using Stu-
dent’s t-test. One-way analysis of variance (ANOVA) was 
utilized to identify differences among groups for each 
assay, with Tukey’s post hoc test applied to determine 
pairwise differences. p values less than 0.05 were consid-
ered significant.

Result
Identification of ribociclib‑related lncRNAs 
and construction of ANNM
The IC50 value of ribociclib for each BC patient was 
calculated using transcriptome data from TCGA and 
drug sensitivity data from GDSC. Subsequently, we 
divided all patients into ribociclib-sensitive and insen-
sitive groups (Fig.  1A). K–M curve and Log-rank test 
showed that the OS, DSS, DFI of the sensitive group 
was better than that of the insensitive group (Fig. 1B). 
The heatmap revealed that, alongside disparities in 
survival outcomes, variations in pathological stage 
and PAM50 subtype were evident between two groups 
(Fig.  1C). Subgroup analysis of the PAM50 subtype 
revealed that the luminal A subtype constituted the 
majority of patients in the sensitive group (54%), con-
trasting with the Basal subtype, which accounted for 
50% of the non-sensitive group (Fig. 1D). Through cor-
relation analysis, we identified 185 ribociclib-related 
lncRNAs, including 10 positively correlated lncR-
NAs and 175 negatively correlated lncRNAs (Fig. 1E). 
Thirteen of these lncRNAs exhibiting differential 
expression and prognostic value were included in the 
subsequent analysis (Additional file1: Table  S3,4). 
We employed random forest and lasso algorithms, 
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identifying 11 key lncRNAs (Fig.  1F–H). To predict 
and screen BC patients potentially benefiting from 
ribociclib therapy, we established an ANNM based on 
the training set using the neural network algorithm 
(Fig. 1I). ROC curves in both the training and test sets 
indicated the effective prediction of patient response 

to ribociclib therapy by ANNM, with AUC values 
of 0.833 (95% CI [0.793–0.868]) and 0.719 (95% CI 
[0.635–0.799]), respectively (Fig. 1J).
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Fig. 2  LncRNA RERE-AS1 enhances anti-tumor effect of ribociclib in BC cells. A Diagnostic value of 11 lncRNAs associated with ribociclib sensitivity, 
as determined by ROC analysis; B Differences in ribociclib IC50 values between patient groups with low- and high-expression of RERE-AS1; C 
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LncRNA RERE‑AS1 enhances the drug sensitivity of BC cells 
to ribociclib
ROC curves showed that RERE-AS1 had the highest 
AUC value (AUC = 0.805), indicating its highest diag-
nostic value in BC (Fig. 2A). Hence, we chose RERE-AS1 
for subsequent experiments to validate its correlation 
with the therapeutic response to ribociclib. Patients were 
stratified into high- and low-expression groups based on 
the median expression value of RERE-AS1. Significantly 
lower IC50 values were observed in the high-expression 
group compared to the low-expression group (p < 0.001, 
Fig. 2B). Further cellular experiments focused on verify-
ing the relationship between RERE-AS1 and the response 
to ribociclib treatment. First, Fig.  2C illustrates that 
MCF-7 and MDA-MB-231 showed lower expression 
levels of RERE-AS1 compared to other BC cell lines. 
Previous studies have indicated that these two cell lines 
harbor functional Rb1 protein and are responsive to ribo-
ciclib treatment [16]. Thus, RERE-AS1-overexpressed 
MCF-7 and MDA-MB-231 cells were developed to vali-
date the correlation between RERE-AS1 expression and 
the response to ribociclib treatment (Fig. 2D). The IC50 
values of ribociclib between the control and overexpres-
sion groups were investigated using the cell viability 
assays. The results indicated that, in MCF-7 cells, the 
IC50 values for the control and overexpressed groups 
were 36.45 μM and 28.24 μM, respectively. Similarly, the 
IC50 values for the control and overexpression groups 
were 47.71  μM and 35.95  μM, respectively. These find-
ings demonstrated that RERE-AS1 overexpression in 
BC cells significantly enhanced the anti-tumor efficacy 
of ribociclib in both MCF-7 and MDA-MB-231 cells 
(Fig.  2E). Furthermore, we treated BC cell lines in the 
control group and the RERE-AS1 overexpression group 
with different concentrations gradients of ribociclib (0, 
2.5, 5, 10 μM), and assessed the clonal forming ability and 
proliferation activity of BC cells through colony forma-
tion and EdU experiments. The findings indicated that 
RERE-AS1 overexpression significantly enhanced the 
inhibitory effect of ribociclib on the clonal formation and 
proliferation of BC cells across various drug concentra-
tions (Fig. 2F, G).

