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Summary
Background Lung cancer and tobacco use pose significant global health challenges, necessitating a comprehensive
translational roadmap for improved prevention strategies such as cancer screening and tobacco treatment, which are
currently under-utilised. Polygenic risk scores (PRSs) may further motivate health behaviour change in primary care
for lung cancer in diverse populations. In this work, we introduce the GREAT care paradigm, which integrates PRSs
within comprehensive patient risk profiles to motivate positive health behaviour changes.

MethodsWe developed PRSs using large-scale multi-ancestry genome-wide association studies and standardised PRS
distributions across all ancestries. We validated our PRSs in 561,776 individuals of diverse ancestry from the GISC
Trial, UK Biobank (UKBB), and All of Us Research Program (AoU).

Findings Significant odds ratios (ORs) for lung cancer and difficulty quitting smoking were observed in both UKBB
and AoU. For lung cancer, the ORs for individuals in the highest risk group (top 20% versus bottom 20%) were 1.85
(95% CI: 1.58–2.18) in UKBB and 2.39 (95% CI: 1.93–2.97) in AoU. For difficulty quitting smoking, the ORs (top 33%
versus bottom 33%) were 1.36 (95% CI: 1.32–1.41) in UKBB and 1.32 (95% CI: 1.28–1.36) in AoU.

Interpretation Our PRS-based intervention model leverages large-scale genetic data for robust risk assessment across
populations, which will be evaluated in two cluster-randomised clinical trials. This approach integrates genomic
insights into primary care, promising improved outcomes in cancer prevention and tobacco treatment.
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Research in context

Evidence before this study
We systematically searched PubMed for research articles
published in English before June 21, 2024, using the search
terms “polygenic risk score”, “lung cancer” and “clinical trials”.
Several clinical trials, including the WISDOM, GenoVA, and
eMERGE studies, have evaluated the utility of polygenic risk
scores (PRSs) for diseases such as breast cancer and coronary
artery disease. However, these studies do not include lung
cancer or tobacco use, both of which present significant
global health burdens. While genome-wide association studies
(GWASs) have identified several genetic risk factors for both
conditions, and PRSs for lung cancer have been developed,
they have not yet been implemented in clinical settings.

Added value of this study
Our study introduces a new primary care paradigm that
integrates the latest genetic data and research into precision

treatment of lung cancer and smoking cessation. We compute
ancestry-adjusted PRS using large-scale GWASs and develop
standardised risk models appliable across diverse ancestry. We
validate our model’s accuracy in three ancestrally diverse
cohorts, including two large-scale biobanks, finding
significant odds ratios for both lung cancer and difficulty
quitting smoking between the top and bottom risk groups.

Implications of all the available evidence
Our findings demonstrate that ancestry-adjusted PRS can
effectively stratify patient risk for lung cancer and difficulty
quitting smoking across diverse backgrounds. This framework
will be implemented in two cluster-randomised clinical trials
to evaluate the efficacy of PRS-based intervention tools in
promoting health behaviour changes related to cancer
prevention and tobacco treatment in patients of diverse
ancestry.
Introduction
The worldwide burden of lung cancer and tobacco
smoking presents major challenges to global health.1

Evidence-based practices to reduce their risk such as
cancer screening and tobacco treatment (e.g. smoking
cessation medication) have long existed but are infre-
quently used in most primary care practices. While it is
well-established that quitting smoking can dramatically
reduce the risk of developing lung cancer,2 patients may
face various barriers to participating in smoking cessa-
tion programs.3 This presents a critical gap in preventive
healthcare, particularly for individuals at high risk of
lung cancer.

Polygenic risk scores (PRSs) have emerged as a
valuable approach to assess disease susceptibility among
populations and pinpoint individuals at higher risk.4–6

By incorporating PRSs into clinical practice, we can
provide patients with personalised information that not
only highlights their heightened genetic risk for lung
cancer but also expected difficulty quitting smoking. In
our previous studies, large majorities of patients who
smoke showed high interest in receiving genetically
tailored tobacco treatment,7 endorsed the importance of
genetic results to guide treatment,8 and found genetics-
based tools useful in understanding health risk and
taking control of their health.9 With this personalised
approach that makes risk more tangible, patients may be
more motivated to engage in smoking cessation pro-
grams or undergo lung cancer screening.7 However,
substantial evidence suggests the complex interplay of
fear, fatalism, and risk perception when patients face
lung cancer screening10–13 Therefore, it is important to
evaluate the translation potential of personalised ge-
netics in motivating patients for positive behaviour
change.

Ongoing studies like eMERGE (electronic MEdical
Records and GEnomics),14 GenoVA (Genomic Medi-
cine at Veterans Affairs),15 and WISDOM (Women
Informed to Screen Depending on Measures of
Risk)16 are leading the implementation of PRS into
genetic risk reports (Table 1). These studies aim to
personalise medical reports and assess the impact of
PRS on screening, diagnostic procedures, and patient
behaviour. While the global burden of lung cancer is
largely driven by tobacco smoking,17,18 research
studies have shown promise for PRS in lung cancer
risk independent of traditional clinical risk
models.19,20 The unique value proposition of a lung
cancer-specific PRS lies in leveraging clear, guideline-
based recommendations for smoking cessation and
lung cancer screening.20

Despite the potential benefits of PRS-based in-
terventions, several practical challenges must be
addressed for their effective implementation in the
clinic. The include identifying the appropriate PRS to
use, determining PRS cutoffs for defining patients at
high-risk, understanding the corresponding odds ratios
(ORs) for these patients, and standardizing PRS distri-
butions across ancestries to ensure equitable application
to diverse populations. Additionally, there remain
www.thelancet.com Vol 110 December, 2024
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We compare the PRECISE and MOTIVATE trials, part of our GREAT framework, with existing PRS-informed trials: GenoVA, eMERGE, and WISDOM. Bolded text in the
PRECISE/MOTIVATE column highlights the points where our trials differ from the current trials. Namely, the PRECISE and MOTIVATE trials investigate lung cancer and
smoking and will focus on patients at high risk who are smokers or eligible for lung cancer screening. We also look at lung cancer screening, tobacco treatment, and
smoking cessation as unique target outcomes. Finally, in addition to genetic and clinical risk messaging, the two trials have a unique emphasis on behaviour mechanisms
around lung cancer and smoking. * PCP, primary care provider. ** BrCa, breast cancer; PrCa, prostate cance; CRCa, colorectal cancer; Afib, atrial fibrillation; CAD, coronary
artery/heart disease; T2D, type 2 diabetes; T1D, type 1 diabetes; BMI, body mass index/obesity; CKD, chronic kidney disease; HCL, hypercholesterolemia; LC, lung cancer.

Table 1: Research on PRS use in clinical trials.

Articles
significant barriers of effectively communicating genetic
risk information to patients and ensuring that is un-
derstood and acted upon.

To address these challenges and provide practical
guidance for the implementation for PRSs in primary
care, we introduce the Genomic Informed Care for
Motivating High Risk Individuals Eligible for Evidence-
based Prevention (GREAT) framework. The GREAT
framework integrates PRSs to stratify disease risk and
personalise interventions. By delivering personalised
risk information, our goal is to empower patients to
make informed decisions about their health, thereby
increasing the uptake of evidence-based treatments.
This personalised information may increase treatment
engagement by activating mechanisms based on the
www.thelancet.com Vol 110 December, 2024
Capability-Opportunity-Motivation-Behaviour (COM-B)
model and Theoretical Domains Framework (TDF).21–23

Our proposed approached will be implemented in
two cluster randomised clinical trials, which will recruit
individuals eligible for lung cancer screening and to-
bacco treatment. The first, PRECISE (“Precision Ap-
proaches to Lung Cancer Screening and Smoking
Cessation Treatment in Primary Care”, NCT05627674),
will evaluate the effectiveness of a multilevel interven-
tion, RiskProfile, on increasing lung cancer screening
and tobacco treatment utilization in primary care. The
second trial, MOTIVATE (“Multilevel Intervention to
Personalise and Improve Tobacco Treatment in Primary
Care”, NCT05846841), will examine the effect of
another multilevel intervention, PrecisionTx, on
3
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promoting precision tobacco treatment in primary care.
These trials aim to demonstrate how personalised risk
assessments can significantly improve lung cancer pre-
vention strategies and patient outcomes through PRS-
enabled interventions.

