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Abstract 

Background Rapid innovation and new regulations lead to an increased need for post‑marketing surveillance 
of implantable devices. However, complex multi‑level confounding related not only to patient‑level but also to sur‑
geon or hospital covariates hampers observational studies of risks and benefits. We conducted parametric and plas‑
mode simulations to compare the performance of cardinality matching (CM) vs propensity score matching (PSM) 
to reduce confounding bias in the presence of cluster‑level confounding.

Methods Two Monte Carlo simulation studies were carried out: 1) Parametric simulations (1,000 iterations) 
with patients nested in clusters (ratio 10:1, 50:1, 100:1, 200:1, 500:1) and sample size n = 10,000 were conducted 
with patient and cluster level confounders; 2) Plasmode simulations generated from a cohort of 9981 patients admit‑
ted for pancreatectomy between 2015 to 2019 from a US hospital database. CM with 0.1 standardised mean differ‑
ent constraint threshold (SMD) for confounders and PSM were used to balance the confounders for within‑cluster 
and cross‑cluster matching. Treatment effects were then estimated using logistic regression as the outcome model 
on the obtained matched sample.

Results CM yielded higher sample retention but more bias than PSM for cross‑cluster matching in most scenarios. 
For instance, with ratio of 100:1, sample retention and relative bias were 97.1% and 26.5% for CM, compared to 82.5% 
and 12.2% for PSM. The results for plasmode simulation were similar.

Conclusions CM offered better sample retention but higher bias in most scenarios compared to PSM. More research 
is needed to guide the use of CM particularly in constraint setting for confounders for medical device and surgical 
epidemiology.
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Key messages 

‑ Cardinality matching (CM) generally surpassed propensity score matching (PSM) in sample retention across most 
simulated scenarios.

‑ Despite CM retaining more sample, PSM gave slightly less biased treatment estimates, in most scenarios.

‑ Within cluster CM should not be used for data with small cluster sizes.

Introduction
Observational studies using routinely collected data 
from health and insurance registries are often used for 
comparative safety or effectiveness studies when rand-
omized control trials are unfeasible or unethical [1, 2]. 
One key challenge for observational studies is the pres-
ence of residual confounding, arising from imbalances in 
patient, physician (e.g. surgeon), and hospital features [3] 
between treatment groups. This confounding can intro-
duce bias in treatment effect estimation studies. There-
fore, it is essential to apply statistical methods to balance 
the confounding covariates to avoid biased treatment 
estimates [4].

Propensity score matching (PSM) [5, 6] is a widely 
used method used in practice to balance the confound-
ers between treatment groups in observational stud-
ies. However, PSM does not always ensure the desired 
balance on the original covariates or give good sample 
retention. These limitations can lead to bias and higher 
standard error for the estimation of treatment effects [7, 
8]. In response, cardinality matching (CM) has been pro-
posed as a novel method to address these issues [9]. CM 
uses integer programming [10, 11] to identify the largest 
matched sample that satisfies pre-established criteria for 
covariate balance. Unlike PSM, which achieves covariates 
balance through matching on the propensity scores, CM 
matches directly on the original covariates [12]. While 
several studies have demonstrated the advantage of 
CM over PSM in terms of covariate balance and sample 
retention [9, 13, 14], its application in observational stud-
ies with cluster-level confounding, particularly common 
in medical device and surgical epidemiology studies [15], 
has not been extensively explored. In these studies, fac-
tors such as surgeon experience and the hospital setting 
can influence both treatment allocation and outcomes 
[16].

This paper presents two different simulation studies 
comparing the accuracy and precision of treatment effect 
estimates obtained from CM and PSM. We specifically 
focus on two-level clustered data and binary treatment 
outcomes, which are typical in observational studies 
related to medical devices and surgical epidemiology.

