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Summary
Background India has made exceptional advances in child immunisation, but subnational inequities in vaccination
coverage impede attainment of key programmatic goals. Our study provides an up-to-date national portrait of local
variations in child vaccination using a comprehensive set of indicators relevant to routine immunisation.

Methods Indicators representing unvaccinated (zero-dose) children, incomplete basic immunisation, and vulnera-
bility to measles and polio, were constructed from India’s 2019–2021 National Family Health Survey. We used four-
level random effects logistic regression models to partition the total outcome variation over state, district and cluster
levels, and produce precision-weighted estimates of prevalence across clusters. District-level prevalence and within-
district variation using standard deviation measures were derived for each outcome. Boxplots graphically summarised
the distribution of precision-weighted mean cluster prevalence by state.

Findings The analysis included 87,622 children aged 12–36 months. Clusters accounted for 67.6% (var: 1.36; SE:
0.127) of the variation among zero-dose children, and more than 50% for all indicators. Districts with a higher
prevalence of under-vaccination tended to have higher within-district heterogeneity, interpretable as greater
within-district child vaccination inequities. For vaccines administered in the first year of life, the northeastern
states and Uttar Pradesh had the highest median under-vaccination. Despite India’s high aggregate vaccine
coverage, the distribution of small-area (cluster) mean prevalence highlighted pockets of low coverage in most
states, suggesting ongoing vulnerability to measles and polio.

Interpretation Achieving India’s vaccination goals requires a strategic shift towards identification and targeting of low-
immunity clusters at the sub-district level.
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Introduction
Endorsed by the World Health Assembly in 2021, Im-
munization Agenda 2030 (IA2030) is the global
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immunisation strategy to “leave no one behind” com-
panion to the UN 2030 Agenda for Sustainable Devel-
opment.1 To ensure that everyone, everywhere, at every
ersité de Montréal (CRCHUM), Tour Saint-Antoine, Porte S03-910, 850,

1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mira.johri@umontreal.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.lansea.2024.100504&domain=pdf
https://doi.org/10.1016/j.lansea.2024.100504
https://doi.org/10.1016/j.lansea.2024.100504
https://doi.org/10.1016/j.lansea.2024.100504
http://www.thelancet.com


Research in context

Evidence before this study
Large-area summaries of vaccination coverage often mask
subnational heterogeneities, but analyses of fine-scale
variation are rarely available to inform decisionmaking. To
identify original research articles with quantitative empirical
findings concerning small-area (below district-level) variations
in child under-vaccination, we searched the PubMed database
on July 6, 2023 (updated August 14, 2024), using the
following search terms: ((“child” [MeSH] OR child* OR
“pediatrics” [MeSH] OR pediatric* OR paediatric*) AND
((“vaccin*” [MeSH Terms] OR “immuniz*” [MeSH Terms])
AND ((“incomplete” OR “non-vaccination” OR “under-
vaccination” OR “under*” OR “unreached” OR “unvaccinated”)
OR (“zero-dose” OR “zero”)))) AND (“small area” OR
“geospatial” OR “heterogeneity” OR “mapping” OR “map*”
OR “subnational”). No geographic, date or language
restrictions were applied. In total, 20 relevant articles
published between 2002 and 2023 were identified. Three
studies included findings for India; however, all focussed on
limited set of antigens, and two were multi-country studies
incorporating data from India’s 2015–2016 National Family
Health Survey (NFHS). In a precursor to this study, Rajpal and
colleagues (2023) analysed all five rounds of India’s NFHS
using multi-level logistic regression models to study
spatiotemporal trends in non-receipt of diphtheria-tetanus-
pertussis-containing vaccine. While the study described trends
in variance partitioning, no sub-district analyses were
conducted.

Added value of this study
To our knowledge, our study offers the third national analysis
of local variations in child vaccination in India and the first
that considers a comprehensive set of indicators relevant to
routine immunisation.
Using India’s most recent national survey data from the
2019–2021 NFHS, we examined a range of under-vaccination
indicators relevant to the Indian immunisation programme,
Immunization Agenda 2030 (IA2030), and the WHO 2023 Big
Catch-Up strategy, lending relevance to the findings. Our

results are based on multi-level random intercept logistic
regression modelling, including shrinkage methods to
improve small-area estimation. We highlight four vital
findings. First, in India, for all indicators of under-vaccination
studied, the largest variations in vaccination coverage
occurred at the small-area level, followed by states, and then
districts. This indicates the need for a shift in strategic focus
from the district to sub-areas within districts. Second, for all
indicators, prevalence varied widely across districts, and
districts with a higher prevalence of under-vaccination tended
to have greater within-district child vaccination inequities.
Third, exploratory analyses studying patterns of predicted
cluster mean prevalence reveal persistent pockets of low
immunity even in many high-performing states and UTs.
Fourth, despite India’s high aggregate vaccine coverage, the
distribution of predicted cluster mean prevalence suggests
ongoing vulnerability to vaccine-preventable diseases with
outbreak potential such as measles and polio, corroborated by
large and disruptive measles outbreaks experienced in 2022
and 2023.

Implications of all the available evidence
Together with other studies exploring small-area variations in
child vaccination, our research demonstrates that local
geographic variations constitute a critical roadblock to
achievement of key immunisation objectives, such as those
outlined in IA2030, the global immunisation strategy to
“leave no one behind” companion to the UN 2030 Agenda for
Sustainable Development.
In India, where aggregate vaccine coverage levels are high, our
findings support a fundamental tactical shift from a state and
district focus towards interventions aimed at granular pockets
of low immunity within districts to increase vaccination
coverage, advance disease-control priorities, and reduce
inequities. This shift will require rapid adoption of new
strategies accompanied by implementation-oriented research
to enable high-impact, precision approaches to vaccinate and
close immunity gaps.
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age fully benefits from vaccination, key IA2030 goals
include preventing diseases by initiatives such as global
polio eradication and elimination of measles and rubella
transmission, promoting equity in immunisation by
halving the number of “zero-dose” (ZD) children
missing out on all routine immunisation services, and
building strong immunisation programmes that deliver
vaccination across the life course.1

