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ABSTRACT
Background: The demand for fresh strategies to analyze intricate multidimensional data in neuroscience is increasingly evident.
One of the most complex events during our neurodevelopment is adolescence, where our nervous system suffers constant
changes, not only in neuroanatomical traits but also in neurophysiological components. One of the most impactful factors
we deal with during this time is our environment, especially when encountering external factors such as social behaviors or
substance consumption. Binge drinking (BD) has emerged as an extended pattern of alcohol consumption in teenagers, not only
affecting their future lifestyle but also changing their neurodevelopment. Recent studies have changed their scope into finding
predisposition factors that may lead adolescents into this kind of patterns of consumption.
Methods: In this article, using unsupervised machine learning (UML) algorithms, we analyze the relationship between
electrophysiological activity of healthy teenagers and the levels of consumption they had 2 years later. We used hierarchical
agglomerative UML techniques based on Ward’s minimum variance criterion to clusterize relations between power spectrum
and functional connectivity and alcohol consumption, based on similarity in their correlations, in frequency bands from theta to
gamma.
Results:We found that all frequency bands studied had a pattern of clusterization based on anatomical regions of interest related
to neurodevelopment and cognitive and behavioral aspects of addiction, highlighting the dorsolateral and medial prefrontal, the
sensorimotor, the medial posterior, and the occipital cortices. All these patterns, of great cohesion and coherence, showed an
abnormal electrophysiological activity, representing a dysregulation in the development of core resting-state networks. The clusters
found maintained not only plausibility in nature but also robustness, making this a great example of the usage of UML in the
analysis of electrophysiological activity—a new perspective into analysis that, while contributing to classical statistics, can clarify
new characteristics of the variables of interest.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly
cited.
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1 Introduction

As the data load of neurosciences keeps growing, working with
its complexity and dimensionality becomes more difficult. This
is why the need for original perspectives of analysis is becoming
more pressing. In this regard, the emergence of innovative
technologies, such as machine learning (ML), has proven to be a
valuable alternative to the traditional statistical analyses (Bzdok
andMeyer-Lindenberg 2018; Landolfi et al. 2021; Ray,Wijesekera,
and Cirstea 2022).

Originating in the mid-20th century, ML appeared in pursuit of
predicting new outcomes, using intrinsic characteristics from the
data where the algorithm is designed to generalize and classify
unseen data (Badillo et al. 2020). This, the supervised ML (SML),
may be themost commonly knownusage ofML. Furthermore,we
can find unsupervised ML (UML), a set of techniques that allows
us to analyze raw data without preexisting labels, not predicting
any outcome, but grouping data by its similarities or reducing
dimensionality of the general dataset by eliminating redundancy.
The application of UML has increased as novel technologies (ML,
artificial intelligence. . . ) and has been refined, influencing several
lines of research, like disease identification (Eshaghi et al. 2021;
Faghri et al. 2022; Kung et al. 2022) and differential analyses of
traits of interest in healthy population (Ghomroudi, Scaltritti, and
Grecucci 2023; Palacios, Noreña, and Londero 2020; Sorella et al.
2022).

The UML approaches include hierarchical agglomeration algo-
rithms, which involve methods that group variables within the
data based on similarities of their characteristics. This framework
clusters variables in groups, from 1 (where all data are enclosed) to
k groups (where each variable is its own group). These approaches
allow us to discretize dataset in a k number of groups with an
optimal trade-off between information and coherence to achieve
better explainability (Sasirekha and Baby 2013).

Numerous criteria have been designed to group variables based
on their similarity. When aiming to cluster complex data (such
as neuroimaging and electrophysiology data), it is crucial to
minimize internal noise within the clusters. Ward’s minimum
variance criterion (Ward 1963), an enhanced version of the Lance–
Williams dissimilarity formula, facilitates the coherent grouping
of data improving compactness of clustering and maximizing the
information captured within them (Murtagh and Legendre 2014).
This technique facilitates extracting relevant information from
complex interactions.

