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Abstract 

Objective  Differentiating intramedullary spinal cord tumor (IMSCT) from spinal cord tumefactive demyelinating 
lesion (scTDL) remains challenging with standard diagnostic approaches. This study aims to develop and evaluate 
the effectiveness of a magnetic resonance imaging (MRI)-based radiomics model for distinguishing scTDL from IMSCT 
before treatment initiation.

Methods  A total of 75 patients were analyzed in this retrospective study, comprising 55 with IMSCT and 20 
with scTDL. Radiomics features were extracted from T1- and T2-weighted imaging (T1&T2WI) scans upon admis-
sion. Ten classification algorithms were employed: logistic regression (LR); naive bayes (NaiveBayes); support vector 
machine (SVM); k nearest neighbors (KNN); random forest (RF); extra trees (ExtraTrees); eXtreme gradient boosting 
(XGBoost); light gradient boosting machine (LightGBM); gradient boosting (GradientBoosting); and multi-Layer per-
ceptron (MLP). The performance of the optimal model was then compared to radiologists’ assessments.

Results  This study developed 30 predictive models using ten classifiers across two imaging sequences. The MLP 
model with two sequences (T1&T2WI) emerged as the most effective one, showing superior accuracy in MRI analysis 
with an area under the curve (AUC) of 0.991 in training and 0.962 in testing. Moreover, statistical analyses highlighted 
the radiomics model significantly outperformed radiologists’ assessments (p < 0.05) in distinguishing between IMSCT 
and scTDL.

Conclusion  We present an MRI-based radiomics model with high diagnostic accuracy in differentiating IMSCT 
from scTDL. The model’s performance was comparable to junior radiologists, highlighting its potential as an effective 
diagnostic aid in clinical practice.

Keywords  Intramedullary spinal cord tumor, Tumefactive demyelinating lesion, Magnetic resonance images, 
Radiomics

Introduction
Primary spinal cord tumors account for 2%–4% of all 
central nervous system malignancies [1, 2]. Among 
these, intramedullary spinal cord tumor (IMSCT) com-
prises 20%–30% of primary spinal cord tumors, with 
astrocytoma and ependymoma representing the pre-
dominant types [3]. These tumors commonly occur in 
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the cervical or thoracic spine [4, 5] and typically present 
with symptoms such as back or radicular pain, followed 
by neurological deficits like motor weakness or sensory 
disturbances [6]. Accurate preoperative evaluation is 
crucial in formulating treatment strategies for IMSCT, 
with surgical gross total resection often being the pri-
mary approach [7]. Differentiating IMSCTs from other 
intramedullary lesions, such as spinal cord tumefactive 
demyelinating lesion (scTDL), can be challenging [8–10]. 
scTDL, initially described by Van der Velden et  al., is 
identified by predominantly white matter areas exceeding 
2 cm [8, 11]. The rarity of spinal cord involvement cases 
has limited detailed clinical and radiographic documen-
tation [12]. The treatment for scTDL differs significantly 
from that for IMSCT, with corticosteroids and symptom-
relieving medications primarily administered [13].

Magnetic resonance imaging (MRI) stands as the 
first-line method for diagnosing IMSCT and scTDL. 
IMSCT generally appears as isointense to hypointense on 
T1-weighted images and hyperintense on T2-weighted 
images [14], while scTDL often displays similar imaging 
characteristics and clinical presentations [12], contribut-
ing to a high risk of misdiagnosis between the two condi-
tions. Current diagnostic methods for scTDL, including 
cerebrospinal fluid (CSF) analysis, are typically invasive, 
highlighting the need for a non-invasive alternative to 
enhance diagnostic accuracy.

Radiomics, an emerging field, utilizes a wide range of 
imaging features invisible through traditional assess-
ments, such as texture, intensity, heterogeneity, and 
shape, which reflect cellular-level variations within 
lesions [15–17]. Previous studies have employed radi-
omics models for the preoperative prediction of central 
system conditions like glioma and meningioma [18, 19], 
and non-central system diseases including breast, colo-
rectal, bladder cancer, and lung adenocarcinoma [20–23], 
indicating its potential application in clinical diagnosis. 
However, machine learning and radiomics applications 
in predicting differential diagnoses between IMSCT and 
scTDL remains underexplored. Therefore, this study aims 
to develop an effective preoperative predictive model lev-
eraging radiomic features to enhance diagnostic of these 
two lesions.