With an annual birth cohort of 23 million,2 India’s
success is decisive to that of IA2030. India has made
exceptional progress in immunisation in recent decades,
but subnational inequities in vaccination persist.3–5

Reflecting its large population, despite high aggregate
immunisation coverage, India ranked first in 2021 and
second in 2023 for the highest absolute number of ZD
children globally and figures among the top 10 countries
home to children missing out on measles vaccination
worldwide.6 Like many countries, due to immunisation
gaps exacerbated by the global COVID-19 pandemic,
India recently experienced vaccine-preventable disease
outbreaks, including flare-ups of measles and
diphtheria.6

To address these challenges and achieve India’s aim
to fully vaccinate every child, insights into the subna-
tional patterning of vaccination coverage are required.
While high quality information is now available at the
district level, Indian districts are large administrative
areas with an average population exceeding 1.5 million.
www.thelancet.com Vol 32 January, 2025
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District-level aggregates can conceal important local
variations in immunisation coverage.7 Health manage-
ment information system (HMIS) data are sometimes
used for programme review at district and sub-district
levels, but data quality may be uneven. In addition,
HMIS data only include children who engage with
immunisation and related services, thereby excluding
the most vulnerable in hard-to-reach communities who
should be the target of expanded strategies.

Two previous studies have provided limited infor-
mation on local variations in child vaccination coverage
in India. These studies used Bayesian geospatial
regression to generate small-area and second adminis-
trative level estimates of vaccination coverage for mul-
tiple countries, including India; however, they discussed
a restricted range of antigens limited to diphtheria-
tetanus-pertussis-containing vaccine first-dose (DTP1)
and third-dose (DTP3) and measles-containing vaccine
first-dose (MCV1) coverage, and used older data from
India’s 2015–2016 National Family Health Survey
(NFHS).8,9 Up-to-date analyses of small-area variations
in vaccination coverage suitable to inform strategy in
India are not available.

Contributing to India’s success in achieving its
vaccination goals represents an pivotal opportunity to
improve health and wellbeing. Using the most recent
nationally representative survey data, the aim of our
study was to provide an up-to-date national portrait of
local variations in child vaccination using a compre-
hensive set of indicators relevant to routine
immunisation.
Methods
Study design, data source, and sample
We conducted a cross-sectional analysis of India’s most
recent national survey, the NFHS-5,10 using multilevel
analysis techniques to model small-area variation for
priority vaccines. Conducted in 2019–21, the NFHS-5
provides representative data on child vaccinations for
all of India’s 707 districts (as of March 31st, 2017), 28
states, and 8 Union Territories (UTs).10

India’s NFHS series forms part of the Demographic
and Health Surveys Program and follows similar survey
design, sampling, and quality assurance methods10

(Supplementary Appendix, 1.1). The NFHS-5
employed a two-stage design with stratified sampling
for priority groups, including scheduled castes and
tribes, and women with low literacy levels, and followed
principles of random selection for inclusion of primary
sampling units (PSUs), clusters, and households. In the
first stage, India’s 2011 census provided the sampling
frame for PSU selection. In the second stage, a house-
hold enumeration was conducted in each selected PSU,
and large PSUs with more than 300 households were
subdivided into segments of approximately 100–150
households. Thus, an NFHS-5 cluster is either a PSU, or
www.thelancet.com Vol 32 January, 2025
a PSU segment. Finally, in every included cluster, 22
households were selected from the enumeration list for
inclusion in the survey.10 Application of survey sampling
weights is recommended to adjust for the multistage
design and ensure that prevalence estimates are repre-
sentative of the population.

NFHS-5 data were collected face-to-face via
computer-assisted personal interviewing in two phases:
June 17, 2019 to January 30, 2020, and January 2, 2020
to April 30, 2021.10 Administered by female surveyors,
the woman’s questionnaire collected information on
topics including child vaccination from all eligible
women aged 15–49 years. The NFHS-5 household
response rate was 97.5%, while 96.9% of eligible women
completed the woman’s questionnaire.10

We constructed an analysis sample from the NFHS-5
children’s dataset. Based on standard age ranges used to
assess vaccination coverage,11 to study vaccines admin-
istered in the first year of life, we included all children
12–23 months of age at the time of the survey. To study
vaccines given in the second year of life, we included all
children 24–35 months.

Variables, data sources, and measurement
We chose variables for analysis based on the priorities of
the Indian government, the global IA2030 partnership,1

and the WHO Big Catch Up for post COVID-19
recovery.12

Primary outcomes
Zero-dose child: Operationally, IA2030 defines ZD
children as those who fail to receive even a single dose
of diphtheria, tetanus, pertussis (DTP)-containing vac-
cine.1 We constructed a binary variable designating all
surviving children aged 12–23 months who failed to
receive any DTP or pentavalent vaccine doses as “ZD”.

Non-receipt of measles-containing vaccines: To
facilitate the WHO South-East Asia Region (SEARO)
goal of measles and rubella elimination by 2023, India
introduced measles-rubella (MR) vaccine into the
routine immunization program, replacing monovalent
formulations.13,14 To represent insufficient measles
vaccination we created two binary variables, designating
all surviving children 12–23 months of age who failed to
receive any measles vaccination as “No MR-1′′, and all
surviving children 24–35 months of age who failed to
receive a second measles-containing dose as “No MR-2”.

Basic immunisation incomplete: India prioritises full
immunisation for all children and tracks a set of basic
first year of life vaccines specified by the WHO
Expanded Programme on Immunisation: one dose of
Bacillus Calmette-Guérin (BCG) to protect against
tuberculosis, three doses of DPT-containing vaccine,
which protect against diphtheria, pertussis, and tetanus,
three doses of oral polio vaccine (OPV), and one
measles-containing vaccine. We created a binary vari-
able assigning all surviving children 12–23 months of
3
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age who failed to receive all 8 recommended doses as
“basic immunisation incomplete” (henceforth, “BI”).