Methods
Study design
GREAT framework
We have developed a GREAT framework to test whether
personalised risk assessments can motivate high-risk
patients who are eligible for cancer screening and to-
bacco treatment. The GREAT care paradigm is centred
around multi-level intervention tools (RiskProfile and
PrecisionTx) that utilise PRS to deliver precision patient
risk (Fig. 1). Within the PRECISE and MOTIVATE tri-
als, these PRS-based interventions will be communi-
cated along with traditional clinical risk factors, such as
smoking status and living with individuals who
smoke.24–26 The primary goal is to promote positive
clinical outcomes, such as increased lung cancer
screening rates, enhanced tobacco treatment adherence,
and successful smoking cessation within primary care
settings. Throughout the trials, we will evaluate shared
Fig. 1: Care Paradigm: Genomic Informed Care for Motivating High Ris
GREAT framework is a primary care paradigm that integrates genetic and
upcoming trials (PRECISE and MOTIVATE) are enrolled and provided with
clinical outcomes of lung cancer screening, tobacco treatment, and succes
behaviour changes (e.g. perceived benefit, self-efficacy, and outcome e
mendations phase, personalised shared decision-making will be facilitated
outcomes.
decision-making processes between patients and clini-
cians, focusing on actionable recommendations tailored
to each patient’s risk profile. Additionally, we will assess
intermediate health behaviour change mechanisms,
including perceived benefit, self-efficacy, and outcome
expectancy.
Translation of genetic risk to clinical practice
We present the GREAT paradigm within a broader
roadmap for translating genetic risk into clinical practice
(Fig. 2). This process begins with the Clinical Laboratory
Improvement Amendments (CLIA) certified genotyping
of enrolled participants’ genetic data, conducted by
23andMe. To ensure the integrity and reliability of the
genetic data, imputation and quality controls were per-
formed using the Trans-Omics for Precision Medicine
(TOPMed) server, which also facilitates the imputation
of GWAS variants.

Next, available GWAS variants and their corre-
sponding weights were identified to create raw PRSs.
These PRSs were then adjusted for genetic ancestry
using reference data, such as the 1000 Genomes Project
Phase 3 (1000G), and applied to validation datasets like
the UK Biobank (UKBB) to establish risk categories and
k Individuals Eligible for Evidence-based Prevention (GREAT). The
clinical risk in precision health. Individuals and their providers in two
multilevel interventions (e.g. RiskProfile and PrecisionTx) to promote
sful smoking cessation in primary care settings. Mechanisms of health
xpectancy) will be evaluated. During the specific actionable recom-
by multilevel actions between patients and clinicians for better clinical

www.thelancet.com Vol 110 December, 2024
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Fig. 2: Roadmap for translating genetic data to a genetic risk profile as a multilevel intervention in primary care. In step 1, enrolled
participants’ genetic data are analysed by 23andMe’s Clinical Laboratory Improvement Amendments (CLIA) certified genotyping process.
Imputation and quality controls are conducted through the Trans-Omics for Precision Medicine (TOPMed) server to ensure the integrity and
reliability of the genetic data, as well as to impute the GWAS variants. Step 2 involves identifying available GWAS variants and weights to create
the raw Polygenic Risk Scores (PRS). The PRS is adjusted for genetic ancestry using reference data such as the 1000 Genomes Project Phase 3
and applied to validation data such as the UK Biobank to establish risk categories and compute ORs. In step 3, these scores are converted into 3
risk levels based on the established thresholds. In step 4, a report with precision treatment is created and communicated to both the participant
and the provider to make informed and educated decisions. Behavioural interventionists (research staff who are trained, certified, and su-
pervised by a team of genetic counsellor, psychologist, and psychiatrist) offer personalised guidance on behaviour change, leveraging the
updated genetic insights. The outcome aims to increase lung cancer screening orders, improve participant adherence, promote smoking
cessation, and highlight the benefits of tobacco treatment.

Articles
compute ORs. The PRSs were converted into three
distinct risk levels based on these established
thresholds.

Finally, these risk profiles were integrated into a
multi-level intervention strategy, where precision treat-
ment reports were generated and communicated to both
participants and their healthcare providers. These reports
serve as a foundation for informed, shared decision-
making, aimed at motivating health behaviour changes
such as increased lung cancer screening, improved
participant adherence, and successful smoking cessation.
Behavioural interventionists—trained, certified, and su-
pervised by a multidisciplinary team including genetic
counsellors, psychologists, and psychiatrists—offer per-
sonalised guidance to support behaviour change,
leveraging the updated genetic insights.

Ethics
This study was conducted using data from the Geneti-
cally Informed Smoking Cessation Trial (GISC),27

UKBB,28 AoU29 and 1000G.30,31 The 1000G was used
for genetic ancestry inference. The GISC, UKBB, and
AoU cohorts were used for PRS validation. The ethical
approval for each dataset was obtained from the
respective authorities as follows:
www.thelancet.com Vol 110 December, 2024
GISC
The study was approved by the Institutional Review
Board at Washington University in St Louis (Reference
Number: 201305128).

UKBB
Ethical approval was granted by the National Research
Ethics Service Committee North West—Haydock
(Reference Number: 11/NW/0382).

AoU
The study was approved by the Institutional Review
Board of the All of Us Research Program. Detailed in-
formation can be found here.

1000G
Ethical approval was granted by the respective ethical
review boards of the participating institutions.
Detailed ethical considerations for each contributing
institution can be found in the project’s
documentation.

For UKBB, AoU and GISC, all participants provided
written informed consent at the time of enrolment,
which includes consent for genetic and health data us-
age in various research purposes. Participants in the
5
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1000G provided written informed consent, allowing
their genetic data to be used for research.

Key datasets
1000 Genomes Project Phase 3 reference data and principal
components analysis
We use the 1000G30,31 as a reference for genetic ancestry
inference, as it is publicly accessible and includes ge-
notype data from diverse populations. The 1000G data-
set includes 3202 individuals, with 633 Europeans
(EUR), 893 Africans (AFR), 585 East Asians (EAS), 601
South Asians (SAS), and 490 Admixed Americans
(AMR). We conducted principal components analysis
(PCA) in PLINK 2.032 on all 3202 samples, using 55,248
single-nucleotide polymorphisms (SNPs) from the rec-
ommended SNPs set by gnomAD33 that were also found
in the 1000G reference data, UKBB and GISC validation
data, and 23andMe genotyping array used for the trial
(Fig. 3, Supplementary Figure S1). From this PCA, we
derived SNP weights that are used to compute ancestry
PCs, so genotypes from different validation datasets
could all be projected onto the same “PC space”
(Supplementary Table S1).
Fig. 3: Cross-dataset distribution of genetic ancestry via PCA Projectio
of principal components analysis (PCA) loadings obtained from the 1000
external datasets, the Genetically Informed Smoking Cessation (GISC) trial
1000G. The resultant PCA-space was then used to project genotype dat
second PCs for each individual in these datasets, with points distinctly m
We ran a random forest classifier to map individuals
in 1000G to their respective populations using the first
5 PCs. We then projected our validation data to the
1000G-based “PC space” and applied the previously
trained random forest classifier to produce “genetically
inferred” ancestry labels. Individuals with a predicted
probability less than 90% for any of the five ancestries
were labelled as “Other.” While our proposed frame-
work removes the need for labels in the clinic, we use
them here for illustrative purposes in validation.