Sadaghiani, Brookes, and Baillet (2022) noted that electrophys-
iology and, mostly, brain connectivity contain a high degree of
complexity, especially when the system is affected by abnormal
situations, like a disease or a misregulation. Moreover, brain’s
complex dynamics are extremely sensible to both internal and
external factors that may contribute to alter its functioning and
subsequent behavioral outcomes. In this scenario, UML emerges
as a useful approach to disentangle the complex associations
between brain’s functioning data and behavioral profiles.

Adolescence is a critical developmental stage where brain
dynamics change toward a more organized system (Arain et al.
2013). During this period, the brain is undergoing a general

maturation across several functional systems, radically changing
its electrophysiology, with important consequences on cogni-
tion and behavior. One of the most common lifestyle factors
emerging during adolescence is risk-taking behaviors, and more
concerning, intensive alcohol consumption or binge drinking
(BD) (Hammer et al. 2018). BD is characterized by the ingestion
of high doses of alcohol (at least 4 standard alcohol units (SAUs)
for women and 5 for men) within short periods of time of 2–3
h (Courtney and Polich 2009). This pattern of consumption has
been demonstrated to be harmful to the adolescent’s brain, due
to its acute vulnerability against external factors during its devel-
opment (Guerri and Pascual 2010). More precisely, BD has been
shown to lead to abnormal structural (Doallo et al. 2014; Sousa
et al. 2017), functional (Almeida-Antunes et al. 2022; Blanco-
Ramos et al. 2022; Correas et al. 2016), and neuropsychological
impairments (Gil-Hernandez and Garcia-Moreno 2016), which
can have enduring consequences for individuals.

One of the key advancements in the study of adolescent BD
is the identification of predisposition profiles that cause some
individuals to engage in BD during adolescence, an area of
research that is gaining increasing importance. (Green et al.
2023). Neuroanatomical studies have identified brain’s struc-
tural differences, including a reduction in the average volume
of prefrontal, temporal, and parietal regions before BD onset
(Brumback et al. 2016; Squeglia et al. 2017). Regarding neu-
rofunctional evidence, fMRI studies have reported decreased
BOLD signal among prefrontal and parietal regions (Norman
et al. 2011; Wetherill et al. 2013), tightly associated with behav-
ioral control circuits. In addition, electrophysiological studies
using magnetoencephalography (MEG) have found increased
functional connectivity (FC) profiles associated with future BD
patterns later in adolescence, both in inhibitory control networks
(Antón-Toro et al. 2021; Antón-Toro et al. 2022; Del Cerro-
León et al. 2024) and resting-state networks (RSn) (Antón-Toro
et al. 2023). All these findings suggest neurodevelopmental
abnormalities linked to the development of alcohol misuse.
Nevertheless, despite the growing body of evidence concerning
this matter, the specific relationship between complex electro-
physiological profiles and future BD behaviors remains poorly
understood.

With that objective, this prospective study applies UML tech-
niques in the identification of electrophysiological patterns
associated with future alcohol BD in teenagers. We expect,
based on previous results (referenced above), that higher FC
and power spectra patterns, related to alcohol consumption, will
be found. We used a database containing resting-state MEG
signals from adolescents before the onset of alcohol consumption,
and their relationship with consumption habits 2 years later.
Using Ward’s minimum variance clustering, we explored the
interaction between FC and power spectra profiles in association
with future alcohol consumption. This framework allowed us
to identify patterns of electrophysiological activity, distinctive
of higher alcohol intake years later during adolescence, topo-
graphically consistent with the organization of several functional
systems. This method would offer a new perspective regarding
electrophysiological traits associated with BD development by
analyzing the interaction patterns betweenmultiple variables and
complementing the previous statistical analysis and results found
in the field.
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FIGURE 1 Schematic overview of the general workflow, from data acquisition to data treatment, analysis and representation. (A) Representation
of the data sampling and acquisition, with MEG recording and interviewing steps, prior and post 2-year time leap. (B) Representation of the machine
learning workflow, from the initial data sources (Spearman correlations between power spectrum/functional connectivity and alcohol consumption)
to the general steps within the pipeline, with the packages and the programming language used for them; and the data output, with the visual
representation, inscribed in the AAL atlas, of the clusters formed.