Materials and methods
Study population
This analysis included 75 patient records from Octo-
ber 2018 to August 2023. Ethical approval is granted by 
the Ethics Committee of Southeast University (approval 
number: 2023ZDSYLL446-P01). Patients’ informed con-
sent was waived due to the utilization of anonymized 
data (Fig. 1).

For IMSCT patients, the inclusion criteria were those: 
1) with pathological diagnosis of IMSCT, 2) had pre-
treatment MRI data upon admission (within 10  days). 
The exclusion criteria were those: 1) with concurrent 
spine and spinal cord diseases such as myelopathy, 2) 
received any form of treatment (radiotherapy, chemo-
therapy, or chemoradiotherapy, etc.) before the imaging 
studies.

For scTDL patients, the inclusion criteria include those: 
1) with both radiological evidence and cerebrospinal 
fluid test results (AQP4-IgG positive or the presence of 
oligoclonal bands), 2) had pre-treatment MRI data upon 
admission (within 10  days). The exclusion criteria were 
patients who 1) possesses undefined intramedullary 
lesions, 2) received any form of treatment (radiotherapy, 
chemotherapy, or chemoradiotherapy, etc.) before the 
imaging studies.

MRI Scanning
MRI images were obtained using 3.0 T scanners (Siemens 
MAGNETOM Verio 3.0 T, or Philips Ingenia 3.0 T). Both 
T1- and T2-weighed images were acquired in sagittal, 
axial, and coronal sections. Supplementary Table 1 shows 
the parameters of the selected sequences of each MRI 
scanner.

Image segmentation
The workflow of the study is shown in Fig. 2. We accessed 
DICOM format images of axial T1WI and T2WI for each 
case on the Picture Archiving and Communication Sys-
tem (PACS). Subsequent manual segmentations of the 
volume of interest (VOI) were carried out utilizing 3D 
Slicer software (HTTP:// https://​www.​slicer.​org; version 
5.0.3). The target of image segmentation is the lesion 
area. When there were multiple lesions in the spinal cord, 
the largest lesion was chosen.

Two radiologists (Rad. A and B) defined the VOI inde-
pendently in a blinded manner. VOI delineation was 
repeated 2  months later to evaluate the intra-observer 
reliability. The intraclass correlation coefficient (ICC) was 
calculated for each feature to assess inter-observer con-
sistency and intra-observer reliability. Cases with an ICC 
below 0.75 were omitted from further analysis.

Data preprocessing
The dataset was randomly divided into the training and 
testing sets in an 8:2 ratio. The training dataset included 
all cases for model development, while the testing data-
set was used for external validation of the model’s 
performance.

Voxel spacing refers to the physical distance separat-
ing two adjacent voxels within an image. Medical imaging 
data often present variability in voxel spacing, attributed 
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Fig. 1  Flow chart demonstrating the inclusion and exclusion criteria for the study participants with IMSCT and scTDL

Fig. 2  Radiomics workflow
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to the use of different scanners or imaging protocols. To 
counteract the variability in voxel spacing, spatial normali-
zation techniques are commonly applied. In our study, we 
employed a fixed-resolution resampling technique to over-
come these spatial challenges. Through resampling, all 
images were adjusted to a uniform voxel spacing of 3 mm. 
Subsequently, image data underwent z-score standardiza-
tion for intensity normalization, ensuring a mean of zero 
and a standard deviation of one.

Radiomics feature extraction
The handcrafted features in our analysis are categorized 
into three main types: 1) geometric, involving the lesion’s 
three-dimensional shape and structure; 2) intensity, 
detailing the distribution of voxel intensities across the 
tumor and offering insights into the intensity patterns; 
and 3) texture, which delves into a more sophisticated 
level of spatial arrangement of voxel intensities, elucidat-
ing complex patterns and interrelationships.

To capture detailed texture information, we employed 
advanced techniques such as the Gray Level Co-occur-
rence Matrix (GLCM), Gray Level Run Length Matrix 
(GLRLM), Gray Level Size Zone Matrix (GLSZM), 
and the Neighboring Gray Tone Difference Matrix 
(NGTDM). We identified a total of 107 unique hand-
crafted features, including 18 focused on shape, 14 on 
first-order statistics, and 75 on texture characteristics. 
The extraction of these features was executed through 
the PyRadiomics platform (available at http://​pyrad​iom-
ics.​readt​hedocs.​io).