Methods
Monte Carlo simulation data generation process
The simulation settings were based on previous simula-
tion studies with clustered data [17, 18], but with param-
eters chosen to mimic the structure of a clinical dataset 
described below. We simulated the datasets via Monte 
Carlo simulations [19] with a fixed sample size of 10,000 
individuals to represent the patients, binary treatment 
allocation (T), and binary outcome (Y). The datasets 
contain seven patient-level covariates (× 1 to × 7), two 
cluster-level covariates (z1 and z2 to represent potential 
hospital-level or surgeon-level confounders), and a cross-
level interaction term between the individual and cluster-
level confounders, which were simulated for each patient. 
Among the individual covariates simulated, 5 were con-
founders (× 1- × 5), one (× 6) was an instrumental variable 
associated with the treatment but not with the outcome 
(other than through the treatment), and × 7 was a risk 
factor associated with the outcome but not with treat-
ment [20]. Both cluster-level covariates (z1 and z2) were 
generated as confounders, associated with treatment and 
outcome. The cluster and patient-level covariates were 
simulated from different probability distributions to 
reflect different covariates observed in real-world medi-
cal devices or surgical data.

Twenty different scenarios were simulated to test the 
performance of the proposed cardinality matching bal-
ance criteria strategy. The scenarios were generated by 
varying the cluster structure of the data and the effect 
size of the cluster level confounders (z1 and z2), ranging 
from negligible with odds ratio = 1.01 to odds ratio = 2.5 
to resemble strong cluster level confounding. Five dif-
ferent cluster structures were simulated with different 
cluster numbers (m) and average patients per cluster (n) 
(m = 10, n = 1000), (m = 50, n = 200), (m = 100, n = 100), 
(m = 200, n = 50) and (m = 500, n = 20). Patients per clus-
ter (n) were randomly sampled from the Poisson distri-
bution with mean n for each cluster within the dataset. 
Table  1 gives the 20 different simulation data scenarios 
generated. Figure 1 gives the causal diagram of the sim-
ulation covariates and the simulations are run for 1000 
repetitions.
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Plasmode simulation data generation process
Plasmode simulation [21–23] is a method that generates 
synthetic data by re-sampling from pre-selected observed 
covariates of a real-world dataset. The re-sampling of 
covariates was performed using the bootstrap with 
replacement method [24]. The exposure and outcome 
of plasmode simulation data are generated using the 
investigators’ pre-specified re-sampled covariates from 
the real-world data cohort and choice of true treatment 
effects. Hence, simulation data generated using plasmode 

simulation will preserve the data structure and covariates 
of the real-world data cohort from which it generated 
the simulated data. The covariates in plasmode simula-
tion are more closely matched to real-world data than the 
Monte Carlo simulation. However, plasmode simulation 
lacks the ability to change its data structure.

The real-world data cohort we generated in our plas-
mode simulation were from the US Premier Healthcare 
Database, an all-payer hospital database collected from 
among over 1000 hospitals in the US [25]. The Premier 

Table 1 The table gives the generation distribution, effects on treatment allocation and effects on treatment outcome for covariates 
generated in the simulations. OR = odd ratio

Covariates Description Effects on treatment 
allocation

Effects on treatment 
outcome

Generation distribution

Cluster structure (m,n) m = number of cluster 
in the data
n = average number 
of patients per a cluster

N/A N/A m = fixed number 
with 10,50,100,200,500
n = poisson(1000,200,
100, 50, 20)

z1,z2 Cluster‑level confounders z1 = z2 = 0.4055 (OR = 1.5) z1 = z2 = [0.01,0.2231,0.4055,
0.9163]
 ~ [OR = 1.01,1.25,1.5,2.5]

z1 = normal(0,1), z2 = Ber‑
noulli(0.5)

 × 1 to × 5 Individual level confounders [× 1, × 2, × 3, × 4] = [0.35,0.4,0.
45,0.55]

[× 1, × 2, × 3, × 4] = [0.35,0.4, 
0.45,0.55]

[× 1, × 2, × 3] = Bernoulli 
([0.4,0.45,0.5])
 × 4, × 5 = normal(0,1)

 × 6 Individual level risk factor 0 0.5 Bernoulli( 0.5)