2 Methods

2.1 Participants

The sample for this study was comprised of adolescents recruited
from various schools in the Region of Madrid, as part of two inde-
pendent longitudinal projects funded by the Spanish Ministerio
de Sanidad in 2015 and 2017. Both projects followed the same
assessment protocol (Figure 1A), consisting of two evaluation
stages separated by a 2-year follow-up period. Prior to the
experiment, all participants reported no history of alcohol con-
sumption or familiar alcohol use disorder. In addition, all subjects
successfully completed the alcohol use disorder identification test
(AUDIT) (Guillamón, Solé, and Farran 1999), and individuals
who reported prior alcohol use were excluded from the study.
In the first stage (before alcohol use onset), 148 adolescents
agreed to participate in the first arm of the study, undergoing a
semi-structured interview about their drug use habits to exclude
any potential consumers; later, they underwent an MEG study,
consisting in 5-min eyes-closed resting-state, from which 142 also
agreed to participate in an MRI study.

After a follow-up period of 2 years, in the second stage, 104
of these participants underwent the AUDIT test and a semi-
structured interview again, aiming to measure their alcohol
consumption habits. Using this information, we calculated the
quantity of SAUs consumed during regular drinking episodes
for each participant (with a mean consumption of 3.7 ± 2.98),
considering the number of beverages consumed within a 2–3-
h period (a histogram quantifying the values for each alcohol
consumption group can be found in Figure S1). Tobacco and
cannabis usewere controlled by excluding those participantswith
regular use of these substances. Finally, after quality control of

the MEG and MRI data, a final sample of 103 subjects (mean age
13.75 ± 0.64, 53 females) completed the entire protocol and were
selected for analysis.

The sample consisted almost entirely of native-born participants
and was balanced in terms of weight and height; elements
such as parental education, participants’ auto-informed quality
of life, or dedication to the study were also controlled for (for
a more detailed explanation of demographics, see Table S1).
Informed consent was obtained from all participants and their
parents or legal guardians during the first stage of the study,
following the guidelines outlined in the Declaration of Helsinki.
The ethical committee of Universidad Complutense de Madrid
granted approval for the study.

2.2 MRI Recordings

The participants underwent a 3D T1-weighted high-resolution
brain MRI scan with a power of 1.5 T from the Santa Elena
Foundation (General Electric Optima MR450 w, echo time =
4.2 ms, repetition time = 11.2 ms, inversion time = 450 ms, flip
angle = 12◦, field of view = 100, acquisition matrix = 256 × 256,
and slice thickness = 1 mm) or the Clinical Hospital of Madrid
(General Electric Signa HDxt, echo time= 4.2 ms, repetition time
= 11.2ms, inversion time= 450ms, flip angle= 20◦, field of view=
100, acquisition matrix = 256 × 256, and slice thickness = 1 mm).

2.3 MEG Recordings

The recordings were conducted at the Cognitive and Computa-
tional Neuroscience Laboratory (UCM-UPM) of the Biomedical
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Technology Centre (CTB) (Madrid, Spain) using an Elekta Neu-
romag systemwith 306 channels (ElektaAB, Stockholm, Sweden)
placed inside a magnetically shielded room (VacuumSchmelze
GmbH, Hanau, Germany). We acquired 5 min of task-free
(resting-state) data with eyes closed using an online bandpass
filter between 0.1 and 330 Hz, and a sampling rate of 1000 Hz.
The participants were asked to remain still, with eyes closed,
during the time of the study, as relaxed as possible. After 5 min,
the participants were instructed to open their eyes and look for a
fixated cross for another 5 min.

To later calculate their electrical components and subtract them
from the brain signal, we also acquired eye blinks and heartbeat
using two sets of bipolar channels with the same configuration.
To aid in the source reconstruction stage, the head shape of the
participants was also obtained using a Fastrak three-dimensional
digitizer (Polhemus, Colchester, and Vermont).

We initially preprocessed the data using a spatial filtering
provided by the manufacturer (tSSS) (Taulu and Hari 2009)
with MaxFilter software (v 2.2, Elekta AB, Sweden), tuning the
parameters to 0.9 as correlation limit and 10 s as length of
the correlation window. Then, we used the FieldTrip packages
(Oostenveld et al. 2011) to detect artifacts and remove interfering
signals (noise, heart beats, ocular activity) with a SOBI-based ICA
(Belouchrani et al. 1997). Finally, we segmented the data into
4-second epochs, avoiding the artifacted segments.