Secondary outcome
To induce a favourable immunogenic response against
polio, during the NFHS-5 data collection period, India
offered a birth dose of bivalent OPV (bOPV), a primary
series of 3 bOPV doses at 6, 10, and 14 weeks, and two
intradermal fractional doses of inactivated polio vaccine
(IPV) at ages 6 and 14 weeks.15 WHO recommends that
all children receive at least one dose of IPV to eliminate
the risks due to poliovirus type 2, against which bOPV
offers no protection.15 We created a binary variable
assigning all surviving children aged 12–23 months who
failed to receive three bOPV doses as “No OPV3”.
Although IPV is used in India, data are not available in
the NFHS-5.

The NFHS-5 collected vaccination information from
biological mothers of all children born in or after 2017
and alive at the time of the interview. Vaccination data
were transcribed from the child’s vaccination record. If
the card was not available at the time of the interview or
the information was incomplete, vaccination data were
taken by recall.10

Analysis
For all child under-vaccination outcomes, we analysed
the NFHS-5 dataset to compute direct estimates of na-
tional, state/UT, and district mean prevalence and their
95% confidence intervals, applying the appropriate
weights to balance the complex sampling design, and
using subpopulation estimation to generate standard
errors consonant with the data subset (living children
12–35 months).

Next, recognising that the NFHS-5 vaccination data
subset includes strata that are small and unbalanced, we
used multilevel modelling techniques to generate
smoothed estimates of the underlying population char-
acteristics. Exploiting methods from previous analyses of
small-area variations using NFHS data,16 we developed
multilevel logistic models to represent the random effects
on binary child under-vaccination outcomes (Y) of
membership in a hierarchy of nested spatial units at four
levels: household-child i (level-1), cluster j (level-2), dis-
trict k (level-3), and state/UT l (level-4). Specifically, we
estimated the equation logit (Yijkl) = β0 + (u0jkl + v0kl + f0l),
where Yijkl is the log odds of the outcome for individual i,
and u0jkl, v0kl, f0l represent the residual error terms for
cluster, district, and state, respectively. Residuals were
assumed to be normally distributed with a mean of 0 and
a variance of u0jkl ∼ N (0,σ2u0), v0kl ∼ N (0, σ2v0), and
f0l ∼ N (0, σ2f0). The term σ2u0, therefore, denotes within-
district, between-cluster variation; σ2v0 represents
within-state, between-district variation; and σ2f0 is the
between-state variation. For binary outcomes, level-1
variance is not freely estimated.17 To decompose the
proportion of variation attributable to distinct
geospatial levels, the variance estimate at a given level
was divided by the total geographic variation in the
outcomes.

For all multilevel analyses, we employed Markov
Chain Monte Carlo (MCMC) simulation methods using
starting values from Iterative Generalized Least Squares
(IGLS) estimations. To ensure stability of estimates, for
all outcomes, we specified a sufficient number of itera-
tions for the burn-in period [burnin (500)] necessary for
the MCMC to establish a stationary distribution and
used a monitoring chain length of 5000 iterations.16

Further, we followed the best practice of looking for
adequate iterative and independent chains using post-
estimation commands available in Stata’s runmlwin
module.18

To extrapolate small-area variations in child under-
vaccination, for each under-vaccination outcome, we
used the corresponding fitted multilevel model to
generate cluster-specific mean estimates of child under-
vaccination prevalence.16 As area-specific estimates may
be imprecise, we used empirical Bayes “precision-
weighted” estimation to downplay the influence of
clusters with lower reliability and shrink their influence
towards the pooled mean. The probability of each under-
vaccination outcome Y for each cluster was calculated as:
exp (β0 + u0jkl + v0kl + f0l)/(1 + exp (β0 + u0jkl + v0kl + f0l)).
In addition, we computed the precision-weighted
standard deviations of the predicted cluster under-
vaccination indicators by district.16 These values can be
interpreted as the within-district and between-cluster
variations in individual child vaccination status, and
hence, as measures of within-district heterogeneity
indicative of local child vaccination inequities. For each
under-vaccination outcome, we mapped the precision-
weighted district means and standard deviations from
the multilevel model.

To stimulate insights into patterns of under-
vaccination, we performed exploratory data analysis us-
ing two techniques to study the outcomes predicted by
the multilevel models. First, we calculated the Pearson
correlation coefficient to evaluate the linear relationship
between the predicted district means for pairs of under-
vaccination measures. To provide additional informa-
tion at the small-area level, we repeated correlation
analyses using the predicted cluster means.16 Second,
for each outcome, we present boxplots to graphically
summarise the distribution of precision-weighted mean
cluster prevalence by State/UT. Boxplots provide infor-
mation in a compact format on central tendency,
skewness and spread, and highlight outliers, without
imposing additional parametric assumptions.

Finally, we conducted sensitivity analyses to examine
the robustness of findings in relation to three issues: (1)
As cluster size may influence results and singleton
clusters experience greater shrinkage towards the mean,
we re-ran all analyses on data subsamples restricted to
clusters of size 2 or more, and size 5 or more; (2) As BI
www.thelancet.com Vol 32 January, 2025
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is a composite indicator, to understand underlying
drivers, we also present analyses for its subcomponents.
(3) The WHO Big Catch-Up promotes delivery of vac-
cines up to age 5 for children who have missed out on
vaccination. To understand whether doses were delayed
or missed, we conducted a sensitivity analysis extending
the age range for the first year of life vaccines from 23 to
35 months.

The NFHS-5 dataset contains no missing values for
child vaccination outcomes in the age groups studied.
Analyses were executed by SR and validated by MJ using
Stata statistical software (Version 16).19 Analysis code is
publicly available.20 Multilevel modelling was performed
using the MLwiN 3.0 software program21 accessed via
Stata’s runmlwin command.18 The choropleth mapping
process used a verified 707-district shapefile of India.22,23

The external boundary for India provided by the Survey
of India was used to modify the DHS shape file.24

Vaccination coverage projections derived from multi-
level models were added to the ArcGIS project25 and
joined with the 707-district shapefile using NFHS-5
District Codes as the common identifier for data
joining.22

Research ethics
This study is based on secondary use of publicly avail-
able, anonymised data, and does not generate informa-
tion that would enable identification of individuals. It is
thus exempt from the requirement for research ethics
review. Respondents to the NFHS-5 household and
women’s questionnaires provided verbal informed
consent.