 × 7 Individual level instrumental 
variable

0.5 0 Bernoulli( 0.5)

z1* × 1 Cross level interaction term 0.4055 (OR = 1.5) 0 z1* × 1

Fig. 1 This diagram gives the causal relationship between the covariates in the simulation, the arrow indicates causes. For example, × 1‑ > Y 
implies × 1 causes Y
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Healthcare Database includes information from hospi-
tals’ electronic health records, including diagnoses, pro-
cedures, patient characteristics, and hospital features. 
The cohort included 9981 patients aged 18 or over that 
were admitted for pancreatectomy from 2015–2019. The 
patients’ covariates of the simulated data were generated 
based on age, sex, and Charlson comorbidity index. The 
cluster of the simulated data was identified using the hos-
pital ID. The cohort had 341 unique hospital IDs, with an 
average of 30 patients per hospital. The cluster covariates 
were re-sampled from hospital-related covariates such 
as type (teaching or not teaching), hospital size (500 + or 
500 fewer beds), and the hospital’s yearly pancreatectomy 
volumes etc. Supplementary figure s1 and s2 provides the 
full list of covariates used in the plasmode simulation. 
The plasmode simulation is also run for 1000 repetitions.

Propensity score matching
For propensity score matching, the propensity scores 
were estimated using logistic regression. Then the 
matched sample was selected using 1:1 ratio nearest-
neighbour without replacement matching with a propen-
sity score caliper of 0.2 standard deviations of the logit 
of the propensity score. This set-up for propensity score 
matching was chosen based on previous literature [2, 
26]. Previous research has shown that a nearest-neigh-
bour match with a caliper gives better results than other 
popular matching methods such as optimal matching or 
nearest-neighbour matching without a caliper in terms 
of covariate balance and bias reduction for treatment 
estimate [27]. The caliper width for propensity score 
matching was set at 0.2 standard deviations of the logit 
of the propensity score. This setting was used because it 
was shown in a simulation study by Peter Austin [2] that 
it tends to be optimal in terms of sample retention and 
bias reduction for treatment estimates. Three different 
propensity score matching strategies were implemented 
using the same matching algorithm described above. 1.) 
Cross-cluster matching with only the patient-level con-
founders included as covariates in the propensity score 
model. This is used as the reference and did not include 
any cluster-level information in the matching. 2) Cross-
cluster matching, with both patient and cluster level 
covariates included in the propensity score model. 3) 
Within-cluster matching, with patient-level confound-
ers included as covariates in the propensity score model. 
Since patients within the same cluster would share clus-
ter-level covariates, including cluster-level confounders 
as covariates in the propensity score model for within-
cluster matches is unnecessary. The selection of these 
matching methods was informed by Bruno Arpino 
et  al.’s [28] simulation study, which found that within-
cluster matching is optimal for larger clusters, while 

cross-cluster matching is preferable for datasets with 
smaller clusters.

Cardinality matching
Cardinality matching was first proposed by Zubizarreta 
et  al. [12]. It is a matching method that finds the maxi-
mum subset of patients in the treated and control groups 
that satisfy a set of prespecified covariates balance cri-
teria between the treated and control group set by the 
investigator. The matching is done directly on the origi-
nal covariates and is achieved by solving a linear integer 
programming problem to maximise the size of the post-
matched sample. Table 2 describes the steps involved in 
cardinality matching.

In this study, two cardinality matching strategies were 
implemented, one for within-cluster matching and one for 
cross-cluster matching. For cross-cluster matching, both 
the cluster-level and patient confounders were used as 
matching covariates constraints to define the balance cri-
teria of the post-matched sample. Only the patient-level 
confounders were included as matching constraints for 
within-cluster match. To implement within-cluster match 
with cardinality matching, we first subset the data by clus-
ter and then apply the same cardinality matching algo-
rithm for each cluster to find the balanced sample. Hence 
the covariates selected for within cluster and across cluster 
match were the same between the propensity score match-
ing and cardinality matching. All the covariates’ constraints 
were set using standardised mean difference (SMD) [29] 
with a maximum 0.1 SMD of matching covariates between 
the two study groups. 0.1 SMD were used as the post-
match sample balance criteria because this is the standard 
threshold and measurement to determine whether covari-
ates balance has been achieved for healthcare observational 
studies [30]. Hence, using 0.1 SMD as a matching con-
straint in cardinality match would always return a balanced 