2.4 Source Reconstruction

As a source model, we defined a homogeneous grid with 1 cm
of separation between sources using the MNI template, yielding
2459 source positions inside the cranial cavity. These sources’
positions were labeled using the AAL atlas (Tzourio-Mazoyer
et al. 2002), and only those 1206 positions designated as 1 of the
78 cortical areas were considered for further analysis. With the
help of a linear normalization between the MNI space standard
T1 image and the subject-specific T1 image, we transformed this
source model into a subject space, segmenting the image into
the different tissues using the unified segmentation algorithm in
SPM12 (Ashburner and Friston 2005). This combinationwas used
to build a realistic single-shell interface representing the inner
skull cavity. Then, we transformed this source and volume con-
duction model into the MEG space using the head shape as aid.

We solved the forward problem by building a lead field based
on a modified spherical solution (Nolte 2003), and the inverse
problem by using an LCMV beamformer (Van Veen et al. 1997),
finally recreating the source-level activity. The spatial filter was
build using LCMV and the covariance matrix generated from
the broadband (2–45 Hz) sensor-space activity, filtered using a
1800th -order FIR filter. To avoid any possible distortion, data
were filtered in two passes, and using 2 s (2000 samples) of real
data at each side of the epoch as padding.

2.5 Power Spectrum

We estimated the relative source-level activity for specific fre-
quencies of each band (theta (4–8 Hz), alpha (8–12 Hz), beta

(12–20 Hz), and gamma (30–45)) using an mtmfft method with
dpss as windowing function, with a 1 Hz smoothing. These data
served as the precise dataset of brain activation in each of theAAL
78 cortical regions for each frequency band.

2.6 Functional Connectivity

We used the phase locking value (PLV), which examines con-
sistency of the phase differences between two time series, to
evaluate FC. To determine the PLV (Bruña, Maestú, and Pereda
2018; Lachaux et al. 1999) for each frequency and epoch, we used
the Hilbert transformation to extract the instantaneous phase
of each signal node at each specified time and then estimated
the synchrony between each pair of signals using the difference
of their phases. Both the band-pass and the Hilbert filters were
applied over the epochs including 2 s of real data as padding
(removed before continuing the analysis).We obtained thewhole-
brain FCmatrix, estimating the PLV between each pair of cortical
sources position. Then, we estimated the PLV between each pair
of the 78 cortical regions using the root mean square of the PLVs.
Finally, we calculated the FC strength of each ROI as the average
PLV value of that ROI.

2.7 Unsupervised Machine LearningWorkflow

Although the usage of independent variables (FC values, power
spectrum, and alcohol consumption) was plausible, our work
focused on the relationship between these variables, not the
variables themselves. To this aim, we decided to work with
Spearman correlation matrices between the electrophysiological
variables and the alcohol consumption, as the relationships
between variables are expected to be nonlinear.

We followed a pipeline (Figure 1B) using predominantly Python
libraries. First, to determine the optimal number of groups into
which our dataset could be divided, we assessed the cluster qual-
ity with varying numbers of groups. This involved using k-means
automatically grouping of the original dataset, iterating with a
range of groups from 2 (the minimal number of groups possible)
to 10 (a quantity estimated as large enough to be adequate).
The efficiency of the groups produced was then assessed by
computing the within-cluster sum of squares (WCSS), as well as
cohesionmeasures such as Silhouette score (Rousseeuw 1987), the
Calinski–Harabasz index (Caliński and Harabasz 1974), and the
Davies–Bouldin index (Davies and Bouldin 1979). Consequently,
the optimal number of groups was determined for the dataset,
considering it not as the strictly best number but rather as the
one yielding the highest consistency.

We performed this analysis using the tools provided by the Sci-kit
learn metrics package (https://scikit-learn.org/stable/modules/
classes.html#module-sklearn.metrics). All metric values for the
range of groups k described above are depicted at large in Table
S2.