Role of the funding source
This study was funded by the Canadian Institutes for
Health Research (FRN-130280). The funding agency
played no role in study design; in the collection, anal-
ysis, and interpretation of data; in writing the report; or
in the decision to submit for publication.
Results
Sample characteristics
We screened 232,920 children less than 5 years of age
for eligibility and excluded 145,298 outside the target
age ranges. The analysis included 87,622 children
(Appendix Fig. S1) from all of India’s 36 states/UTs and
707 districts, representing a population of approximately
46 million children between one and three years of age.2

(Table 1). For vaccines administered in the first year of
life, analyses comprised 43,436 children residing in
22,061 clusters. Analyses of MR-2 comprised 44,186
children in 22,349 clusters. Table 1 provides estimates
of mean prevalence and their 95% confidence intervals
nationally and by state/UT for four primary child
under-vaccination outcomes. Information on model
www.thelancet.com Vol 32 January, 2025
convergence is provided (Appendix Figs. S2 and S3 and
Tables S1–S3).

Variance partitioning
For all four primary measures of under-vaccination,
small-area clusters accounted for the largest share
(more than 50%) of the total variation in the outcome,
followed by states, and then districts (Fig. 1; Appendix
Table S3). The share of variation attributable to clus-
ters was most important for the ZD indicator (67.6%;
(var: 1.36; SE: 0.127)), followed by no MR-1 (58.8%; (var:
1.02; SE: 0.061)), BI (56.2% (var: 0.80; SE: 0.054)), and
no MR-2 (53.0% (var: 1.13; SE: 0.062)), underscoring
that small-area variation is progressively more important
as vaccination coverage increases.

Correlations between measures of under-
vaccination
The four measures of under-vaccination exhibited pos-
itive linear correlations at the district level, suggesting
that problems of under-vaccination tend to be
geographically co-located within districts (Appendix
Fig. S4). There was a strong positive relationship be-
tween the district means for the ZD, BI, and no MR-1
indicators, and a moderate positive relationship be-
tween the district means for non-receipt of MR-1 and
MR-2 (p < 0.001 for all). Exploratory analysis of the
sample excluding singleton clusters identified positive
linear correlations between measures of under-
vaccination at the cluster level, suggesting that prob-
lems of under-vaccination may also be geographically
co-located within clusters (Appendix Fig. S5).

District mean prevalence and within-district
heterogeneity in under-vaccination
Over India’s 707 districts, the precision-weighted mean
prevalence of ZD children ranged from 0.78% (standard
deviation, henceforth “SD” 0.03) to 23.39% (SD 11.73),
while the mean prevalence of BI children ranged from
3.20% (SD 0.14) to 57.37 (SD 12.32) (Fig. 2, Appendix
Table S4). For both indicators, districts with the high-
est prevalence of under-vaccination and the highest
within-district heterogeneity (indicative of within-
district child vaccination inequities) were concentrated
in the north-eastern states and in the populous north–
central state of Uttar Pradesh. Notwithstanding, there
were high-burden and high-inequity districts scattered
across the country, including in states with high vacci-
nation coverage.

The mean prevalence of no-MR1 children over In-
dia’s 707 districts ranged from 1.27% (SD 0.05) to
42.79% (SD 15.57), with patterns similar to those for ZD
and BI (Fig. 3, Appendix Table S4). The mean preva-
lence of no-MR2 children ranged from 8.48% (SD 3.9)
to 89.82% (SD 4.6). Patterns for no MR-2 were distinct,
with high-burden districts concentrated in the
5
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State/UTb # Districts Children 12–23 months Children 24–35 months

ZDc BId No MR-1e No MR-2f

# Clusters n (Sample) (%) 95% CI (%) 95% CI (%) 95% CI # Clusters n (Sample) (%) 95% CI

All 707 21,771 43,436 6.1 [5.76; 6.48] 23.40 [22.83; 24.01] 12.15 [11.66; 12.63] 44,186 22,068 41.31 [40.59; 42.03]

Andaman & Nicobar Island 3 60 94 1.83 [0.57; 3.10] 22.22 [12.18; 32.25] 17.95 [8.66; 27.23] 89 68 22.58 [13.67; 31.50]

Andhra Pradesh 13 327 541 6.78 [4.43; 9.12] 26.98 [23.01; 30.96] 12.93 [10.01; 15.84] 516 328 42.46 [37.60; 47.31]

Arunachal Pradesh 20 541 970 13.01 [10.06; 15.96] 35.09 [31.09; 39.10] 19.28 [15.86; 22.70] 1110 601 48.09 [44.44; 51.75]

Assam 33 1023 1965 9.02 [7.46; 10.57] 33.53 [31.09; 35.97] 17.22 [15.04; 19.40] 2113 1036 64.48 [61.64; 67.31]

Bihar 38 1546 3977 6.11 [5.18; 7.04] 28.67 [26.98; 30.36] 14.27 [12.95; 15.59] 3928 1524 44.33 [42.36; 46.30]

Chandigarh 1 20 28 6.58 [−2.56; 15.72] 19.07 [5.01; 33.14] 12.10 [0.90; 23.31] 33 21 24.46 [8.74; 40.19]

Chhattisgarh 27 855 1604 4.55 [3.19; 5.90] 20.19 [17.42; 22.97] 9.76 [7.56; 11.96] 1623 858 43.75 [39.88; 47.62]

Goa 2 48 68 2.11 [−1.97; 6.20] 18.06 [8.62; 27.51] 7.10 [0.84; 13.35] 67 46 67.00 [51.61; 82.40]