Study dataset and PRS validation
GISC trial. The GISC trial is a prospective, random-
ized, placebo-controlled trial conducted at Washington
University in St. Louis, involving 822 current or previ-
ous smokers. Genetic data were available for 796 in-
dividuals, comprising 503 of EUR, 257 of AFR, and 36
individuals of “Other” self-reported ethnicity. The
average age was 46.5 years (s.d. 11.3 years), with 54.4%
female. While this dataset was not used for PRS pre-
diction due to the small sample size and absence of lung
cancer outcomes, it was utilized to validate the ancestry-
adjustment procedure due to its resemblance to the
ns in 1000G, GISC, UKBB, and AoU. This figure illustrates the utility
Genomes Project Phase 3 (1000G) in discriminating ancestries within
. PCA was initially conducted on the globally diverse genotype data of
a from GISC, UKBB, and AoU. The scatter plot displays the first and
arked by genetically inferred ancestry.

www.thelancet.com Vol 110 December, 2024
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expected populations in our PRECISE and MOTIVATE
trials.

UKBB. The UKBB provides extensive genetic and
clinical data from approximately 500,000 British in-
dividuals. Our analysis included 340,154 unrelated par-
ticipants by genetically inferred ancestry: 6844 AFR, 730
AMR, 770 EAS, 313,279 EUR, 7197 SAS, and 11,334
Other. After excluding individuals with missing age or
sex information, the average age of the cohort was 56.6
years (s.d. 8.2 years), with 54.1% female. The lung
cancer analysis comprised 1830 cases (ICD10 codes
C34.0–C34.9) and 338,334 controls, while the smoking
cessation analysis involved 152,406 ever-smokers
(117,483 former and 34,923 current). Sample charac-
teristics regarding sex, age, and outcomes are provided
in Supplementary Table S2a and b.

AoU. The AoU dataset is focused on participants from
diverse and historically under-represented backgrounds,
with comprehensive genetic and health record data. Our
study included 210,826 unrelated individuals with
whole-genome sequencing data, comprising 45,108
AFR, 32,563 AMR, 3873 EAS, 110,712 EUR, 1689 SAS,
and 16,881 Other by genetically inferred ancestry. After
excluding those with missing age or sex information,
the average age was 55.3 years (s.d. 14.5 years), with
59.7% female. We identified 1020 lung cancer cases
using SNOMED codes and excluded secondary cancer
cases. For the smoking analysis, we included 36,507
current and 116,409 former smokers. Additional details
regarding sex, age, and outcomes can be found in
Supplementary Table 2c and d.

Validation of Ancestry-Adjustment Procedure. To evaluate
the robustness of our PRS framework across different
populations, we applied our procedure to the GISC,
UKBB, and AoU datasets. The GISC trial, although not
used for PRS prediction, was essential for validating the
ancestry-adjustment procedure. In the UKBB and AoU
datasets, we computed adjusted odds ratios (ORs) to
assess the effectiveness of our risk stratification cate-
gories. Both datasets, with their rich genetic and clinical
data, provided strong validation of our PRS model
across diverse ancestry groups.

Statistics
Construction of polygenic risk scores
Our PRS models incorporate the latest findings by uti-
lizing recently genome-wide association study (GWAS)
summary statistics for lung cancer34 and difficulty quit-
ting smoking.35 The lung cancer GWAS summary sta-
tistics were sourced from the International Lung Cancer
Consortium (ILCCO), which includes 35,732 cases and
34,424 controls after excluding UKBB samples. The
difficulty quitting smoking GWAS summary statistics
www.thelancet.com Vol 110 December, 2024
were derived from the GWAS & Sequencing Con-
sortium of Alcohol and Nicotine use (GSCAN),
comprising about 1,193,150 individuals overall with
373,510 current smokers. Both sets of summary statis-
tics specifically exclude UKBB samples to avoid over-
lapping with our validation data. While these GWAS
summary statistics are derived from predominantly
European ancestry, they also include a substantial pro-
portion of non-European ancestry— about 26% for lung
cancer and 21% for difficulty quitting smoking— which
enhances the generalizability of the findings.36,37

For lung cancer risk, we started with 128 published
SNPs found to be predictive of 5-year and lifetime cumu-
lative risk for lung cancer.20 Out of these, 101 SNPs over-
lapped with the published summary statistics, reference
(1000G), and validation data (UKBB, GISC and AoU), and
the 23andMe genotyping array used for the trial
(Supplementary Figure S1). These SNPs were assigned
effect sizes from the fixed-effect meta-analyses estimates in
the latest lung cancer GWAS that includes EUR, AFR, and
EAS ancestry.34 For difficulty quitting smoking, we iden-
tified 175 SNPs predictive for smoking cessation following
the same filtering procedure for lung cancer.35

The PRS construction began with the alignment of
genotype data to the summary statistics, ensuring
consistent PRS regardless of allele coding. Specifically,
for any SNP G with reversed alleles, we recoded it as 2−
G to avoid discrepancies. The raw PRS for an individual
i with M SNPs was computed as

PR Si = β1Gi1 + β2Gi2 +⋯ + βMGiM .

PRS calculations were performed using R, with ge-
notype data input via the genio package.38 PRS SNPs and
weights for lung cancer and difficulty quitting smoking
are provided in Supplementary Tables S3–S4, respec-
tively. We also used FAVOR (Functional Annotation of
Variants Online Resources) to map each variant to a
specific gene and functional annotation.39

Standardizing PRS distributions across the continuum of
genetic ancestry
We standardised the PRS distributions for lung cancer and
difficulty quitting smoking using the 1000G dataset,
employing a regression-based method to adjust for distri-
butional differences across ancestries (Supplementary
Tables S5–S6).40 This adjustment process involves two
key steps:

1. Mean adjustment: we conducted a linear regression
of the raw PRS against the top five PCs derived from
the PCA:
PR Si = α0 + α1PCi1 + α2PCi2 +…+ α5PCi5 + emean
i

We then computed residuals ri of the raw PRS that
account for mean differences in PRS distributions
7
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across ancestry:

ri =PR Si − α̂0 − α̂1PCi1 −⋯ − α̂5PCi5.

2. Variance adjustment: using the square residuals r2i
as a proxy for PRS variance, we ran a secondary
linear regression:
r2i = γ0 + γ1PCi1 + γ2PCi2 + … + γ5PCi5 + evari

The final ancestry-adjusted PRS for each individual i
was then computed as:

PRSadji = PR Si − α̂0 − α̂1PCi1 −⋯ − α̂5PCi5
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
γ̂0 + γ̂1PCi1 + γ̂2PCi2 + … + γ̂5PCi5

√

This standardization resulted in a PRS distribution
with mean 0 and variance 1 across ancestries, ensuring
that genetic risk is accurately reflected independent of
ancestry. This method is crucial for individuals with
admixed or unknown ancestry, where discrete ancestry-
specific models are inappropriate.41,42

Definition of patient risk categories
We converted continuous genetic risks to categorical
risk levels to support clinical communication and
actionability.43,44 The risk levels were designed for use in
2 ongoing trials in high-risk patients that evaluate the
effect of personalised risks on motivating them to
engage in cancer screening and tobacco treatment.
Therefore, for lung cancer, we defined risk categories as
the bottom 20%, middle 60%, and top 20% of the PRS
distribution. These thresholds aligned with recent PRS
risk stratification analyses for lung cancer.19 It is
important to note that all patients who receive this
intervention are already at risk, due to factors such as
heavy smoking or family history. Therefore, the bottom
20% is categorised as “at risk”, the middle 60% as “at
high risk”, and the top 20% as “at very high risk”, which
is expected to have approximately two-fold increased risk
compared to the “at risk” group.

For difficulty quitting smoking, which is a behav-
ioural phenotype related to substance dependence, we
opted for a more agnostic approach by dividing the PRS
distribution into equal thirds (top, middle, and bottom
33.3%). Since all patients receiving this intervention are
active smokers, the bottom 33.3% are categorised as “at
risk”, with the middle and top 33.3% categorised as “at
high risk” and “at very high risk”, respectively.

To establish standardised thresholds, we computed
PRS and ancestry PCs in the 1000G reference dataset.
After running our ancestry-adjustment procedure, we
identified percentiles for each ancestry-adjusted PRS
distribution, which were applied to our UKBB and AoU
validation data. These thresholds can also be used in
future clinical applications with new validation datasets.
Adjusted odds ratios of genetic risk
We quantified patient risk as ORs of each outcome (lung
cancer and difficulty quitting smoking) for individuals at
“high risk” and “very high risk”, relative to individuals
in the “at risk” category. Patients enrolled in either of
our trials are considered at risk—for instance, meeting
eligibility criteria for lung cancer screening or active
tobacco smokers.26 Therefore, we used the “at risk”
category (i.e. “lowest genetic risk”) as the reference
group to further identify individuals at particularly
elevated genetic risk, who may benefit most from more
comprehensive intervention and treatment strategies.