LncRNA RERE‑AS1 inhibits proliferation, invasion, 
and migration of BC cells
The correlation analysis between RERE-AS1 and signa-
tures of cancer hallmark revealed a negative association 
between RERE-AS1 and tumor proliferation signature as 
well as cell cycle-related signatures, including DNA rep-
lication, G2M checkpoint, and myc targets (Fig.  3A). In 
cellular experiments, CCK-8, colony formation, and EdU 
experiments all confirmed that overexpression of RERE-
AS1 significantly inhibited the proliferation activity of BC 
cell (Fig. 3B–D). The tumor xenograft mouse model indi-
cated that the RERE-AS1 overexpressing group exhib-
ited significantly reduced subcutaneous tumorigenicity 
compared to the control group, aligning with the findings 
from cellular experiments (Fig. 3E–G). In addition to the 
proliferative phenotype, we also found that it is involved 
in the invasion and migration phenotype. Transwell 
and scratch wound healing experiments also found that 
high expression of RERE-AS1 inhibited the invasion and 
migration ability of BC cells (Fig. 3H, I).

RERE‑AS1 regulates the malignant phenotype of BC cells 
through MER/ERK pathway
The biological mechanisms by which RERE-AS1 influ-
ences ribociclib sensitivity are still unknown. Determin-
ing cellular localization serves as an informative initial 
stage in characterizing the potential functions of lncR-
NAs [17]. Therefore, we initially fractionated nucleo-
plasm and cytoplasm fractions to extract RNA from the 
nucleus and cytoplasm of BC cells. The RT-qPCR assay 
demonstrated that the cellular distribution pattern of 
RERE-AS1 mirrored that of GAPDH (Additional file  1: 
Figure S1A), indicating that RERE-AS1 primarily func-
tions in the cytoplasm. CeRNA networks are classi-
cal molecular interaction networks in which lncRNAs 
participate in the cytoplasm, so we employed mircode, 
targetscan, and miranda databases to detect miRNAs 
bound by RERE-AS1. Furthermore, utilizing miRWalk 
and ENCORI databases, we identified mRNAs targeted 
by miRNA and depicted the ceRNA network using 
Cytoscape software (Additional file1: Figure S1B). The 
result of GO showed that these mRNAs were enriched in 

(See figure on next page.)
Fig. 3  Overexpression of lncRNA RERE-AS1 suppresses malignant phenotypes of proliferation, invasion, and migration in BC cells. A Heatmap 
illustrating the correlation between RERE-AS1 expression and signatures of cancer hallmarks; B–D Experiments including CCK8 assays, colony 
formation, and EdU assays demonstrated the impact of RERE-AS1 overexpression on the proliferative activity of BC cells. E–G MDA-MB-231 cells 
with stable overexpression RERE-AS1 and control cells were subcutaneously injected into the mammary fat pads of NCG mice. Tumor volumes 
were measured over time as depicted, and tumors were excised and weighed at the end of the experiment; H, I Transwell and wound healing 
assays showing the effects of RERE-AS1 overexpression on the invasion and migration capabilities of BC cells. *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001
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CDK enzyme activity regulation and dephosphorylation 
regulation (Additional file1: Figure S1C).

Prior research has indicated the crucial involvement of 
the MEK/ERK and PI3K/AKT pathways in modulating 
CDK4/6 drug sensitivity [2]. To further investigate the 
signaling pathways influenced by RERE-AS1 on riboci-
clib treatment efficacy, the transcriptome of RERE-AS1 
overexpression cells was compared to that of control 
group. The results revealed 3141 upregulated and 3036 
downregulated genes in the RERE-AS1 overexpres-
sion group compared to controls (Fig.  4A). The GSEA 
analysis reveals a significant enrichment of RERE-AS1 
in the MAPK signaling pathway (Fig.  4B). Western blot 
showed that the phosphorylation levels of MEK and 
ERK were significantly downregulated in the RERE-AS1 
overexpression BC cells, and treatment with the MAPK 
pathway activator C16-PAF partially reversed the down-
regulation trend (Fig.  4C). Moreover, CCK-8, colony 
formation, and EdU assays demonstrated that the pro-
liferative activity of RERE-AS1 overexpressing cells was 
reversed following C16-PAF treatment (Fig.  4D–F). 
Scratch wound healing and transwell assays indicated 
that the inhibition of tumor cell invasion and migration 
by RERE-AS1 overexpression could be reversed by C16-
PAF (Fig. 4G, H). Based on these results, RERE-AS1 may 
affect CDK4/6 drug sensitivity via ceRNA network and 
MEK/ERK pathway.