To enhance the information contained within the working
dataframe, as well as normalizing the data and reducing the
internal noise, improving the coherence of the clustering, we
added an additional step, performing a normalization of the data
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based on mutual information (Cover and Thomas 1991). This
technique, emerged from information theory, characterizes the
amount of information from a variable x within a variable y,
measuring the redundancy between variables, and resulting in
a measure of the uncertainty of all our variables by eliminating
this redundant information. The correction applied to the original
dataset, then, is based on this measurement, specifically from
the variation of information (Meilă 2003) within the system, a
measure of the total entropy (or novel information) each step of
the correction. Applying a correction of the whole data (power
spectra and FC variables) in each iteration, we filter the noise,
increasing novel information content, thereby enhancing the
system’s stability. The package utilized to calculate the mutual
information score was sourced from the Sci-kit learn package
mentioned before.

Finally, with this corrected dataset, we performed data clustering
by similarity using agglomerative hierarchical UML algorithms.
We considered the previously obtained division value k for
the group number, to direct the algorithm toward obtaining k
separated clusters. We found, across all bands, that the most
efficient number of groups in which our dendrogram should be
cut was 2. We performed the same pipeline for several methods
and, given its superior stability across various iterations of the
model and its robustness in generating coherent groupings, we
opted for the minimum variance model or the Ward’s method:

𝑑 (𝑢, 𝑣) =
√|𝑣| + |𝑠|

𝑇
𝑑(𝑣, 𝑠)

2 + |𝑣| + |𝑡|
𝑇

𝑑(𝑣, 𝑡)
2 − |𝑣|

𝑇
𝑑(𝑠, 𝑡)

2
,

where u is the newly joined cluster consisting of clusters s and t,
v is an unused cluster within the data frame, and

𝑇 = |𝑣| + |𝑠| + |𝑡|
as depicted in the literature (Bar-Joseph 2001; Müllner 2011). We
used Euclidean distance to quantify the distance between clusters
(as a measure of dissimilarity between variables).

The ultimate representation and analysis of the data following
the data clustering process was carried out using dendrogram
visualizations, tree-like structures where data are grouped based
on the distance between variables. For each frequency band,
we obtained a dendrogram, which identifies, within distinct
groups, the cortical ROIs associated with each type of variable
(strength-consumption or power spectrum-consumption).

All the methods utilized for unsupervised hierarchical agglomer-
ation, as well as the representation in dendrograms, were sourced
from the SciPy toolkit (https://docs.scipy.org/doc/scipy/index.
html).

3 Results

3.1 Theta Band

Theta band clustering defined two separate clusters with an
evident and uneven separation (see Figure 2A).

Cluster 1 has an average intergroup distance of 1.41 ± 0.84
(SD), with a general cutoff at 4.62. We found that negative
power–BD correlations appeared in this cluster in parietal cortex
(somatosensorial cortex, supramarginal gyrus), as well as in
the middle cingulate and temporal cortices. Specifically, the
Heschl’s and the superior temporal gyri were included only for
the right hemisphere. On the other hand, we found that positive
strength–BD variables appeared in the occipital regions (left
lingual and inferior occipital gyri), as well as in the posterior
cingulate cortex and superior parietal and angular gyri (see
Figure 3A–C).

The vast majority of the variables were found within Cluster 2.
This cluster is characterized by an average intergroup distance
of 1.36 ± 1.08 (SD), breaking away from the general group at
6.95. Negative power–BD and positive strength–BD correlations
overlapped, in this cluster, at the prefrontal regions, anterior
cingulate cortex, superior temporal gyrus, and occipital lobe.
Individually, negative power–BD correlations appeared at the
angular gyrus, the posterior cingulate cortex and precuneus; on
the other hand, positive strength–BD variables were found in
the parietal cortex (somatosensorial cortex, supramarginal gyrus)
as well as in the middle cingulate cortex and paracentral and
fusiform gyri (see Figure 3B,C).

For a detailed report of each individual region in both clusters,
see Figure S2A.

3.2 Alpha Band

Clustering in the alpha band represents an unbalanced division
of variables (see Figure 2B).