For each PRS model, we created a categorical vari-
able PRScat taking values according to the three risk
categories. Then, we ran logistic regressions with
respect to PRScat, using “at risk” as the reference cate-
gory. For smoking cessation analysis, we adjusted for
age, sex, and 20 ancestry PCs. For lung cancer analysis,
we additionally adjusted for smoking status (ever-
smoker, never-smoker, or no-response). Each regression
model yielded coefficients β̂ corresponding to “high
risk” and “very high risk”, and adjusted ORs for each
PRS category (relative to “at risk”) are reported as eβ̂,
along with corresponding 95% confidence intervals
(CIs). These adjusted ORs will communicate the genetic
risk of lung cancer or difficulty quitting smoking that is
independent of the additional covariates. Within UKBB
and AoU, we conducted these analyses across all an-
cestries combined, as well as within specific ancestry
groups.

We also compared the risk stratification of our ancestry-
adjusted PRS with “ancestry-matched” PRS. That is, we
compared an individual’s raw PRS with the corresponding
ancestry-specific raw PRS distribution in 1000G, i.e.
European-only 1000G PRS distribution for individuals of
genetically predicted European ancestry. For individuals
with “Other” predicted ancestry, we used the overall raw
PRS distribution among all 1000G samples.

Role of funders
The funders played no role in the study design, analysis
and collection of data, interpretation of results, or
writing and submission of the paper.

Results
Harmonization PRS distributions across ancestry
We found notable variation in raw PRS distributions
across ancestries, highlighting that applying a universal
cutoff for raw PRS without accounting for ancestry can
lead to biased risk profiling and inaccurate clinical rec-
ommendations (Fig. 4). However, our regression-based
ancestry adjustment across all three datasets yields
much more standardised distributions across ancestries.
Specifically, the adjusted proportions of individuals
within each risk category closely align with 20%-60%-
20% for lung cancer, and 33.3%-33.3%-33.3% for
www.thelancet.com Vol 110 December, 2024
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Fig. 4: Ancestry adjustment of PRS for lung cancer and quit difficulty PRS across ancestral populations. We showcase the adjustment
process for PRS for (a) lung cancer and (b) difficulty quitting smoking within the 1000 Genomes Project, GISC Trial, UK Biobank, and All of Us
datasets. It displays both raw and ancestry-adjusted PRS, with data points color-coded according to genetically inferred ancestries. EAS, AMR,
and SAS ancestries were removed for GISC due to their small sample sizes. Ancestry adjustment effectively centres the PRS for different an-
cestries, mitigating the risk of incorrect stratification due to ancestry-related biases. Dotted vertical lines correspond to the 20th and 80th
percentiles for lung cancer PRS distribution and 33rd and 67th percentiles for difficulty quitting smoking PRS among all 3202 samples in the
1000 Genomes Project.
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difficulty quitting smoking. This adjustment ensures
that patients of any background can be compared
against a unified reference distribution for each
outcome (Supplementary Table S6a–f). This stand-
ardisation places individuals across all ancestries on the
same scale, allowing for a single risk stratification cutoff
regardless of ancestral background. Such measures
importantly enable fair risk assessment for individuals
who may be labelled as “Other”, who may not fit well
into a binned ancestry-specific risk model.
www.thelancet.com Vol 110 December, 2024
Risk stratification for lung cancer and smoking
cessation in UKBB and AoU
After assigning UKB and AoU participants as “at risk”,
“high risk”, or “very high risk” for lung cancer and
difficulty quitting smoking, we identified significant
ORs for both traits across different ancestry groups
(Fig. 5, Supplementary Tables S7–S10). Our ancestry-
adjusted PRS yielded similar ORs as using ancestry-
matched distributions, demonstrating that a single
PRS distribution can be appropriately applied to all
9
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Fig. 5: Risk stratification for lung cancer and difficulty quitting smoking using raw and ancestry-adjusted PRS. This figure illustrates
adjusted odds ratios with associated 95% confidence intervals of PRSs for (a) lung cancer and (b) difficulty quitting smoking among UK Biobank
(N = 340,154 for lung cancer and N = 152,406 for difficulty quitting smoking), and All of Us (N = 210,826 for lung cancer and N = 152,916 for
difficulty quitting smoking) participants. For difficulty quitting smoking, we adjusted for age, sex, and 20 ancestry PCs. For lung cancer, we
additionally adjusted for smoking status (ever-smoker, never-smoker, or no-response). We compared risk stratification using a raw PRS with
ancestry-matched percentiles, and our ancestry-adjusted PRS with the same percentiles for all individuals.
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individuals. In UKBB, the overall adjusted ORs for lung
cancer 1.42 (95% CI: 1.23–1.65) for the “high risk”
group and 1.87 (95% CI: 1.59–2.20) for “very high risk”
group compared to the “at risk” group (Supplementary
Table S7a). In AoU, these adjusted ORs were slightly
higher—1.49 (95% CI: 1.23–1.83) for “high risk” group
and 2.23 (95% CI: 1.81–2.77) for “very high risk” group.
While the adjusted ORs in non-European ancestries
within UKBB were not significant, they were significant
and even higher than those for European ancestries
within AoU (Supplementary Table S8a). Moreover, the
ORs for “Other” ancestry group in AoU were much
higher and more significant using the ancestry-adjusted
PRS compared to raw PRS, where an ancestry-matched
risk distribution is least suitable (Supplementary
Table S8b).

We observed similar patterns for difficulty quitting
smoking, where the ancestry-adjusted PRS performed
similar or better than using ancestry-matched distribu-
tions for raw PRS. In UKBB, the overall adjusted ORs
www.thelancet.com Vol 110 December, 2024
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for difficulty quitting smoking were 1.19 (95% CI:
1.15–1.23) for “high risk” group and 1.38 (95% CI:
1.34–1.42) for “very high risk” group (Supplementary
Table S9a). In AoU, the adjusted ORs were 1.19 (95%
CI: 1.15–1.23) for “high risk” group and 1.38 (95% CI:
1.34–1.42) for “very high risk” (Supplementary
Table S10a) group. Notably, we observed slightly
higher and more significant ORs in non-European AoU
participants when using the ancestry-adjusted PRS
compared to the raw PRS. Although the improvement
within each specific ancestry group was not as sub-
stantial, the aggregate ORs in all non-European groups
increased from 1.06 (95% CI: 1.01–1.10) to 1.10 (95%
CI: 1.06–1.15) in the “high risk” group, and from 1.17
(95% CI: 1.12–1.22) to 1.23 (95% CI: 1.18–1.28) in the
“very high risk” group.

Using ancestry-adjusted PRS ensures accurate risk
stratification across all ethnic backgrounds, a critical
consideration given the substantial variability in raw
PRS distributions across diverse populations. The
outcome-based validation in UKBB and AoU further
verifies that the ancestry-adjusted PRS provides valid
risk stratification, and often yields better risk stratifica-
tion for non-European ancestries compared to ancestry-
matched modelling. These findings collectively facilitate
a more robust and standardised application of PRS in
clinical reporting.