Radiomics feature selection
An independent sample T-test and univariate feature 
screening were applied to all radiomics features. For mul-
tiple comparisons, the Bonferroni correction method was 
applied to adjust the significance threshold, with only 
those features demonstrating an adjusted p < 0.05 being 
considered significant. To reduce multicollinearity, Pear-
son’s correlation analysis was conducted, and features 
exhibiting a Pearson’s r value greater than 0.9 between 
any pair of features were removed.

In the process of feature selection, a strategy of greedy 
recursive elimination was implemented. This method 
progressively removes the most redundant feature in the 
set during each cycle. Additionally, the Least Absolute 
Shrinkage and Selection Operator (LASSO) technique 
was employed for multivariable feature selection, aid-
ing in identifying a more impactful subset of features for 
developing the classification model. The LASSO’s optimi-
zation goal can be described by the formula:

y =
1

2n
| y− ωX |

2
+ α||ω| |1,

where n represents the sample size, α is a predefined con-
stant, and ||ω| |1 denotes the L1-norm of the coefficient 
vector.

Radiomics model construction
Models based on individual MRI sequences (T1WI or 
T2WI) as well as a dual-sequence model were developed 
using ten different classification algorithms. The perfor-
mance of the single-sequence models was compared to 
the combined model. Receiver Operating Characteristic 
(ROC) curves for both the training and validation groups 
were generated for both the training and testing groups 
to assess predictive accuracy. For each group, we com-
puted the mean values of the Area Under the ROC Curve 
(AUC), as well as the accuracy, F1-score, sensitivity, and 
specificity metrics. Furthermore, to ascertain the clini-
cal applicability of these models, we conducted analy-
ses using calibration curves and decision curve analysis 
(DCA) for each model.

Radiologists’ diagnoses
Two junior radiologists (Rad. C and D), each with diag-
nostic experience under 5  years made the radiological 
diagnosis for all cases independently in a blinded manner. 
Then, we employed the best radiomics model for compar-
ison with the radiologists’ models. We assessed the dis-
criminative prowess of the radiologists and the radiomics 
model using the Delong test. A p value less than 0.05 sig-
nified statistical significance. We gauged the inter-reader 
consensus between the radiologists via the Cohen kappa 
test. An excellent agreement was represented by a kappa 
value within the range of 0.81–1.00, a good agreement 
within 0.61–0.80, a moderate agreement in the span of 
0.41–0.60, while a fair agreement fell between 0.21–0.4, 
and poor agreement ranged from 0 to 0.2.

Statistical analysis
SPSS software (version 26.0, IBM, USA) was used for sta-
tistical analysis. Results were presented as mean ± stand-
ard deviation or median ± quartiles (conforms to a 
normal distribution). For comparisons between groups, 
we utilized the T test for continuous variables and the 
Chi-square test for categorical variables. A statistical sig-
nificance was established with a p value less than 0.05.

Results
Patient characteristics
A total of 75 patients were included, of whom 55 had 
IMSCT (mean age 50.3 years) and 20 had scTDL (mean 
age 50.0 years). The scTDL group included patients diag-
nosed with multiple sclerosis (MS) accounting for 55.0% 
(n = 11), and neuromyelitis optica (NMO) accounting for 
45.0% (n = 9). The IMSCT group exclusively comprised 
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patients diagnosed with ependymoma (EPN) represent-
ing 87.3% (n = 48) and astrocytoma (AST) representing 
12.7% (n = 7). The scTDL group had lesions predomi-
nantly in the cervical spinal cord (75.0%, n = 15), with a 
minority in the thoracic spinal cord (25.0%, n = 5). In 
contrast, lesions in the IMSCT group were more widely 
distributed with 54.6% (n = 30) in the cervical spinal cord, 
23.6% (n = 13) in the thoracic spinal cord, and 21.8% 
(n = 12) in the lumbar spinal cord. Data is presented in 
Table 1.

The MLP two‑sequence model as the most efficient 
prediction model
Radiomic features demonstrating an ICC of ≥ 0.85 were 
deemed to have high reliability both within and between 
raters. Spearman’s correlation coefficients were calculated 
to assess multicollinearity, retaining only features with low 
inter-correlations (in Supplementary Table  2). Figure  3 
illustrates the ICC values along with their corresponding 
p values for these features. The LASSO algorithm was sub-
sequently applied to determine optimal the best feature set 
for T1, T2, and the combined datasets (Fig. 4).