Gujarat 33 974 1864 7.25 [5.74; 8.76] 23.35 [20.92; 25.78] 13.18 [11.17; 15.20] 1887 1002 49.22 [45.99; 52.45]

Haryana 22 666 1313 5.75 [4.46; 7.04] 23.02 [20.27; 25.77] 10.62 [8.70; 12.54] 1316 652 43.26 [40.01; 46.51]

Himachal Pradesh 12 332 533 1.81 [0.34; 3.29] 10.75 [7.59; 13.91] 4.07 [2.07; 6.06] 453 293 30.85 [24.73; 36.97]

Jammu & Kashmir 20 566 1020 5.20 [3.55; 6.86] 13.61 [10.98; 16.24] 8.30 [6.16; 10.43] 1192 625 26.38 [22.86; 29.90]

Jharkhand 24 868 1923 7.47 [5.73; 9.21] 26.09 [23.60; 28.58] 13.33 [11.25; 15.42] 1844 856 40.17 [37.33; 43.00]

Karnataka 30 865 1585 4.06 [2.59; 5.53] 15.84 [13.12; 18.56] 8.78 [6.69; 10.87] 1583 880 37.6 [34.25; 40.94]

Kerala 14 316 487 4.03 [2.15; 5.91] 21.85 [17.49; 26.21] 11.66 [8.48; 14.84] 545 343 68.15 [63.37; 72.94]

Ladakh 2 50 83 0.94 [−0.91; 2.79] 11.78 [2.26; 21.30] 7.14 [1.05; 13.23] 105 60 25.81 [15.40; 36.22]

Lakshadweep 1 26 45 9.02 [1.44; 16.59] 13.86 [4.67; 23.04] 9.02 [1.44; 16.59] 52 32 87.55 [78.30; 96.79]

Madhya Pradesh 51 1561 3109 5.71 [4.74; 6.67] 22.79 [20.91; 24.68] 12.01 [10.62; 13.39] 3011 1548 36.06 [34.06; 38.05]

Maharashtra 36 1006 1812 7.50 [4.92; 10.08] 26.51 [23.09; 29.92] 15.30 [12.01; 18.59] 1814 1026 49.70 [45.65; 53.76]

Manipur 9 285 567 6.51 [4.26; 8.75] 31.17 [26.16; 36.19] 23.41 [18.91; 27.90] 600 291 74.19 [69.45; 78.92]

Meghalaya 11 360 1136 15.83 [12.39; 19.28] 36.10 [32.18; 40.02] 27.52 [23.75; 31.29] 1216 391 74.07 [70.03; 78.10]

Mizoram 8 238 486 14.25 [9.49; 19.00] 27.48 [20.20; 34.77] 19.08 [12.92; 25.23] 453 242 51.30 [45.07; 57.52]

Nagaland 11 304 560 15.14 [10.97; 19.31] 42.12 [36.44; 47.81] 26.20 [21.35; 31.05] 585 304 58.86 [53.66; 64.05]

D&N Haveli; D & Diu 3 87 151 2.15 [0.13; 4.17] 5.12 [1.74; 8.50] 3.80 [0.72; 6.88] 156 87 15.85 [9.08; 22.61]

NCT of Delhi 11 301 570 6.32 [3.78; 8.87] 24.01 [19.83; 28.20] 9.90 [7.11; 12.68] 595 335 26.55 [22.15; 30.95]

Odisha 30 882 1566 2.67 [1.63; 3.72] 9.54 [7.60; 11.49] 4.13 [2.74; 5.52] 1652 902 21.13 [18.37; 23.89]

Puducherry 4 98 157 0.63 [−0.12; 1.37] 18.00 [8.33; 27.66] 4.44 [1.08; 7.80] 145 95 15.37 [6.65; 24.10]

Punjab 22 610 1060 5.66 [4.01; 7.30] 23.80 [20.67; 26.94] 11.87 [9.59; 14.14] 1103 634 43.26 [39.50; 47.03]

Rajasthan 33 1180 2548 5.09 [4.06; 6.13] 19.27 [17.42; 21.12] 8.85 [7.49; 10.21] 2801 1246 47.74 [45.10; 50.38]

Sikkim 4 79 114 4.90 [0.30; 9.51] 19.43 [7.56; 31.30] 9.52 [0.74; 18.29] 131 93 64.27 [51.80; 76.74]

Tamil Nadu 32 835 1291 2.42 [1.49; 3.34] 10.60 [8.59; 12.62] 4.20 [2.86; 5.54] 1230 793 25.04 [22.01; 28.06]

Telangana 31 816 1443 7.14 [5.12; 9.16] 20.88 [17.93; 23.82] 9.42 [7.21; 11.63] 1360 824 36.87 [32.96; 40.77]

Tripura 8 227 391 5.27 [2.82; 7.73] 30.05 [24.97; 35.14] 13.68 [10.04; 17.33] 368 228 50.47 [44.85; 56.09]

Uttar Pradesh 75 2828 6553 8.85 [7.98; 9.72] 30.27 [28.86; 31.68] 16.69 [15.52; 17.86] 6701 2815 41.23 [39.78; 42.67]

Uttarakhand 13 404 714 4.58 [2.52; 6.64] 18.93 [14.18; 23.67] 9.44 [6.26; 12.61] 705 388 28.70 [23.85; 33.54]

West Bengal 20 587 1108 2.09 [1.09; 3.09] 12.19 [10.09; 14.28] 5.61 [4.07; 7.16] 1104 601 27.40 [24.01; 30.79]

aSurvey-weighted estimates from the NFHS-5. bUT–Union Territory. cZD–“Zero-dose”, defined as all surviving children aged 12–23 months who did not receive the first dose of diphtheria, tetanus, and pertussis -containing vaccine (i.e., no
diphtheria-tetanus- pertussis (DPT1) or pentavalent (PENTA1) vaccine). dBI–“Basic incomplete”, defined as all surviving children aged 12–23 months who did not receive 8 vaccine doses recommended in the first year of life: 1 dose of Bacillus
Calmette-Guérin (BCG) vaccine, 3 doses of pentavalent vaccine, 3 doses of oral polio vaccine, 1 dose of measles-rubella vaccine. eNo MR-1–All surviving children aged 12–23 months who did not receive the first dose of measles-rubella-containing
vaccine. fNo MR-2–All surviving children aged 24–35 months who did not receive the second dose of measles-rubella-containing vaccine.