Translating genetic risk into clinical reports
We have implemented our analytic framework in two
recently launched trials—PRECISE and MOTIVATE—
which are currently in the preliminary phases of
recruitment and aim to engage over 100 physicians and
1600 patients. These trials are designed to promote
health behaviour change using genetically informed
multi-level interventions, RiskProfile and PrecisionTx,
respectively. These interventions incorporate PRS to
communicate precision risk of lung cancer and preci-
sion benefits of smoking cessation, promoting
evidence-based practices such as cancer screening and
tobacco treatment in individuals who smoke and/or are
eligible for lung cancer screening. Based on functional
information from FAVOR, our lung cancer PRS con-
tains putative loss-of-function variants in genes such as
CHRNA545 and CHEK2 (Checkpoint kinase 2),46 which
are known to be involved in nicotine addiction and
DNA damage repair, respectively (Supplementary
Table S3). Our PRS for difficulty quitting does not
contain similar loss-of-function variants, but still in-
cludes variants in smoking-related genes such as
DRD2 (Dopamine receptor D2)47 and UBXN2A (UBX
domain 2A),48 which are associated with dopaminergic
signaling and stress response mechanisms
(Supplementary Table S4). These biological insights
reinforce the medical relevance of our PRS models by
linking genetic variants to key pathways involved in
smoking-related diseases.
www.thelancet.com Vol 110 December, 2024
Most preventive practices such as lung cancer
screening and tobacco treatment are still largely
underutilised in primary care. Thus, we aim to evaluate
whether personalised genetic risk increases provider
practices on and patient engagement of these preventive
practices. Access to 23andMe genotypes and expanded
health information has been a motivating component
for the research participants. Once patients provide
samples for genotyping, we generate personalised risk
profiles for both primary care providers and patients to
support behaviour change. We inform patients about
their genetic risk category according to the ancestry-
adjusted PRS distributions, along with the ORs rela-
tive to the “at risk” group. We also provide personalised
clinical risks using independent risk models and
actionable recommendations to motivate cancer
screening and tobacco treatment (Figs. 6 and 7).24–26 This
approach is designed to integrate seamlessly into
routine diagnostic workflows, enhancing the utilization
of preventive services in primary care.

Through our approach, we propose clear and patient-
friendly communication strategies, including visual aids
and educational materials, to facilitate understanding
and meaningful interactions between patients and
healthcare providers. Effectively communicating both
the risk and precision of the PRS results is challenging
but essential to empower patients to make informed
decisions about their health. Moreover, it is crucial to
consider patient perceived risk, perceived benefit, and
personal relevance when discussing PRS results with
patients. Patients’ understanding and interpretation of
PRS may vary, leading to differing levels of engagement
in preventive actions. Hence, comprehensive patient
education programs can enhance awareness and
knowledge about PRS, its implications, and available
preventive measures.
Discussion
In this study, we introduce a translational roadmap and
analytical framework for implementing PRS within
multilevel interventions to communicate precision risk
and benefit and ultimately promote health behaviour
change. Specifically, we frame our translational message
specifically for patients at high risk who have not
received guideline-recommended cancer screening or
tobacco treatment,49–52 taking special care to ensure in-
clusion of and fair risk assessment across diverse an-
cestries via PC-regression-based PRS adjustment. This
framework will be evaluated in two cluster-randomised
trials to evaluate the effectiveness of comprehensive
risk profiles in motivating positive health decision-
making from both patients and primary care providers.

A key feature of our framework is standardisation of
PRS distributions across diverse ancestries using widely
accessible data from the 1000G dataset, as an alternative
to methods in the GenoVA (15) and eMERGE (14)
11
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Fig. 6: Example 1 clinical report: RiskProfile. We present example 1 for genomically informed interventions using the GREAT framework.
RiskProfile is designed to motivate lung cancer screening and tobacco treatment among screening-eligible patients. This intervention utilises
ancestry-adjusted PRS to stratify patients into “at risk” (yellow), “high risk” (orange), and “very high risk” (red) genetic risk categories. RiskProfile
focuses on prevention and expands beyond personalised risk to also provide personalised benefit of cancer screening and use a multilevel
intervention design directed to both physicians and patients in clinical settings. In our PRECISE trial (NCT05627674), the effect of RiskProfile on
clinician ordering and patient completion of lung cancer screening will be evaluated.
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Fig. 7: Example 2 clinical report: PrecisionTx. We present example 2 for genomically informed interventions using the GREAT framework.
PrecisionTx is designed to motivate tobacco treatment among patients who smoke. This intervention utilises ancestry-adjusted PRS to stratify
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studies that use data from the Mass-General Brigham
Biobank and AoU, respectively. We validated the
transferability of our 1000G-based standardization in
external datasets from the UKBB, GISC and AoU,
allowing future trials to adopt a similar methodology
irrespective of their specific genetic data. Further-
more, from large-scale biobank analysis, we verified
that our ancestry-adjusted PRSs achieved similar or
better risk stratification than naïve ancestry-matching,
which importantly enables the inclusion of in-
dividuals of mixed or uncertain ancestry. By utilizing
our provided PC loadings and PRS standardization
formula for lung cancer and difficulty quitting
smoking, new patients in these trials can receive ac-
curate risk categorization reports, bypassing the
inaccuracies of self-reported ethnicity and the need
for re-training PCA models.

Unlike most current research that evaluates PRS-
enabled interventions in general patient populations,
our work uniquely focuses on designing and evaluating
these interventions specifically among patients already
at high risk due to factors like smoking or family his-
tory. While these individuals will benefit tremendously
from lung cancer screening and smoking cessation, they
may not be fully motivated to quit smoking or make
other positive health changes from general medical
advice alone. Therefore, we believe that within this
context of a high-risk patient population, introducing an
additional dimension of genetic risk may further
encourage individuals to follow through with cancer
screening or tobacco treatment. Importantly, we aim to
follow best practices of communicating uncertainties
and potential imprecision in risk estimates and thresh-
olds to maintain transparency with patients.

Our work has several limitations, but we hope to
contribute to the knowledge pool for the best practices
in creating PRS-enabled interventions that may be dis-
ease-, population-, or context-specific. Our approach is
tailored for unique outcomes, populations, and contexts
to optimise health impact. While our framework is
broadly applicable within primary care, the specific
interplay between genetic and clinical risk, as well as
modes of communicating and addressing patient risk,
will vary across specific diseases and contexts.53,54 For
example, the individuals enrolled in our two trials share
similar clinical profiles in line with eligibility for lung
cancer screening and tobacco treatment. For other out-
comes or populations of interest, domain expertise to
identify the key baseline characteristics for high clinical
risk is crucial to best communicate comprehensive risk
and expected benefits from behaviour change.
patients into “at risk” (yellow), “high risk” (orange), and “very high risk”
expands beyond personalised risk to also provide personalised benefit of to
both physicians and patients in clinical settings. In our MOTIVATE trial (N
adherence, and smoking abstinence will be evaluated.
Our PRS model also has two key limitations. First is
the underrepresentation of non-European populations
in the multi-ancestry GWAS used to derive the PRS
weights, a challenge that persists across existing
GWASs,55–58 not limited to lung cancer and smoking
cessation. This underrepresentation may reduce the
predictive power of the PRS in non-European pop-
ulations. However, with ongoing efforts to recruit in-
dividuals of diverse ancestry in genetic studies, we
expect this challenge to be resolved in the coming years.

In addition, our current PRS models were con-
structed from a small set of significant predictive vari-
ants. While the PRSs include variants within genes
associated with lung cancer and smoking,45–48 only a
small number were coding. Incorporating more bio-
logical information59,60 into the model-building process,
beyond evaluating genome-wide significance, may
further enhance the interpretability and accuracy of the
genetic risk models. Furthermore, with the develop-
ment of new PRS approaches and toolkits to enhance
predictive power in diverse populations from multi-
ancestry data,42,61–64 we can iteratively refine PRS imple-
mentation in our trial to synchronise with the latest
advancements. Maintaining a dynamic PRS framework
that aligns with the latest advancements will reduce the
implementation gap and maximise impact in preventive
healthcare outcomes. Following current genetic coun-
selling recommendations, we have established a process
to incorporate new evidence into our intervention for
smoking cessation and lung cancer risk. This process
will adjudicate new population-specific evidence on ge-
netics and biomarkers, evaluating its impact on personal
and population-level risk changes, and effectively
communicating the dynamic nature of genetic evidence
to patients and providers.