Table 1  Characteristics of the enrolled patients (n = 55)

Student’s t-test for the normally distributed continuous variable (age) (conforms 
to a normal distribution) and Pearson chi-square test for the categorical 
variables (gender)

AST Astrocytoma, EPN Ependymoma, MS Multiple Sclerosis, NMO Neuromyelitis 
Optica

scTDL IMSCT P value

Age 49.95 ± 16.44 50.31 ± 15.57 0.671

Gender

  Male(%) 7 (35.00) 29 (52.73) 0.170

  Female(%) 13 (65.00) 26 (47.27)

Diagnosis

  AST(%) / 7 (12.73)

  EPN(%) / 48 (87.27)

  MS(%) 11 (55.00) /

  NMO(%) 9 (45.00) /

Location

  Cervical(%) 15 (75.00) 30 (54.55) 0.000

  Thoracic(%) 5 (25.00) 13 (23.64)

  Lumbar(%) 0 (0.00) 12 (21.82)

Fig. 3  The proportion, distribution and p values of various radiomics features
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The features with the non-zero coefficient value were 
retained, including two first-order statistical features, 
three 3D shape features, two GLSZM features, and one 
GLDM feature (first order minimum in common, Fig. 5). 
The radiomics signature was then established based on 
the these chosen features.

Ten prediction models were generated using ten dif-
ferent classifiers across either or both MRI sequences, 

as shown in Fig. 6. The AUC values of these 30 mod-
els are depicted in a heatmap diagram in Fig. 7, where 
darker shades represent higher AUC values. The 
MLP (Multi-Layer Perceptron) model, which inte-
grates both imaging sequences, achieved the high-
est AUC (Fig.  7). While DeLong’s test indicated that 
the MLP two-sequence model’s advantage over the 
other models was not statistically significant (p > 0.05, 

Fig. 4  Diagram of the feature selection process. Area under the curve under different number of features in the least absolute shrinkage 
and selection operator fitting process (A, C and E). Diagram of the characteristic and coefficient change under different α parameters for the three 
models (B, D and F). (Top: T1WI; Middle: T2WI; Bottom: T1&T2WI)
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Supplementary Table  2), the MLP two-sequence 
model remained the most effective, as indicated by 
Precision-Recall curves (Fig.  8), Confusion Matri-
ces (Supplementary Fig.  1), and its highest F1-score 
and accuracy (Fig.  9). For the training set, the model 

showed an AUC of 0.991, sensitivity of 92.3%, accu-
racy of 95.0%, and an F1-score of 96.3%. In the testing 
set, it achieved an AUC of 0.962, sensitivity of 92.3%, 
accuracy of 93.3%, Youden’s Index of 0.52, specificity 
of 68.1%, and an F1-score of 96.0%.

Fig. 5  Bar chart showing the selected features in corresponding coefficients, as identified by Lasso Regression
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Fig. 6  Receiver operating characteristic curves of different diagnostic models in the training set (A, B and C) and testing set (D, E and F). T1WI 
(left), T2WI (middle), and T1&T2WI (right). The combined radiomics model of the primary tumor with a 10-mm peritumoral extension (CRprim + 10) 
reached the highest AUC of 0.995 (95% CI, 0.991–0.999) in the training set and 0.872 (95% CI, 0.847–0.897) in the testing set

Fig. 7  The heatmap of AUC of ten classifiers constructed with different data. A darker color indicates a higher AUC​
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Fig. 8  The precision-recall curve of different diagnostic models in the training set and testing set. T1WI (left), T2WI (middle), and T1&T2WI (right). 
The x-axis represents recall, which indicates how many of the original positive samples were predicted correctly. The y-axis represents precision, 
which indicates how many of the samples predicted to be positive are positive samples

Fig. 9  ROC curves (A) and DCA curves (B) of the MLP network classifier
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Performance superiority: radiomics model 
against radiologists’ models
We further opted to employ the MLP two-sequence 
radiomics model for comparison with the radiologists’ 
diagnoses. First, Kappa analysis determined the good 
diagnostic agreement between two radiologists, 0.60 to 
0.70 in the training group, and 0.70 to 0.75 in the test-
ing group (Supplementary Table 3). DeLong test revealed 
significant differences favoring the radiomics model over 
the radiologists’ models in the training set and complete 
cohort (p < 0.05, Table 2 and Fig. 10).

Discussion
We developed an MLP two-sequence model, an MRI-
based radiomics model, with high efficacy in differentiat-
ing IMSCT and scTDL. The superior accuracy, specificity 
and sensitivity of this model compared to radiologists 
underscore its potential clinical value. This is the first 
study employing radiomics models to forecast the diag-
nosis of intramedullary lesions such as tumors and demy-
elinating diseases.