Table 1: Prevalence of child under-vaccination across states and Union Territories, India, National Family Health Survey (NFHS-5) 2019–2021.a
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Fig. 1: Geographic variance partitioning (%) by clusters, districts and states for four indicators of child under-vaccination, National Family Health
Survey 2019–2021 (NFHS-5), India. “Zero Dose”–All surviving children aged 12–23 months who did not receive the first dose of diphtheria,
tetanus, and pertussis -containing vaccine. “BI”–Basic incomplete: All surviving children aged 12–23 months who did not receive 8 basic vaccine
doses recommended in the first year of life: 1 dose of Bacillus Calmette-Guérin (BCG) vaccine, 3 doses of pentavalent vaccine, 3 doses of oral
polio vaccine, 1 dose of measles-rubella vaccine. “No MR-1”–All surviving children aged 12–23 months who did not receive the first dose of
measles-rubella-containing vaccine. “No MR-2”–All surviving children aged 24–35 months who did not receive the second dose of measles-
rubella-containing vaccine.
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northeast, and in otherwise high-performing states such
as Maharashtra, Gujarat, and Kerala.

For all indicators of under-vaccination, we found a
positive association between district mean prevalence
and within-district between-cluster standard deviations,
revealing that districts with higher burden of under-
vaccination generally had greater within-district
inequities (Figs. 2 and 3, Appendix Table S5). Within-
district heterogeneities in vaccination coverage were
smallest for the ZD indicator, followed by no MR-1, BI,
and no MR-2 (Appendix Fig. S6).

Distribution of under-vaccination across states and
UTs
For first-year-of-life (FYL) vaccines ZD, BI, No-MR-1,
the northeastern states and Uttar Pradesh consistently
had the highest median under-vaccination, but the dis-
tributions of predicted cluster mean prevalences for all
States and UTs were positively skewed, with more
extreme values on the high end and numerous outliers
(Fig. 4; Appendix Fig. S7). For all indicators of under-
vaccination, States and UTs with a higher prevalence
of under-vaccination tended to have greater variability.
However, the patterning of cluster means highlights
pockets of low immunity even in high-performing states
and UTs.

For the ZD indicator, the all-India median preva-
lence was 3.21% (IQR: 2.83; min 0.77, max 23.38). Most
states had a very compact distribution, with the top
whisker (located at the 75th percentile plus 1.5 times the
www.thelancet.com Vol 32 January, 2025
interquartile range) entirely below 5%. Notwithstanding,
distributions for most states were positively skewed. For
the BI indicator, the all-India median prevalence was
18.34% (IQR: 14.62; 3.19, 57.63), and distributions for
virtually all states were positively skewed. For no MR-1,
the all-India median prevalence was 7.96% (IQR: 7.02;
min 1.26%, max 42.78%]. HIgh-performing states such
as Odisha, Tamil Nadu, Himachal Pradesh, Pudicherry,
Goa, and Lakshadweep had low prevalence and low
variability of measles-rubella first dose non-vaccination
consistent with uniform MR-1 coverage of 95%; how-
ever, the remaining states exceeded these levels, and the
northeastern states and Uttar Pradesh had median
prevalences of non-vaccination ranging from 12 to 20%
and high variability. For no MR-1, virtually all states
revealed positively skewed distributions and numerous
outliers. The all-India median prevalence of non-receipt
of measles-rubella second dose was 38.97% (IQR 22.75;
min 8.48, max 89.81), and all states had median preva-
lences of non-vaccination in excess of 12%.

Sensitivity analyses
(1) The proportion of singleton clusters in the dataset
was 44% (Appendix Table S6). Notwithstanding, ana-
lyses excluding singleton clusters (Appendix Figs. S8–
S12 and Tables S5 and S6) and clusters with fewer
than five children (Appendix Fig. S11 and Table S7)
revealed patterns of variance partitioning and distribu-
tion of cluster mean prevalences similar to the main
analysis and support identical qualitative inferences. As
7
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Fig. 2: Maps of district-level prevalence and within-district small-area variations in the prevalence of zero-dose (ZD) children and children with
basic immunisation incomplete (BI), National Family Health Survey 2019–2021, India. (a) District-level mean and (b) within-district between-
cluster standard deviation (SD) for zero-dose child prevalence; (c) District-level mean and (d) within-district between-cluster SD for child
prevalence with basic immunisation incomplete.
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compared to all clusters, estimates of all-India median
prevalence of under-vaccination were uniformly higher
for clusters with 5 or more children: zero-dose 5.92%
(IQR 4.46; min 2.19, max 65.9), BI 25.97% (IQR 19.17;
min 7.26, max 69.88), non-receipt of measles-rubella
first dose 13.31% (IQR 8.99; min 3.88, max 70.08),
non-receipt of measles-rubella second dose 46.96%
(IQR 37.72; min 7.86, max 92.15), suggesting that high-
natality areas may be at greater risk of sub-optimal
vaccination. (2) With respect to decomposition of the
BI indicator, patterns for children not receiving 3 doses
of OPV or 3 doses of DTP-containing vaccine were very
similar to those for No MR-1 and BI (Appendix
Fig. S14–S19 and Table S10), suggesting coherence
among BI sub-components. Analyses for non-receipt of
Bacillus Calmette–Guérin (BCG) vaccine failed to
converge. (3) For each FYL vaccine dose, the estimated
mean prevalence of under-vaccination at ages 12–23
www.thelancet.com Vol 32 January, 2025
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Fig. 3: Maps of district-level prevalence and within-district small-area variations in the prevalence of non-receipt of measles-rubella (MR)
vaccination, National Family Health Survey 2019–2021, India. (a) District-level prevalence and (b) within-district between-cluster standard
deviation (SD) for non-receipt of MR first dose; (c) District-level prevalence and (d) within-district between-cluster SD for non-receipt of MR
second dose.
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months and 24–35 months were similar, suggesting that
doses were largely missed rather than delayed
(Appendix Table S11).
Discussion
Principal findings
To our knowledge, our study offers the third national
analysis of local variations in child vaccination in India,
www.thelancet.com Vol 32 January, 2025
the first analysis to use the most recent NFHS-5 dataset,
and the first to consider a comprehensive set of in-
dicators relevant to routine immunisation. We highlight
four programmatically-relevant findings.