Looking to the future, we must also consider the
scalability of precision interventions to real-world clinics
and studies. A notable gap in current practice is the
absence of genetic information in electronic health re-
cords (EHRs) for decision support and the lack of PRS
generation in clinical labs. Implementing precision in-
terventions in primary care necessitates a workflow that
incorporates EHRs for recruitment, biomarker testing
protocols, and standardised processes to generate per-
sonalised intervention reports.65 This requires collabora-
tions with primary care stakeholders, community
advisory boards, genetic counselling, and health
communication to improve intervention clarity, accuracy,
and impact.8,9,66–68 To reduce burden, we need to leverage
existing EHR tools (e.g. Best Practice Advisories) and
training to efficiently facilitate physician prescribing.69,70
(red) genetic risk categories. PrecisionTx focuses on treatment and
bacco treatment and use a multilevel intervention design directed to
CT05846841), the effect of PrecisionTx on clinician ordering, patient
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Understanding of mechanistic and implementation out-
comes will guide scalable, efficient delivery components
for integration into clinic workflows,65 using trained
embedded staff, and digital therapeutic tools to enable
these PRS-informed behavioural interventions.71

In conclusion, we provide a roadmap that in-
corporates PRSs using multi-ancestry GWAS-based
weights, translates risk into actionable categories, com-
municates comprehensive risk effectively, considers pa-
tient perspectives, and accommodates evolving science is
essential for the equitable and pragmatic translation of
PRS into clinical care. By addressing the barriers and
implementing potential solutions at each stage, we can
leverage PRS to improve preventive healthcare and
significantly reduce the burden of lung cancer.

Contributors
T.C., H.Z., and L.C. conceived the project, T.C.; G.P., and L.F. carried
out all data analyses under the supervision of H.Z. and L.C.; N.A. and
X.W. organised data in AoU; G.S. and D.J. provided GWAS summary
statistics for difficulty quitting smoking. T.C.; G.P., H.Z., and L.C.
drafted the manuscript. All authors reviewed and approved the final
version of the manuscript.

Data sharing statement
Genotype data from 1000G are publicly available and can be directly
downloaded from the following links:

1. Genotype data: https://www.cog-genomics.org/plink/2.0/resources.
2. Population information: ftp://ftp.1000genomes.ebi.ac.uk/vol1/

ftp/release/20130502/.
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_

2504_high_coverage/1000G_698_related_high_coverage.sequence.index.
UKBB genotype and phenotype data are available via application

through the UK Biobank website: https://www.ukbiobank.ac.uk/.
AoU genotype and phenotype data are available via application through

the All of Us Research Program: https://www.researchallofus.org/.
GISC data is available via application through NIDA Center for

Genetic Studies: https://nidagenetics.org/
No additional data were collected for this study. All results are

presented in the paper’s tables and figures.

Code sharing
R code and plink commands, as well as accompanying data, used for
analysis are provided in a walkthrough available on GitHub at https://
github.com/chen-tony/GREAT.

Declaration of interests
Laura J. Bierut (LJB) is listed as an inventor on Issued U.S. Patent
8,080,371, “Markers for Addiction” covering the use of certain SNPs in
determining the diagnosis, prognosis, and treatment of addiction, LJB
receives consulting fees from Research Triangle Institute for grant
R01DA048824 “Identifying blood-based DNA methylation biomarkers
of cannabis use” is a member of US Food and Drug Administration
Tobacco Products Scientific Advisory Committee, and co-chair of Na-
tional Comprehensive Cancer Network Smoking Cessation Panel.
Michael J. Bray (MJB) was an employee at ThinkGenetic, Inc, where he
had the option to receive stock options at the time the work was con-
ducted. Where authors are identified as personnel of the International
Agency for Research on Cancer/World Health Organization, the authors
alone are responsible for the views expressed in this article and they do
not necessarily represent the decisions, policy, or views of the Interna-
tional Agency for Research on Cancer/World Health Organization.

All other authors have no conflict of interests to report.

Acknowledgements
We would like to thank Reeya Joseph for her editorial support with the
introduction, Peter Kraft for his advice on our manuscript, and Scott
www.thelancet.com Vol 110 December, 2024
Vrieze for his assistance with summary statistics for difficulty quitting
smoking. We would also like to thank and acknowledge the participants
enrolled in the UK Biobank (obtained under UK Biobank resource
application 52008) and GISC trial for contributing vital data to this work.

This research was supported by NIH Training Grant T32GM135117
and NSF Graduate Research Fellowship DGE-2140743 (T.C.),
R01HG011035, R01ES036042, R01HL173869 (D.L.), National Cancer
Institute (NCI) R01CA268030, NIDA R01DA056050, National Institute
on Drug Abuse (NIDA) R34DA052928, NIDA K12DA041449, Taylor
Family Institute for Innovative Psychiatric Research (A.T.R.), NCI
R01-CA268030, NIDA R01-DA056050 (L.J.B.), R35-3CA197449, R01-
HL163560, U01-HG009088, and U01-HG012064 (X.L.), NIH
Intramural Research Program (H.Z.), NIH 5T32-HL007776–25, R01-
DA056050, R01-CA268030, P30-CA091842-19S5, P30-CA091842-16S2
and P50-CA244431 (L.C.) and NCI grant U19-CA203654
(Integrative Analysis of Lung Cancer Etiology and Risk Application and
Translation).

Appendix A. Supplementary data
Supplementary data related to this article can be found at https://doi.
org/10.1016/j.ebiom.2024.105441.
References
1 Kocarnik JM, Compton K, Dean FE, et al. Cancer incidence, mor-

tality, years of life lost, years lived with disability, and disability-
adjusted life years for 29 cancer groups from 2010 to 2019.
JAMA Oncol. 2022;8(3):420–444.

2 Wang X, Romero-Gutierrez CW, Kothari J, Shafer A, Li Y,
Christiani DC. Prediagnosis smoking cessation and overall survival
among patients with non–small cell lung cancer. JAMA Netw Open.
2023;6(5):e2311966.

3 Twyman L, Bonevski B, Paul C, Bryant J. Perceived barriers to
smoking cessation in selected vulnerable groups: a systematic re-
view of the qualitative and quantitative literature. BMJ Open.
2014;4(12):e006414.

4 Torkamani A, Wineinger NE, Topol EJ. The personal and clin-
ical utility of polygenic risk scores. Nat Rev Genet. 2018;19:581–
590.

5 Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical
instruments. Vol. 12, Genome medicine. BioMed Central Ltd.; 2020.

6 Adeyemo A, Balaconis MK, Darnes DR, et al. Responsible use of
polygenic risk scores in the clinic: potential benefits, risks and gaps.
Nat Med. 2021;27:1876–1884.

7 Chiu A, Hartz S, Smock N, et al. Most current smokers desire
genetic susceptibility testing and genetically-efficacious medication.
J Neuroimmune Pharmacol. 2018;13(4):430–437.

8 Ramsey AT, Bray M, Acayo Laker P, et al. Participatory design of a
personalized genetic risk tool to promote behavioral health. Cancer
Prev Res. 2020;13(7):583–592.

9 Ramsey AT, Bourdon JL, Bray M, et al. Proof of concept of a
personalized genetic risk tool to promote smoking cessation: high
acceptability and reduced cigarette smoking. Cancer Prev Res.
2021;14(2):253–262.

10 Quaife SL, Janes SM, Brain KE. The person behind the nodule: a
narrative review of the psychological impact of lung cancer
screening. Transl Lung Cancer Res. 2021;10(5):2427–2440.

11 Quaife SL, Waller J, Dickson JL, et al. Psychological targets for lung
cancer screening uptake: a prospective longitudinal cohort study.
J Thorac Oncol. 2021;16(12):2016–2028.

12 Quaife SL, Marlow LAV, McEwen A, Janes SM, Wardle J. Attitudes
towards lung cancer screening in socioeconomically deprived and
heavy smoking communities: informing screening communica-
tion. Health Expect. 2017;20(4):563–573.

13 Quaife SL, McEwen A, Janes SM, Wardle J. Smoking is associated
with pessimistic and avoidant beliefs about cancer: results from the
International Cancer Benchmarking Partnership. Br J Cancer.
2015;112(11):1799–1804.

14 Linder JE, Allworth A, Bland HT, et al. Returning integrated
genomic risk and clinical recommendations: the eMERGE study.
Genet Med. 2023;25(4):100006.