MRI represents the key diagnostic assessment in 
neurological disorders including IMSCT and scTDL. 

Table 2  Diagnostic performance of the radiologists and radiomics model

Training Group Testing Group Entire Cohort

Rad. C Rad. D MLP Rad. C Rad. D MLP Rad. C Rad. D MLP

AUC​ 0.758 0.615 0.991 0.635 0.846 0.962 0.736 0.632 0.975

Accuracy 0.817 0.683 0.950 0.733 0.733 0.933 0.800 0.693 0.933

F1-score 0.667 0.457 0.963 0.333 0.500 0.96 0.615 0.465 0.878

Sensitivity 0.611 0.444 0.929 0.500 1.000 0.923 0.600 0.500 0.900

Specificity 0.905 0.786 1.000 0.769 0.692 1.000 0.873 0.763 0.945

Fig. 10  Confusion matrices of the radiologists and MLP two-sequence model in training set, testing set, and the entire cohort
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Intramedullary tumors, such as gliomas, and scTDL 
can appear very similar on MRI, with indistinguish-
able T1 and T2 signal characteristics. Previous studies 
have highlighted significant differences between these 
two lesions in brain in terms of Fractional Anisotropy 
(FA) and Apparent Diffusion Coefficient (ADC). FA is a 
measure used in diffusion tensor imaging (DTI) to assess 
the directionality of water diffusion in tissues, providing 
insights into the structural integrity of the tissue. ADC, 
on the other hand, reflects the magnitude of water diffu-
sion, indicating tissue cellularity and integrity. Ducreux 
et  al. [24] observed an average FA value of 0.48 (± 0.02) 
in five cases of cervical spinal cord astrocytoma, whereas 
Renoux et al. [25] found an average FA value of 0.588 in 
inflammatory lesions. Another study reported average 
FA values of 0.232 (± 0.07) for tumors and 0.39 (± 0.111) 
for intracranial TDL [26]. These reports indicated that 
FA tends to be lower in the neoplastic lesion in compari-
son with the demyelinating insults. ADC values have also 
been utilized to differentiate between tumors and demy-
elinating lesions. Marc and his team developed a multi-
variable model that includes ADC values, demonstrating 
an excellent discriminative power (AUC = 0.954–0.986) 
in distinguishing TDL and glioma [27].

Further efforts to distinguish TDL from tumors have also 
employed other imaging techniques. For instance, Dae’s 
research highlights that the hypoattenuation observed 
in computerized tomography (CT) for MR-enhanced 
lesions offers a high degree of specificity for differentiat-
ing between intracranial tumors and TDL [28]. For TDL 
cases, both MR-enhancing and non-enhancing compo-
nents showed lower CT attenuation compared to the gray 
matter in the cortex and basal ganglia. Although tumors 
frequently exhibited CT hypoattenuation as well, this fea-
ture was not present in the MR-enhancing sections [28]. In 
addition, Satoko et  al. employed contrast-enhanced MRI 
and methionine positron emission tomography (MET-
PET) to distinguish brain TDL from tumors, finding that 
TDL displayed hypometabolism on MET-PET and incom-
plete ring enhancements on MRI [29]. Further efforts 
to distinguish TDL from glioma have involved dynamic 
contrast-enhanced perfusion MRI to assess cerebral blood 
volume (CBV) and flow (CBF), with demyelinating lesions 
showing decreased CBV and CBF [30]. Despite these 
advances, research specifically targeting the differentiation 
of scTDL from IMSCT is still scarce.

FA and ADC, while useful, have limitations in spi-
nal cord imaging, particularly due to DTI’s lower spatial 
resolution and susceptibility to artifacts [31]. Our study 
addresses this by using standard T1- and T2-weighted 
MRI sequences combined with radiomics features such 
as shape, texture, and intensity. This approach avoids the 
technical challenges associated with DTI and advanced 

imaging techniques, making it more practical for wide-
spread clinical use. Unlike MET-PET, which require spe-
cialized equipment, our model can be easily integrated 
into clinical workflows using conventional MRI, making 
it a cost-effective and scalable solution for improving 
diagnostic accuracy in spinal cord lesions.