First, in India, the largest variations in vaccination
coverage now occur at the small-area level, indicating
the need for a shift in strategic focus from the district to
sub-areas within districts. Analyses of variance parti-
tioning derived from multilevel models demonstrated
9
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Fig. 4: Box plots of predicted small-area cluster1 mean prevalence for four indicators of under-vaccination across states and Union Territories,
National Family Health Survey 2019–2021, India. Note: for each plot, the middle bar represents the median, the box represents the interquartile
(25th to 75th percentile) range (IQR), and the upper (lower) whiskers are located at the 75th (25th) percentile plus (minus) 1.5 times the IQR.
1For panels A, B, and C, analyses include 21,771 clusters. For panel D, analyses include 22,068 clusters. (A) “Zero Dose”–All surviving children
aged 12–23 months who did not receive the first dose of diphtheria, tetanus, and pertussis-containing vaccine. (B) “BI”–Basic incomplete: All
surviving children aged 12–23 months who did not receive 8 basic vaccine doses recommended in the first year of life: 1 dose of Bacillus
Calmette-Guérin (BCG) vaccine, 3 doses of pentavalent vaccine, 3 doses of oral polio vaccine, 1 dose of measles-rubella vaccine. (C) “No MR-1”–
All surviving children aged 12–23 months who did not receive the first dose of measles-rubella-containing vaccine. (D) “No MR-2”–All surviving
children aged 24–35 months who did not receive the second dose of measles-rubella-containing vaccine.
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that, for all indicators of under-vaccination, small-area
clusters accounted for the majority of total outcome
variation, followed by states, and then districts. In-
dicators with higher overall coverage displayed a greater
concentration of variation at the small-area level. Posi-
tive linear correlations between measures of under-
vaccination at the district level signify that problems of
under-vaccination tend to be geographically co-located
within districts. In addition, exploratory analysis be-
tween measures of under-vaccination at the cluster level
also identified positive linear correlations, suggesting
that problems of under-vaccination may also be
geographically co-located within clusters.

Second, for all indicators, districts with a higher
prevalence of under-vaccination tended to be more
inequitable. The prevalence of under-vaccination varied
widely across India’s 707 districts. Districts with a
higher prevalence of under-vaccination tended to have
higher within-district heterogeneity, interpretable as
greater within-district child vaccination inequities. For
first year-of-life vaccines (ZD, BI, No-MR-1, DPT3,
OPV3), these high-burden districts were concentrated in
the north-eastern states and in Uttar Pradesh.
Third, exploratory analyses studying patterns of
predicted cluster mean prevalence reveal persistent
pockets of low immunity even in many high-performing
states and UTs. For all indicators of under-vaccination,
States and UTs with a higher prevalence of under-
vaccination tended to have greater variability. For first
year of life vaccines, distributions of cluster mean
prevalence were positively skewed, with more extreme
values towards the high end and numerous outliers.

Fourth, despite India’s high aggregate vaccine
coverage, the distribution of predicted cluster mean
prevalence suggests ongoing vulnerability to vaccine-
preventable diseases with outbreak potential such as
measles, diphtheria, pertussis, and polio. Measles is a
global priority disease due to its impact on child mor-
tality.26 WHO recommends that countries seeking to
eliminate measles deliver at least 95% coverage with two
measles-containing vaccine doses (equivalent to at most
5% prevalence of non-receipt of MR-1 and MR-2) equi-
tably to all children.26 While, in 2023, official mean es-
timates of India’s national measles-rubella first dose and
second dose coverage were 93% and 90% respectively,6

we found that only the highest performing states such
www.thelancet.com Vol 32 January, 2025
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as Odisha, Tamil Nadu, Himachal Pradesh and Goa had
distributions of first dose measles vaccination coverage
across clusters consistent with measles elimination, and
none had achieved elimination-level second dose
coverage. A majority of states demonstrated substantial
variation in measles coverage with more extreme values
on the high end and numerous outliers. These findings
suggest persistent vulnerability to measles outbreaks in
multiple geographies, corroborated by India’s reported
65,150 measles cases–roughly ten percent of the global
total–in 2023.6 Although India and the SEARO region
were declared polio free in 2014, the country remains at
risk for importation and spread of poliovirus due to
endemic polio in neighbouring countries and risk of
vaccine-derived polio in low-coverage geographies.27

While national coverage of the third dose of oral polio
vaccine and DTP-containing vaccine stand at 91%,6

descriptive exploration of patterns of predicted cluster
mean prevalence of failure to receive 3 doses of these
vaccines revealed important gaps in protection in many
areas of the country, suggesting possible vulnerability to
diphtheria, pertussis, and polio.