Correlation analysis of RERE‑AS1 with clinical pathological 
factors
To explore the relationship between RERE-AS1 expres-
sion and clinicopathological characteristics in BC 
patients, we assessed the differences in factors such as 
age, T, N, M stages, and pathological stages between 
groups with high and low RERE-AS1 expression. The 
heatmap showed significant differences in T and patho-
logical stage (p < 0.01, Fig.  5A). Furthermore, subgroup 
analysis of T and pathological stage showed that larger 
local tumors and higher pathological stage were associ-
ated with lower expression of RERE-AS1 (Fig.  5B). To 
further validate these results, BC tissues (n = 20) and 
normal breast tissues (n = 13) were obtained from our 
hospital for RT-qPCR experiments. As shown in Fig. 5C, 

compared to normal breast tissues, RERE-AS1 was rela-
tively low-expressed in BC tissues, and its expression 
was lower in BC patients with higher T staging. We cre-
ated a nomogram that combines RERE-AS1 with clinical 
pathological factors, enabling the prediction of 1, 3, and 
5-year OS rates for BC patients (Fig. 5D). The calibration 
curve highlighted the accuracy of the nomogram, with a 
closer agreement between the predicted and actual sur-
vival curves indicating effective calibration (Fig. 5E). The 
ROC curve demonstrated that the nomogram exhibited 
the highest diagnostic value compared to other clinico-
pathological factors, with an AUC of 0.739 (Fig.  5F). 
DCA indicated that, in comparison to T, N, and stage, 
the nomogram provided a higher clinical net benefit 
(Fig. 5G).

Pan‑cancer analysis of RERE‑AS1
We conducted a comprehensive analysis using pan-can-
cer transcriptomic data and clinical prognostic infor-
mation from TCGA to explore the value of RERE-AS1 
in cancer pathogenesis, diagnosis, and prognosis. In 
the differential analysis, the unpaired analysis results 
showed abnormal expression of RERE-AS1 in most can-
cers (Fig.  6A). Paired differential analysis indicated that 
RERE-AS1 was significantly elevated in kidney renal clear 
cell carcinoma (KIRC) compared to paired normal tis-
sues, but markedly reduced in breast invasive carcinoma 
(BRCA), colon adenocarcinoma (COAD), kidney chro-
mophobe (KICH), lung adenocarcinoma (LUAD), lung 
squamous cell carcinoma (LUSC), thyroid carcinoma 
(THCA), and uterine corpus endometrial carcinoma 
(UCEC, Fig.  6B). These results suggest that RERE-AS1 
may mainly exert anti-cancer effects in tumors. We fur-
ther explored the prognostic value of RERE-AS1 in dif-
ferent types of cancer through univariate Cox regression 
and log-rank test analyses of four prognostic indicators, 
including OS, PFS, DFS, and DSS. As shown in Fig. 6C, 
RERE-AS1 has prognostic value in adrenocortical car-
cinoma (ACC), bladder urothelial carcinoma (BLCA), 
BRCA, cholangiocarcinoma (CHOL), head and neck 
squamous cell carcinoma (HNSC), KIRC, prostate ade-
nocarcinoma (PRAD), and skin cutaneous melanoma 
(SKCM), among which BRCA, PRAD, and SKCM show 

Fig. 4  LncRNA RERE-AS1 mediates malignant phenotype and regulates the anti-tumor activity of Ribociclib in BC via the MEK/ERK signaling 
pathway. A Transcriptome sequencing was conducted on control and RERE-AS1 stably overexpressed cell lines, with heatmaps and volcano plots 
showing the differential gene expression between the two groups. B GSEA of differentially expressed genes to investigate potential signaling 
pathways involving RERE-AS1. C Western blot experiments confirmed the effect of RERE-AS1 overexpression on the phosphorylation levels 
of MEK/ERK, and the reversal of this effect by the MAPK signaling pathway activator C16-PAF. D–F CCK-8, colony formation, and EdU assays verified 
that the tumor proliferation suppression mediated by overexpressed RERE-AS1 could be reversed by the MAPK pathway activator C16-PAF. G–H 
Scratch healing and Transwell assays revealed that C16-PAF could reverse the effects on tumor invasion and migration regulated by overexpressed 
RERE-AS1. *p < 0.05, ***p < 0.001, ****p < 0.0001

(See figure on next page.)
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Fig. 4  (See legend on previous page.)