Table 2 Steps involves in cardinality matching to find match 
sample for treatment effect estimation

Steps involves in cardinality matching

1. Specify the covariate balance criteria for the post match sample. 
There are three elements to specify in the balance criteria
a) The covariates to balance in the post match sample 
between the treated and control group (e.g. all the confounders)
b) A distance statistic for the balance criteria to measure the covariates 
balance (e.g. standardised mean difference)
The maximum limit in terms of the distance statistic specified in b) 
for the post match sample to satisfy

2. A matched sample with the largest possible sample size that sat-
isfies the covariate balance criteria set in step 1 will be found using 
linear integer programming
3. The matched sample from step 2 will be rematched to minimise 
the covariate distances specified in step 1 between the treated and 
control groups.
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post-match sample if it is feasible. Below is a list of all the 
methods compared in this study.

(Ref ) – Propensity score cross cluster match with 
patient-level confounders included as covariates in 
the propensity score model.
(PS Across) – Propensity score cross cluster match 
with both patient-level and cluster-level confounders 
included as covariates in the propensity score model.
(PS Within) – Propensity score within cluster match 
with patient-level confounders included as covariates 
in the propensity score model.
(CM Across) – Cardinality matching cross cluster 
match with covariates constraint set on both patient-
level and cluster-level confounders.
(CM within) – Cardinality matching within cluster 
match with covariates constraint set on patient level 
confounders.

Treatment effect estimation
For each of the scenarios, the average treatment effect on 
treated (ATT) was estimated using a logistic regression 
outcome model proposed by Setoguchi et  al. [31]. The 
treatment outcome was regressed on the treatment allo-
cation in the matched sample found with the propensity 
score and cardinality matching methods described above.

Assessment of simulation results
The precision and accuracy of the estimated treatment 
effects for both propensity score matching and cardi-
nality matching were compared. Using average absolute 
relative bias (Rbias), empirical standard error (EmpSE), 
95% confidence intervals model coverage (95% Coverage) 
and the Monte Carlo standard error (mcse) of the 1000 
repetitions for each simulated scenarios as defined in the 
guidance literature on simulation studies by Morris et al. 
[32]. Moreover, the average post-matched sample reten-
tion of the 1000 repetitions (r) for each simulated sce-
nario was also measured and evaluated for the methods 
compared. The post-match sample retention is expressed 
as a percentage and is defined as

Since all the methods compared in this study are 1:1 
without replacement matched, the maximum possible 
post-match sample size is two times the pre-matched 
sample’s largest treatment group.

All analyses were performed in R version 4.3.1, with the 
Monte Carlo simulation data generated with the “sim-
study” package [33] and the Plasmode simulation data 

(Post matched sample size)/(Maximum possible post matched sample size) × 100

generated with the “Plasmode” package [23]. The PSM 
and CM were carried out with the “Matchit” package 
with the “gurobi” solver [34].

Results
Figure  2 presents the relative bias in the Monte Carlo 
simulation. It shows that within-cluster matching results 
in lower bias compared to cross-cluster matching in sce-
narios with large cluster sizes. However, PS-Across gives 
the lowest bias in smaller cluster size scenarios (e.g., 
m = 500, n = 20). When comparing CM and PSM for 
within-cluster matching, CM tends to give comparable or 
slightly lower bias. In contrast, for cross-cluster match-
ing, CM consistently shows higher bias than PSM across 
all scenarios. Figure 3 also shows a similar trend in model 
coverage and bias; methods with the highest bias gener-
ally have the lowest model coverage. The results are also 
showed in Tables 3 and 4.

As Fig. 4 shows, the empirical standard error (EmpSE) 
is lower for within-cluster matching than for cross-
cluster matching in large cluster size scenarios (m = 10, 
n = 1000). Conversely, in smaller cluster size scenar-
ios (m = 500, n = 20), EmpSE is lower for cross-cluster 
matching than for within-cluster matching. The EmpSE 
differences between CM and PSM are minimal and rela-
tively consistent.