Cluster 1 has an average intergroup distance of 1.44 ± 1.06
(SD), with a general block cutoff at 6.17. Negative power–BD
correlations were found in parieto-temporal regions (including
the precuneus, the posterior paracentral, and angular gyri), with
the addiction of the positive power–BD correlations on the
dorsal superior frontal gyrus. Positive strength–BD correlations
appeared overlapping with power–BD variables in the supple-
mentary motor area, middle cingulate cortex, parietal regions,
and temporal areas (plus the hippocampus and parahippocam-
pus) (see Figure 3D–F).

Regarding Cluster 2, it exhibits an average intergroup distance
of 1.32 ± 1.05 (SD), with a general block cutoff occurring at
6.47. Positive power–BD variables were shown around occipital
regions, as well as the temporal poles and the anterior cingulate
cortex; negative power–BD correlations were found in the frontal
lobe. On the other hand, positive strength–BD variables appeared
in the same areas but taking all frontal lobe (with the exception of
the right precentral gyrus) as well as all occipital lobe and part of
the temporal poles. Both variables overlapped at the orbitofrontal
gyri, as well as in the temporal poles and the most posterior part
of the occipital lobe (see Figure 3E,F).

For a detailed report of each individual region in both clusters,
see Figure S2B.
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FIGURE 2 Dendrogram-based depiction of the distribution of correlations among electrophysiological variables (power spectrum and strength)
and consumption (SAUs), generated through unsupervised machine learning, utilizing Ward’s minimum variance criterion, for each frequency band
(A: theta, B: alpha, C: beta, D: gamma). For each band, within the overall grouping: 1 (in blue) = Cluster 1 grouping; 2 (in red) = Cluster 2 grouping.

3.3 Beta Band

Clustering in the beta band represents an uneven but distributed
clusterization (see Figure 2C).

Cluster 1 was identified as a highly cohesive cluster, with an
average distance of 1.45 ± 0.93 (SD), breaking away from the
general block at 5.18. Positive power–BD correlations appeared
in parieto-temporal regions (all temporal gyri, as well as Heschl’s
gyrus), and the middle cingulate cortex. On the other hand, pos-
itive strength–BD correlations were found with a more occipital
orientation, reaching also the posterior cingulate cortex, aswell as
the middle and inferior temporal gyri. Both variables overlapped
there, as well as in the supramarginal and the fusiform gyri (see
Figure 3G–I).

Cluster 2 has an average intergroup distance of 1.3 ± 1.13 (SD),
with a cutoff of the general group at 7.88. Both positive power–BD
and positive strength–BD correlations overlapped at the temporal
poles, as well as in the frontal lobe (excepting for precentral gyrus,
not present for power–BD) and in the anterior cingulate cortex
and insula. Positive power–BD also appeared in the occipital lobe,
as well as in the posterior cingulate cortex. Positive strength–BD,
on the other hand, appears in the parietal lobe (superior parietal
and angular gyri, and precuneus) and themiddle cingulate cortex
(see Figure 3H,I).

For a detailed report of each individual region in both clusters,
see Figure S2C.

3.4 Gamma Band

Gamma band clustering defines an even and balanced division of
variables (see Figure 2D).

Cluster 1 exhibits an exceptionally high internal coherence, with
an average distance of 1.48 ± 0.76 (SD), and an early separation
of the general block at 4.12. Positive power–BD correlations were
shifted toward the right hemisphere, taking the entire frontal lobe
(except for the middle and orbital gyri) as well as the temporal
and the anterior part of the parietal lobe (paracentral, postcentral,
and supramarginal gyri). Positive strength–BD correlations were
shown at the occipital lobe completely. Both variables overlapped
at the left precentral gyrus, as well as the left postcentral and
supramarginal gyri, the paracentral gyrus, and the right middle
temporal gyrus (see Figure 3J–L).

Cluster 2 has an average intergroup distance of 1.36 ± 0.96
(SD), diverging from the general block at 6.02. Positive power–
BD correlations appeared in the occipital lobe, whereas negative
power–BD correlations were found at orbitofrontal areas. On the
other hand, positive strength–BD correlations are shifted toward
the right hemisphere, appearing in the temporal lobes as well as
in the frontal and right parietal regions (right postcentral and
supramarginal gyri). Both variables overlapped at the anterior
cingulate cortex, aswell as in the orbitofrontal areas and the gyrus
rectus (see Figure 3K,L).