15 Hao L, Kraft P, Berriz GF, et al. Development of a clinical polygenic
risk score assay and reporting workflow. Nat Med. 2022;28(5):1006–
1013.
15

https://www.cog-genomics.org/plink/2.0/resources
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/1000G_698_related_high_coverage.sequence.index
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/1000G_698_related_high_coverage.sequence.index
https://www.ukbiobank.ac.uk/
https://www.researchallofus.org/
https://nidagenetics.org/
https://github.com/chen-tony/GREAT
https://github.com/chen-tony/GREAT
https://doi.org/10.1016/j.ebiom.2024.105441
https://doi.org/10.1016/j.ebiom.2024.105441
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref1
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref1
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref1
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref1
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref2
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref2
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref2
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref2
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref3
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref3
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref3
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref3
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref4
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref4
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref4
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref5
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref5
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref6
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref6
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref6
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref7
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref7
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref7
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref8
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref8
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref8
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref9
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref9
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref9
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref9
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref10
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref10
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref10
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref11
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref11
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref11
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref12
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref12
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref12
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref12
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref13
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref13
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref13
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref13
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref14
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref14
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref14
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref15
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref15
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref15
http://www.thelancet.com


Articles

16
16 Shieh Y, Eklund M, Madlensky L, et al. Breast cancer screening in
the precision medicine era: risk-based screening in a population-
based trial. J Natl Cancer Inst. 2017;109(5):djw290.

17 Zhang P, Chen PL, Li ZH, et al. Association of smoking and
polygenic risk with the incidence of lung cancer: a prospective
cohort study. Br J Cancer. 2022;126(11):1637–1646.

18 Kanwal M, Ding XJ, Cao Y. Familial risk for lung cancer. Oncol Lett.
2017;13(2):535–542.

19 Zhu M, Lv J, Huang Y, et al. Ethnic differences of genetic risk and
smoking in lung cancer: two prospective cohort studies. Int J Epi-
demiol. 2023;52(6):1815–1825.

20 Hung RJ, Warkentin MT, Brhane Y, et al. Assessing lung cancer
absolute risk trajectory based on a polygenic risk model. Cancer Res.
2021;81(6):1607–1615.

21 Michie S. Making psychological theory useful for implementing
evidence based practice: a consensus approach. Qual Saf Health
Care. 2005;14(1):26–33.

22 Cane J, O’Connor D, Michie S. Validation of the theoretical do-
mains framework for use in behaviour change and implementation
research. Implement Sci. 2012;7(1):37.

23 Atkins L, Francis J, Islam R, et al. A guide to using the Theoretical
Domains Framework of behaviour change to investigate imple-
mentation problems. Implement Sci. 2017;12(1):77.

24 Bray M, Chang Y, Baker TB, et al. The promise of polygenic risk
prediction in smoking cessation: evidence from two treatment tri-
als. Nicotine Tob Res. 2022;24(10):1573–1580.

25 Chen LS, Baker TB, Piper ME, et al. Interplay of genetic risk
(CHRNA5) and environmental risk (partner smoking) on cigarette
smoking reduction. Drug Alcohol Depend. 2014;143:36–43.

26 Tammemägi MC, Katki HA, Hocking WG, et al. Selection criteria
for lung-cancer screening. N Engl J Med. 2013;368(8):728–736.

27 Chen L, Baker TB, Miller JP, et al. Genetic variant in CHRNA5 and
response to varenicline and combination nicotine replacement in a
randomized placebo-controlled trial. Clin Pharmacol Ther.
2020;108(6):1315–1325.

28 Sudlow C, Gallacher J, Allen N, et al. UK biobank: an open access
resource for identifying the causes of a wide range of complex
diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.

29 Bick AG, Metcalf GA, Mayo KR, et al. Genomic data in the all of us
research program. Nature. 2024;627:340–346.

30 Auton A, Abecasis GR, Altshuler DM, et al. A global reference for
human genetic variation. Nature. 2015;526(7571):68–74.

31 Byrska-Bishop M, Evani US, Zhao X, et al. High-coverage whole-
genome sequencing of the expanded 1000 Genomes Project
cohort including 602 trios. Cell. 2022;185(18):3426–3440.e19.

32 Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ.
Second-generation PLINK: rising to the challenge of larger and
richer datasets. GigaScience. 2015;4(1):7.

33 Chen S, Francioli LC, Goodrich JK, et al. A genomic mutational
constraint map using variation in 76,156 human genomes. Nature.
2024;625(7993):92–100.

34 Byun J, Han Y, Li Y, et al. Cross-ancestry genome-wide meta-
analysis of 61,047 cases and 947,237 controls identifies new sus-
ceptibility loci contributing to lung cancer. Nat Genet.
2022;54(8):1167–1177.

35 Saunders GRB, Wang X, Chen F, et al. Genetic diversity fuels gene
discovery for tobacco and alcohol use. Nature. 2022;612(7941):720–724.

36 Martin AR, Gignoux CR, Walters RK, et al. Human demographic
history impacts genetic risk prediction across diverse populations.
Am J Hum Genet. 2017;100(4):635–649.

37 Manrai AK, Funke BH, Rehm HL, et al. Genetic misdiagnoses and the
potential for health disparities. N Engl J Med. 2016;375(7):655–665.

38 Ochoa A. Genio: genetics input/output functions. Available from:
https://CRAN.R-project.org/package=genio; 2023.

39 Zhou H, Arapoglou T, Li X, et al. FAVOR: functional annotation of
variants online resource and annotator for variation across the
human genome. Nucleic Acids Res. 2023;51(D1):D1300–D1311.

40 Ge T, Irvin MR, Patki A, et al. Development and validation of a
trans-ancestry polygenic risk score for type 2 diabetes in diverse
populations. Genome Med. 2022;14(1):70.

41 Lewis ACF, Molina SJ, Appelbaum PS, et al. Getting genetic ancestry
right for science and society. Science. 2022;376(6590):250–252.

42 Kachuri L, Chatterjee N, Hirbo J, et al. Principles and methods for
transferring polygenic risk scores across global populations. Nat
Rev Genet. 2023;24.

43 Belkora J, Moore DH, Hutton DW. Assessing risk communication
in breast cancer: are continuous measures of patient knowledge
better than categorical? Patient Educ Couns. 2009;76(1):106–112.
44 Lautenbach DM, Christensen KD, Sparks JA, Green RC.
Communicating genetic risk information for common disorders in
the era of genomic medicine. Annu Rev Genomics Hum Genet.
2013;14(1):491–513.

45 Krais AM, Hautefeuille AH, Cros MP, et al. CHRNA5 as negative
regulator of nicotine signaling in normal and cancer bronchial
cells: effects on motility, migration and p63 expression. Carcino-
genesis. 2011;32(9):1388–1395.

46 Cybulski C, Masojc B, Oszutowska D, et al. Constitutional CHEK2
mutations are associated with a decreased risk of lung and laryngeal
cancers. Carcinogenesis. 2008;29(4):762–765.

47 Comings DE, Ferry L, Bradshaw-Robinson S, Burchette R, Chiu C,
Muhleman D. The dopamine D2 receptor (DRD2) gene: a genetic
risk factor in smoking. Pharmacogenetics. 1996;6(1):73–79.

48 Teng Y, Rezvani K, De Biasi M. UBXN2A regulates nicotinic re-
ceptor degradation by modulating the E3 ligase activity of CHIP.
Biochem Pharmacol. 2015;97(4):518–530.

49 US preventive services task force. https://www.uspreventiveser
vicestaskforce.org/uspstf/recommendation/lung-cancer-screening;
2021. Lung Cancer.

50 Agency for healthcare research and quality; 2021. https://www.ahrq.
gov/prevention/guidelines/index.html [Clinical Guidelines and
Recommendations].

51 Tobacco Use and Dependence Guideline Panel, US Department
of Health and Human Services. Tobacco use and dependence
guideline Panel. Treating tobacco use and dependence: 2008 update.
Rockville, MD: US Department of Health and Human Services;
2008.