Regarding sample retention as shown in Fig.  5 in the 
Monte Carlo simulation, CM outperforms PSM in both 
within-cluster and cross-cluster matching.

Figure 6 provides insights into the relative bias, EmpSE, 
model coverage, and sample retention in the plasmode 
simulation. Most trends in the plasmode simulation align 
with those observed in the Monte Carlo simulation. For 
instance, the bias for CM in cross-cluster matching is 
higher than that for PSM, whereas CM also shows higher 
sample retention in cross-cluster matching. However, 
CM’s within-cluster matching sample retention is sig-
nificantly lower in the plasmode simulation compared to 
other methods, a trend not observed in the Monte Carlo 
simulation.

Discussion
This study has several important findings regarding the 
performance of cardinality matching compared to pro-
pensity score matching. First, the sample retention for 
within-cluster match CM was higher than PSM in almost 
all simulated scenarios. However, PSM gave higher sample  
retention than CM in the plasmode simulation and  
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similar sample retention in the smallest cluster size of the 
parametric simulation. A possible explanation for higher 
sample retention for PS-within vs CM-within in the plas-
mode simulation is when the match is limited to within 
the cluster, patient-level information is not shared across 
clusters in CM. In contrast, in PSM, the patient-level 
information was still shared across clusters through the 

PS model. Hence it is less likely for CM to find a feasible 
solution within a cluster when the cluster size is small, 
and as a result, all the patients within the cluster will be 
excluded from the post-match sample. Nevertheless, in 
scenarios when CM offered better sample retention than 
PSM when matched within the cluster, the precision and 
accuracy of the treatment estimate was generally better 

Fig. 2 Average relative bias for different matching strategy for all the data scenario tested in the monte Carlo simulation study. E.g. Ref = Propensity 
score cross cluster match with patient‑level confounders included as covariates in the propensity score model, PSM‑Across = Propensity score 
cross cluster match with both patient level and cluster level confounders, PSM‑Within = Propensity score within cluster match with patient‑level 
confounders included as covariates in the propensity score model, CM‑Across = Cardinality matching cross cluster match with covariates constraint 
set on both patient‑level and cluster‑level confounders, CM‑Within = cardinality matching within cluster match with covariates constraint set 
on patient level confounders, (XX,XX) = cluster structure with ( number of cluster, average patients per cluster)
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when the cluster confounding effect was strong. These 
results were consistent with results from previous litera-
ture, which showed that higher post-match sample reten-
tion usually gives a higher precision treatment estimate 
for matching analysis [14, 28].

Moreover, in cross-cluster matching CM also gave 
higher sample retention than PSM. However, the 
accuracy and precision of the treatment estimates for 
CM were much lower than the treatment estimates 
from PS. A possible explanation for a more accurate 

Fig. 3 Average model coverage for different confounder effect on treatment outcome scenarios. for different matching strategy for all the data 
scenario tested in the Monte Carlo simulation study. E.g. Ref = Propensity score cross cluster match with patient‑level confounders included 
as covariates in the propensity score model, PSM‑Across = Propensity score cross cluster match with both patient level and cluster level 
confounders, PSM‑Within = Propensity score within cluster match with patient‑level confounders included as covariates in the propensity score 
model, CM‑Across = Cardinality matching cross cluster match with covariates constraint set on both patient‑level and cluster‑level confounders, 
CM‑Within = cardinality matching within cluster match with covariates constraint set on patient level confounders, (XX,XX) = cluster structure with ( 
number of cluster, average patients per cluster)
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treatment estimate for PS than CM is that the balance 
threshold limit of 0.1 SMD might not be adequate for 
CM. For example, in Stephen Fortin and Stephen John-
ston’s study [14], a matched sample with better covari-
ate balance can often be found with tighter covariate 

constraints without much impact on sample retention. 
However, the current literature has limited guidelines 
on best practices for constraint setting for CM. Future 
simulation analyses testing tighter balance constraints 
for CM are warranted.