Page 12 of 16Huang et al. Journal of Translational Medicine         (2024) 22:1052 

the strongest correlation between RERE-AS1 and prog-
nostic indicators. BRCA is the only type of cancer in 
which three outcomes (OS, PFS, and DSS) are closely 
linked with RERE-AS1, highlighting the significant role 
of RERE-AS1 in impacting the survival outcomes of BC 
patients. We also performed ROC curve analysis to eval-
uate the clinical diagnostic value of RERE-AS1. As shown 
in the bubble plot, RERE-AS1 has significant potential 
clinical diagnostic value (AUC > 0.7) in patients with 
BRCA, cervical squamous cell carcinoma and endocer-
vical adenocarcinoma (CESC), glioblastoma multiforme 
(GBM), KICH, pheochromocytoma and paraganglioma 
(PCPG), SKCM, and thymoma (THYM, Fig. 6D).

Discussion
Current therapeutic approaches for BC predominantly 
encompass endocrine therapy, targeted therapy, immu-
notherapy, surgical interventions, and various other 
systemic treatment modalities [18]. CDK4/6 inhibitors, 
in recent years, have emerged as novel targeted therapy 
drugs for BC, providing new treatment options and 
improving prognosis for patients with advanced BC [7]. 
Although the survival rate of BC is continuously improv-
ing, drug resistance issues including CDK4/6 inhibitors 
are currently significant barriers to further improving 
patient prognosis [19, 20]. This study innovatively uti-
lizes ML algorithms based on transcriptome data from 
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the perspective of ncRNA to screen for lncRNAs related 
to the efficacy of ribociclib, and constructs a lncRNA-
related ANNM to distinguish potential treatment-ben-
eficial populations. Furthermore, we identified a novel 
biomarker, lncRNA RERE-AS1, which has demonstrated 
potential for predicting and promoting the efficacy of 
ribociclib, as well as serving as a diagnostic and prognos-
tic marker for BC.

LncRNAs are known to serve as biomarkers for pre-
dicting and monitoring anti-tumor drug efficacy and as 
important targets for reversing drug resistance [4, 10, 21, 
22]. For instance, the study by Shi et  al. demonstrated 
that lncRNA DILA1 inhibits the phosphorylation of cyc-
lin D1 and preventing its degradation, thereby reversing 
tamoxifen resistance and serving as a specific therapeutic 
target for treating BC [23]. However, the investigation of 
lncRNA biomarkers associated with CDK4/6 inhibitors 
remains relatively unexplored. In this study, we used ML 
algorithms, based on RNA sequencing data, to identify 
11 lncRNAs associated with ribociclib sensitivity, offer-
ing new perspectives for the exploration of biomarkers 
for CDK4/6 inhibitors. Furthermore, our findings indi-
cate that lncRNA RERE-AS1 enhances the sensitivity of 
BC cells to ribociclib. This conclusion is substantiated 
by cell viability and proliferation assays conducted on 
MCF-7 and MDA-MB-231 cells overexpressing RERE-
AS1. LncRNAs perform distinct functions depending 
on their subcellular localization. LncRNAs situated in 
the nucleus can modulate gene transcription either in 
cis or trans, whereas those located in the cytoplasm are 
primarily engaged in the regulation of ceRNA networks 
[17]. In this study, nucleoplasmic separation experiments 
revealed that RERE-AS1 is localized primarily within 
the cytoplasm, thus, we constructed a ceRNA network 
and performed functional enrichment analysis, reveal-
ing that RERE-AS1 is involved in CDK enzyme activity 
regulation and dephosphorylation regulation, indicating 
its important role in regulating CDK4/6 inhibitors sensi-
tivity. The mechanisms underlying resistance to CDK4/6 
inhibitors primarily encompass two domains: cell cycle-
related processes and upstream signaling pathways, 
notably the MEK/ERK and PI3K/AKT/mTOR pathways. 
Previous study has demonstrated that the MEK/ERK 
pathway influences the sensitivity of CDK4/6 inhibi-
tors by modulating cyclin D1 expression and regulating 
the cyclin D-CDK4/6-pRb axis [2]. Western blot, gain-
of-function experiments, and rescue experiments con-
ducted in our study suggest that RERE-AS1 negatively 
regulates the MEK/ERK pathway. Therefore, RERE-AS1 
might enhance the sensitivity of BC to ribociclib through 
ceRNA network and the MEK/ERK pathway. Currently, 
the primary strategies to improve anti-tumor drug 
resistance encompass optimizing drug delivery systems, 

developing novel pharmaceutical agents, and employing 
combination drug therapies [24–26]. Several studies have 
reported that combining CDK4/6 inhibitors with MEK/
ERK pathway inhibitors significantly improves anti-
tumor efficacy [27–29]. Thus, RERE-AS1 is a valuable 
predictor and promotor of ribociclib treatment efficacy. 
In the future, high-throughput clinical sequencing can 
help identify potential beneficiaries, enhancing precision 
medicine in clinical practice [24].