Strengths and limitations
Study strengths include use of a rigorously conducted,
up-to-date national household survey representing
approximately 46 million Indian children, consideration
of a comprehensive set of immunisation indicators to
inform strategic actions, and appropriate statistical
methods enabling us to quantify within-district in-
equities and flag districts with higher inequities for
intervention. Several limitations should be acknowl-
edged. First, recall-based vaccination estimates may be
less accurate. Moreover, for data collected by recall, best
practice guidelines followed by the NFHS-5 stipulates
that, if the response of a caregiver concerning a specific
vaccine is “don’t know”, it should be coded as a “no”.11

This could result in some inaccuracy and underesti-
mation of the true vaccination coverage. However, a
high proportion (86%) of NFHS-5 respondents had a
vaccination card that was seen. Second, compounded by
use of historical census data to set the sampling frame,
survey sampling procedures may systematically under-
represent groups whose children are less likely to be
vaccinated, such as conflict-affected and mobile pop-
ulations. Third, the analysis dataset included only one
child per household for more than 97% of households.
As the paper objective was to estimate variance at the
smallest administrative level, we did not attempt to
model intra-household variation for the very small
fraction of children who belonged to a single household.
Fourth, although NFHS-5 vaccination estimates are
representative at the district level, confidence intervals
are wide. Extrapolation to the cluster level introduces
additional uncertainty due to the small number of
children contributing to each cluster estimate. We
address the impact of uncertainty on our results through
www.thelancet.com Vol 32 January, 2025
appropriate methodology, extensive sensitivity analysis,
and cautious interpretation. Multilevel modelling ap-
proaches are statistical techniques to analyse a hierar-
chical (in our case, nested) data structure. A key
assumption is that individuals who share membership
in a specific level (e.g., state, district, clusters) may share
characteristics relevant to vaccination outcomes, which
result in outcomes for individuals in a similar
geographic area being correlated. Based on the assumed
data structure, empirical Bayes estimation systematically
pulls outliers towards the population mean, with greater
shrinkage where uncertainty is larger, due, for example,
to small cluster size. This enables estimates for more
uncertain clusters to borrow strength from others,
yielding more stable estimates than reliance on the raw
observed data. The approach is conservative as the
shrunken estimates are always equal to or smaller than
those obtained by direct estimation. In addition, we note
that the number of clusters is large (more than 22,000
per analysis), and the estimates are not expected to be
systematically biased (as they are drawn from a random
sample). A specific challenge for our study relates to
small cluster sizes, especially singleton clusters with
only one child that experience greater shrinkage.
Sensitivity analyses excluding singleton clusters and
clusters with fewer than five children yielded very
similar insights to those from the main analysis,
demonstrating that general inferences are robust. While
supporting cautious interpretation of point estimates,
we believe that descriptive exploration of sub-district
patterning from multilevel models can yield valuable
insights and are confident in the overall patterns iden-
tified. That said, we acknowledge that results are
dependent on unverified underlying distributional as-
sumptions (conditional normality on the log odds scale).
Fifth, we were unable to study protection against
poliomyelitis adequately as data on inactivated polio
vaccine were unavailable. However, as IPV is co-
delivered with oral polio drops and requires delivery
via injection, it is improbable that it has better coverage
than OPV. Moreover, IPV was introduced relatively
recently and coverage is still catching up. Our findings
are thus unlikely to overstate polio-related immunity
gaps. Finally, the NFHS-5 data offer a temporal snap-
shot of an evolving situation.6,13

Strengths and weaknesses in relation to other
literature–differences in results
A multi-country study used Bayesian geospatial regres-
sion to generate globally comparable local estimates of
routine first-dose measles-containing vaccine (MCV1)
coverage for 101 LMICs from 2000 to 2019.8 Incorpo-
rating data from India’s 2015–2016 NFHS, it found that
India had exemplary performance, achieving very high
coverage and reducing geographic inequalities over
time, and that a substantial proportion of India’s dis-
tricts had achieved 95% MCV1 coverage.8 To advance
11
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learning by considering district and sub-district levels,
we used multilevel models to produce smoothed esti-
mates of sampled clusters and analysed their geospatial
distribution. Our results affirm that a high proportion of
India’s districts have achieved 95% MCV1 coverage;
however, we found considerable sub-district variation.
The coexistence of pockets of high and low coverage
may permit subnational chains of infection to continue
even when overall coverage is high.28 Corroborated by
India’s large and disruptive measles outbreaks in 2022
and 2023,6,13 our findings support the hypothesis that
subnational chains of infection can fuel outbreaks
despite high aggregate coverage and are particularly
important at near-elimination coverage levels.28 India
has developed a new measles and rubella elimination
response with a focus on district level implementation,
tracking, and programme review.13 By contrast, our re-
sults suggest that a sub-district focus will be required for
measles elimination.

Interpretation & conclusions
In India, where aggregate vaccine coverage levels are
high, our findings support a fundamental strategic shift
towards sub-district level strategies aimed at granular
pockets of low immunity to increase vaccination
coverage, advance disease-control priorities, and reduce
inequities. India’s recently created “Ayushman Arogya
Mandirs” (Health and Wellness Centres), with a terri-
torial responsibility to deliver primary health care, may
provide a natural niche for localised approaches.29

This tactical shift will require rapid adoption of new
strategies accompanied by implementation-oriented
research, to enable high-impact, precision approaches
to close immunity gaps. Several approaches warrant
consideration. Geospatial analyses, visualisations, and
data triangulation can inform real-time strategic actions
to improve vaccination coverage at precise spatial
scales,30 requiring innovations in survey-based analyses
and investments in digital data systems, such as India’s
adoption of the U-WIN electronic immunisation registry
in 2023. Given the low proportion of zero-dose children
and substantial proportion of children with incomplete
basic immunisation, a focus on reducing missed op-
portunities for vaccination is needed, with strategies
tailored to local context. In addition to strengthening
roll-out of the recently introduced 3rd dose of fractional
IPV, hexavalent vaccine, which delivers protection
against six diseases, including polio, in a single injec-
tion, and recently prequalified novel oral polio vaccine
type 2 (nOPV2) should be considered for roll out to
boost polio immunity and limit emergence of circu-
lating vaccine-derived polioviruses. To further measles
elimination efforts, as supported by India’s current
measles-rubella elimination plan, MR-2 coverage should
be strengthened.12 Once available, new measles-specific
immunoglobulin M (IgM) Rapid Diagnostic Tests
should be considered to facilitate agile surveillance and
outbreak response31,32 and measles micro-array patches
to expand vaccination coverage.33 Finally, as child under-
vaccination reflects the interplay of numerous supply-
and demand-related factors34 and is correlated with
multiple deprivations,4 social scientific research is
required to better understand and intervene on the
complex factors underlying geographies of persistent
vulnerability.
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