52 Krist AH, Davidson KW, Mangione CM, et al. Screening for lung
cancer. JAMA. 2021;325(10):962–970.

53 Arem H, Loftfield E. Cancer epidemiology: a survey of modifiable
risk factors for prevention and survivorship. Am J Lifestyle Med.
2018;12(3):200–210.

54 Tran KB, Lang JJ, Compton K, et al. The global burden of cancer
attributable to risk factors, 2010–19: a systematic analysis for the Global
Burden of Disease Study 2019. Lancet. 2022;400(10352):563–591.

55 Peterson RE, Kuchenbaecker K, Walters RK, et al. Genome-wide
association studies in ancestrally diverse populations: opportu-
nities, methods, pitfalls, and recommendations. Cell. 2019;179
(3):589–603.

56 Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature.
2016;538(7624):161–164.

57 Need AC, Goldstein DB. Next generation disparities in human
genomics: concerns and remedies. Trends Genet. 2009;25(11):489–
494.

58 Fitipaldi H, Franks PW. Ethnic, gender and other sociodemo-
graphic biases in genome-wide association studies for the most
burdensome non-communicable diseases: 2005–2022. Hum Mol
Genet. 2023;32(3):520–532.

59 Long E, Patel H, Golden A, et al. High-throughput characterization
of functional variants highlights heterogeneity and polygenicity
underlying lung cancer susceptibility. Am J Hum Genet.
2024;111(7):1405–1419.

60 Wang G, Zhou H, Strulovici-Barel Y, et al. Role of OSGIN1 in
mediating smoking-induced autophagy in the human airway
epithelium. Autophagy. 2017;13(7):1205–1220.

61 Zhang H, Zhan J, Jin J, et al. A new method for multiancestry
polygenic prediction improves performance across diverse pop-
ulations. Nat Genet. 2023;25.

62 Jin J, Zhan J, Zhang J, et al. MUSSEL: enhanced Bayesian poly-
genic risk prediction leveraging information across multiple
ancestry groups. Cell Genomics. 2024;4(4):100539.

63 Zhang J, Zhan J, Jin J, et al. An ensemble penalized regression
method for multi-ancestry polygenic risk prediction. Nat Commun.
2024;15(1):3238.

64 Hou K, Gogarten S, Kim J, et al. Admix-kit: an integrated toolkit
and pipeline for genetic analyses of admixed populations. Bioin-
formatics. 2024;40(4).

65 Ayatollahi H, Hosseini SF, Hemmat M. Integrating genetic data
into electronic health records: medical geneticists’ perspectives.
Healthc Inform Res. 2019;25(4):289.

66 Bourdon JL, Dorsey A, Zalik M, et al. In-vivo design feedback and
perceived utility of a genetically-informed smoking risk tool among
current smokers in the community. BMC Med Genomics.
2021;14(1):139.

67 Ramsey AT, Chen LS, Hartz SM, et al. Toward the implementation
of genomic applications for smoking cessation and smoking-related
diseases. Transl Behav Med. 2018;8(1):7–17.
www.thelancet.com Vol 110 December, 2024

http://refhub.elsevier.com/S2352-3964(24)00477-8/sref16
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref16
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref16
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref17
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref17
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref17
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref18
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref18
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref19
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref19
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref19
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref20
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref20
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref20
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref21
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref21
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref21
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref22
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref22
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref22
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref23
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref23
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref23
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref24
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref24
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref24
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref25
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref25
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref25
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref26
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref26
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref27
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref27
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref27
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref27
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref28
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref28
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref28
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref29
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref29
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref30
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref30
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref31
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref31
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref31
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref32
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref32
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref32
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref33
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref33
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref33
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref34
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref34
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref34
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref34
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref35
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref35
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref36
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref36
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref36
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref37
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref37
https://CRAN.R-project.org/package=genio
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref39
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref39
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref39
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref40
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref40
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref40
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref41
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref41
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref42
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref42
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref42
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref43
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref43
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref43
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref44
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref44
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref44
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref44
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref45
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref45
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref45
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref45
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref46
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref46
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref46
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref47
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref47
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref47
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref48
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref48
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref48
https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/lung-cancer-screening
https://www.uspreventiveservicestaskforce.org/uspstf/recommendation/lung-cancer-screening
https://www.ahrq.gov/prevention/guidelines/index.html
https://www.ahrq.gov/prevention/guidelines/index.html
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref51
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref51
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref51
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref51
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref51
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref52
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref52
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref53
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref53
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref53
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref54
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref54
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref54
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref55
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref55
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref55
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref55
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref56
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref56
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref57
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref57
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref57
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref58
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref58
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref58
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref58
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref59
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref59
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref59
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref59
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref60
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref60
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref60
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref61
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref61
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref61
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref62
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref62
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref62
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref63
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref63
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref63
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref64
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref64
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref64
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref65
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref65
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref65
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref66
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref66
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref66
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref66
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref67
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref67
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref67
http://www.thelancet.com


Articles
68 Chen LS, Baker TB, Ramsey A, Amos CI, Bierut LJ. Genomic medicine
to reduce tobacco and related disorders: translation to precision pre-
vention and treatment. Addiction Neuroscience. 2023;7:100083.

69 Chen LS, Baker TB, Korpecki JM, et al. Low-burden strategies to
promote smoking cessation treatment among patients with serious
mental illness. Psychiatr Serv. 2018;69(8):849–851.

70 Ramsey AT, Chiu A, Baker T, et al. Care-paradigm shift pro-
moting smoking cessation treatment among cancer center
www.thelancet.com Vol 110 December, 2024
patients via a low-burden strategy, Electronic Health Record-
Enabled Evidence-Based Smoking Cessation Treatment. Transl
Behav Med. 2019;10(6):1504–1514.

71 Kaphingst KA, Kohlmann W, Chambers RL, et al. Comparing
models of delivery for cancer genetics services among patients
receiving primary care who meet criteria for genetic evaluation in
two healthcare systems: BRIDGE randomized controlled trial. BMC
Health Serv Res. 2021;21(1):542.
17

http://refhub.elsevier.com/S2352-3964(24)00477-8/sref68
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref68
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref68
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref69
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref69
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref69
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref70
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref70
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref70
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref70
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref70
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref71
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref71
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref71
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref71
http://refhub.elsevier.com/S2352-3964(24)00477-8/sref71
http://www.thelancet.com

	Genomic insights for personalised care in lung cancer and smoking cessation: motivating at-risk individuals toward evidence ...
	Introduction
	Methods
	Study design
	GREAT framework
	Translation of genetic risk to clinical practice

	Ethics
	GISC
	UKBB
	AoU
	1000G

	Key datasets
	1000 Genomes Project Phase 3 reference data and principal components analysis
	Study dataset and PRS validation
	GISC trial
	UKBB
	AoU
	Validation of Ancestry-Adjustment Procedure


	Statistics
	Construction of polygenic risk scores
	Standardizing PRS distributions across the continuum of genetic ancestry
	Definition of patient risk categories
	Adjusted odds ratios of genetic risk

	Role of funders

	Results
	Harmonization PRS distributions across ancestry
	Risk stratification for lung cancer and smoking cessation in UKBB and AoU
	Translating genetic risk into clinical reports

	Discussion
	ContributorsT.C., H.Z., and L.C. conceived the project, T.C.; G.P., and L.F. carried out all data analyses under the superv ...
	Data sharing statementGenotype data from 1000G are publicly available and can be directly downloaded from the following lin ...
	Code sharingR code and plink commands, as well as accompanying data, used for analysis are provided in a walkthrough availa ...
	Declaration of interests
	Acknowledgements
	Appendix A. Supplementary data
	References