Fig. 4 Average empirical standard error for different matching strategy for all the data scenario tested in the Monte Carlo simulation 
study. E.g. Ref = Propensity score cross cluster match with patient‑level confounders included as covariates in the propensity score model, 
PSM‑Across = Propensity score cross cluster match with both patient level and cluster level confounders, PSM‑Within = Propensity score 
within cluster match with patient‑level confounders included as covariates in the propensity score model, CM‑Across = Cardinality matching 
cross cluster match with covariates constraint set on both patient‑level and cluster‑level confounders, CM‑Within = cardinality matching 
within cluster match with covariates constraint set on patient level confounders, (XX,XX) = cluster structure with ( number of cluster, average 
patients per cluster)
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Fig. 5 Average post match sample retention for different matching strategy for all the data scenario tested in the Monte Carlo simulation 
study. E.g. Ref = Propensity score cross cluster match with patient‑level confounders included as covariates in the propensity score model, 
PSM‑Across = Propensity score cross cluster match with both patient level and cluster level confounders, PSM‑Within = Propensity score 
within cluster match with patient‑level confounders included as covariates in the propensity score model, CM‑Across = Cardinality matching 
cross cluster match with covariates constraint set on both patient‑level and cluster‑level confounders, CM‑Within = cardinality matching 
within cluster match with covariates constraint set on patient level confounders, (XX,XX) = cluster structure with ( number of cluster, average 
patients per cluster)
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Strengths and limitations
This study’s main strength is its use of simulated data, 
where the actual treatment effect was known. Hence 
using simulation studies allowed us to calculate the bias 
and empirical standard error for the treatment effects 
estimated using different matching methods. Therefore, 

the accuracy and precision of different methods can 
be compared. Using simulated data also allowed us 
to create different scenarios by varying data variables 
to see how each PS method behaves in different sce-
narios. This is usually difficult to achieve in real-world 
data analysis. Also, to our knowledge this is the first 

Fig. 6 Average relative bias, model coverage, empirical stand error and sample retention for different matching strategy for all the data scenario 
tested in the Plasmode simulation study. Ref = Propensity score cross cluster match with patient‑level confounders included as covariates 
in the propensity score model, PSM‑Across = Propensity score cross cluster match with both patient level and cluster level confounders, 
PSM‑Within = Propensity score within cluster match with patient‑level confounders included as covariates in the propensity score model, 
CM‑Across = Cardinality matching cross cluster match with covariates constraint set on both patient‑level and cluster‑level confounders, 
CM‑Within = cardinality matching within cluster match with covariates constraint set on patient level confounders
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simulation study cardinality matching for a clustered 
observational study.

This study was also subject to limitations. A major limi-
tation of this study is that it has not captured all cluster 
structure, cluster-confounding effect sizes and covari-
ates scenarios that may occur in real-world data. Particu-
larly, this study only tested different confounder effect 
sizes on treatment outcomes, and it would be interesting 
to consider testing different confounder effect sizes on 
treatment allocation in future research. Therefore, the 
findings may only be generalisable to the scenarios tested 
in this simulation study. Besides the limitation of the 
simulation setting, this study only tested one constraint 
setting for CM. It is fair to argue that better performance 
can be achieved by experimenting with different limits 
and summary measures for the constraint.

Conclusion
This simulation study provides an insightful comparison 
between CM and PSM in observational studies for clus-
tered medical device and surgical data, offering valuable 
perspectives on the methods’ accuracy and precision 
across various cluster-data scenarios. The study reveals 
that CM maintains superior sample retention over PSM 
in within-cluster matching for scenarios with large clus-
ter sizes, emphasising its effectiveness in such contexts 
where a robust sample size is vital for validity.

Conversely, CM’s performance in small cluster size 
scenarios is less effective than PSM, suggesting its lim-
ited suitability for these cases. The study also highlights 
the necessity for further research into the optimal con-
straint settings for CM. This need arises from the obser-
vation that PSM consistently outperformed CM in terms 
of accuracy across all compared scenarios, casting doubt 
on the adequacy of the standard SMD = 0.1 guideline for 
CM.

In conclusion, the study underscores the importance of 
additional research to refine CM’s application in the field 
of medical device and surgical epidemiology, prior to its 
broader implementation.
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