The artificial intelligence models utilized for predict-
ing cancer patient responses to anti-tumor drug therapy 
predominantly leverage genomics, radiomics, and pro-
teomics data. Nevertheless, the breadth of research in 
this domain remains constrained. In signet-ring cell 
carcinoma, Li, Cong, et al. developed a CT-based artifi-
cial intelligence model that demonstrated high efficacy 
in predicting benefits from adjuvant chemotherapy for 
patients [30]. In lung cancer, Wu, Liangliang, et al. iden-
tified key biomarkers, IP-10 and IL-8, through high-
throughput sequencing of peripheral blood samples and 
subsequently constructed a model based on the IP-10/
IL-8 ratio to predict responses to combined immuno-
therapy and chemotherapy [31]. Additionally, a study has 
reported using the GDSC database combined with ML, 
to create personalized logic models for BRAF treatment 
responses in melanoma and colorectal cancer [32]. This 
study proposes an innovative lncRNA-related ANNM for 
predicting the treatment response to CDK4/6 inhibitors 
in BC patients by integrating data from the GDSC and 
TCGA databases and employing an ANN algorithm. The 
model demonstrated consistent and robust predictive 
efficacy in both the training and validation sets, indicat-
ing its potential utility in identifying patient groups likely 
to benefit from CDK4/6 inhibitor therapy in adjuvant 
clinical settings. In the future, the integration of compu-
tational models with high-throughput clinical sequenc-
ing data can provide new insights and methodologies for 
advancing precision medicine.

The widespread and varied functions of lncRNAs are 
essential in the initiation and progression of cancer [33]. 
For example, in BC, LINC00115 promotes the stemness 
and metastasis of chemotherapy-resistant BC stem-like 
cells through the SETDB1/PLK3/HIF1α pathway [34]. 
In this study, the transcriptomic data of RERE-AS1 over-
expressing cell lines and their parental cells and results 
of cellular assays suggest that RERE-AS1 mediates the 
transformation of malignant phenotypes including prolif-
eration, invasion, and migration via downregulating the 
MEK/ERK pathway. Xenograft tumor experiments veri-
fied that overexpression of RERE-AS1 restrained tumori-
genesis. The extensive expression, tumor-specific nature, 
and stability of lncRNAs are crucial for cancer prognosis, 
predicting treatment efficacy, and therapy [35]. Our study 
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demonstrated that compared to normal breast tissue, 
RERE-AS1 is downregulated in BC tissues, and its high 
expression is associated with smaller tumors and lower 
pathological stages. To apply RERE-AS1 in clinical prac-
tice, we constructed a nomogram based on RERE-AS1 
and clinical pathological factors to predict patient prog-
nosis. Furthermore, pan-cancer analysis suggests that 
compared to other tumors, RERE-AS1 exhibits expres-
sion specificity, significant prognostic and diagnostic 
value in BC. In summary, these findings underscore the 
critical role of RERE-AS1 in BC, suggesting its potential 
as a biomarker to enhance clinical diagnosis and outcome 
prediction.

This study has the following limitations. Firstly, the 
GDSC database presently does not contain sensitiv-
ity data for abemaciclib, thereby precluding any further 
speculation on whether RERE-AS1 similarly enhances 
the efficacy of all CDK4/6 inhibitors. Secondly, the 
extremely low expression levels of RERE-AS1 in BC 
cell lines constrain the investigation into the effects of 
RERE-AS1 knockdown on ribociclib efficacy. Finally, the 
potential clinical utility of RERE-AS1 requires further 
validation through studies involving a large cohort of 
clinical samples.

Conclusions
This study uses ML algorithms to identify lncRNAs 
linked to ribociclib efficacy and develops an ANNM to 
aid in selecting the most beneficial patient population. 
Research indicates that RERE-AS1 serves as a predictive 
biomarker for the efficacy of ribociclib and as a diagnos-
tic and prognostic marker for BC. Upregulating RERE-
AS1 reduces MEK/ERK phosphorylation, suppressing 
cancer malignancy and potentially enhancing ribociclib 
sensitivity.
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