Radiomics provides a promising approach for char-
acterizing tissue properties using regular CT or MRI 
imaging. By extracting quantitative features that are 
undetectable through visual evaluation, radiomics pro-
vides an advanced diagnostic method and has been 
implemented in conditions such as fatty liver and pul-
monary nodule, etc. [32, 33]. In the present study, we 
employed a  radiomics method to generate a predic-
tive diagnosis model by analyzing both T1 and T2 MRI 
images from 75 IMSCT and scTDL individuals. A serial 
of 9 features including three first-order statistical fea-
tures, three 3D shape features, two GLSZM features, and 
one GLDM feature were identified. An MLP model using 
both sequences were then outstood from 30 models, 
showing the highest efficacy in differentiating these two 
lesions.

The finding that the MLP two-sequence model outper-
formed two junior radiologists is particularly noteworthy 
as it highlights the potential for this model to assist less 
experienced clinicians in making more accurate diag-
noses. Given the subtle and overlapping imaging char-
acteristics of IMSCT and scTDL, junior radiologists 
with limited experience in complex spinal cord lesions 
may struggle to differentiate between these conditions. 
The model’s ability to surpass their diagnostic accuracy 
underscores its value as a decision-support tool that can 
bridge the gap between less experienced and more sea-
soned clinicians, thereby enhancing diagnostic consist-
ency across different experience levels. Moreover, we 
used DCA to measure the model’s net benefit across 
various potential risk thresholds. This approach allowed 
us to examine the effects of different risk thresholds on 
decision-making. The decision curves demonstrated 
that employing the prediction model for diagnosing 
intramedullary conditions proved more advantageous 
than either universally treating all patients as IMSCT or 
treating all as scTDL. These results highlight the clinical 
value of the model, particularly in improving diagnostic 
accuracy, enhancing decision-making, and optimizing 
patient management in settings where diagnostic exper-
tise may vary.

The present study developed a predictive model using 
MRI-based radiomics and MLP classifier that demon-
strated high accuracy in distinguishing IMSCT from 
scTDL. This model’s efficacy in surpassing the diagnostic 
performance of junior radiologists highlights its poten-
tial utility as a non-invasive diagnostic tool for both 
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radiologists and clinicians. Misdiagnosis between these 
conditions can lead to serious clinical consequences, 
including unnecessary surgical interventions and com-
plications, as emphasized by previous studies. Clinically, 
the model provides value not only by supporting radiolo-
gists with a more objective, reproducible, and quantita-
tive assessment of imaging features that are difficult to 
interpret visually but also by assisting clinicians in mak-
ing informed decisions on patient management.

In clinical practice, this model can be integrated seam-
lessly into the current diagnostic workflow without the 
need for significant changes in infrastructure. For exam-
ple, after routine MRI scans are performed, radiologists 
can use this model to process the imaging data and gener-
ate a radiomics-based diagnostic prediction. Radiologists 
can then compare the model’s results with their own vis-
ual assessments, using the model as a second opinion or 
as a confirmation in cases where the diagnosis is uncertain 
or ambiguous. Clinicians, particularly those involved in 
the treatment of spinal cord lesions, can also use the mod-
el’s output to guide clinical decision-making. For instance, 
in treatment planning, a clear distinction between IMSCT 
and scTDL is crucial as it dictates very different treatment 
paths—surgery for IMSCT and medical management for 
scTDL. However, if relying on CSF diagnosis, the process 
is invasive and often requires a long waiting period for 
results. By integrating the model’s results into multidis-
ciplinary discussions between radiologists, neurologists, 
and surgeons, clinicians can make more informed deci-
sions, improving the accuracy of diagnoses and reducing 
unnecessary surgical interventions.

Despite these promising results, our study has several 
limitations. First, the retrospective design may intro-
duce selection bias. Secondly, the MRI images collected 
in this study were captured using 2 different machines, 
resulting in potential inconsistencies in data quality. To 
address this limitation, we standardized imaging proce-
dures and performed ICC analysis to minimize variations 
across different imaging acquisitions and enhance feature 
reproducibility [34]. Finally, the dataset was retrospec-
tively compiled from a single center, limiting the diversity 
of the patient population and thus hinder the universality 
of our findings.

Conclusion
In this retrospective study, a predictive model based on 
two-sequence MRI radiomics features and using an MLP 
classifier showed high efficacy in distinguishing scTDL and 
IMSCT. Its diagnostic performance was comparable to that 
of junior radiologists. These findings support the poten-
tial for multicenter, prospective studies with larger patient 
cohorts to further validate this model’s clinical utility.
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