For a detailed report of each individual region in both clusters,
see Figure S2D.
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FIGURE 3 Visual representation of the grouping, into two distinct clusters of correlations among electrophysiological variables (power spectrum
and strength) and alcohol consumption (SAUs) for the four frequency bands of interest (theta, alpha, beta, and gamma, in descending order). (A, D, G,
J): Visual representation of variables within Cluster 1 for each frequency band. (B, E, H, K): Visual representation of variables within Cluster 2 for each
frequency band. (C, F, I, L): Correlation graph between electrophysiological variables and alcohol consumption for each lobe and the cingulate cortex,
for both clusters within each frequency band. In a stripped pattern are the values of the overlapped ROIs within each group of areas.
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3.5 General Analysis of Precision of Clustering

To ascertain the viability and explainability of the clustering
performed, we replicated the general pipeline in a random set of
data. The results, shown in the Figure S3, are a clear demonstra-
tion of a random patching of cerebral areas in both power–BD
and strength–BD correlations, different from the results found
in real electrophysiological data clustering. We also assessed
the efficiency of different clustering criteria, choosing Ward’s
minimum variance as the most plausible algorithmwe could use.
The different clustering made by the different criterion can be
visualized in Figure S4.

4 Discussion

The application of ML techniques has witnessed a progressive
increase in recent years. Their growing renown can be attributed
to their ability to discern previously undetected patterns within
datasets, which can pave the way for novel hypotheses and
subsequently inform future analytical processes. In the present
study, UML methodologies were utilized to elucidate patterns
of correlation between electrophysiological variables, including
power spectra and FC, and the subsequent emergence of alcohol
consumption habits in adolescents. Through this methodology,
we were able to discern unique clustering conformations, each
exhibiting a uniform cortical distribution and displaying distinct
associationswith alcohol consumption across different frequency
bands.

4.1 Machine Learning Results

Most of the technical analysis in this paper is based on the
examination of the cohesion and coherence between the different
variables under investigation. Electrophysiological brain activity
presents nonlinear relationships that, when computed in asso-
ciation with environmental traits (like alcohol intake), increase
its complexity, making it crucial to provide a new perspective
other than classical statistics. The type of data we encounter in
the various frequency bands is inherently distinct, as was demon-
strated by the clustering results depicted above. Depending on the
frequency rangewe are dealingwith, the achieved cohesion varies
from the maximum homogeneity observed in the slowest band
(theta), to themaximumheterogeneity observed in the division of
the fastest, and possibly noisiest, band (gamma). These unequal
responses speak not only to the nature of the different frequencies
but also to the precision of the algorithm’s division; even when
analyzing noisy frequency bands, the clustering depicted keep
a consistency with ecological characteristics of the brain. In
this sense, the richness in the nature of the different frequency
bands does not reduce the explainability of the algorithm, finding
plausible groups.

Applying rigorous clustering criteria such as the Ward’s mini-
mumvariancemethodhas provenhighly suitable for the informa-
tion considered in this work. As we can observe when comparing
the results obtained from random data to those obtained from
actual data, the separation and grouping of variables within the

anatomically defined areas of the brain is coherent, while also
maintaining bilateral symmetry. Other less stringent (yet not
simplistic) algorithms (such as single linkage), or methods based
on geometric criterion (like centroid or median linkage), yield
less precise groupings. In fact, ad hoc analyses were performed,
finding that, as we can observe in Figure S4, the clusterings
found using these other different criteria are practically random;
algorithms that apply weights to the clusterings (like weighted
linkage) introduce smoothing in the divisions, subsequently
losing information. It is necessary, therefore, to obtain groupings
that consider not only the intragroup cohesion of each cluster
but also the comparative coherence of one cluster with the next;
in this sense, the Ward’s algorithm provides both capabilities,
rendering it ideal for our scenario (Murtagh and Legendre 2014).

4.2 Electrophysiological Results

Overall, our results indicate that power spectra and FC variables
coalesce into two distinct similarity clusters, primarily charac-
terized by four unique, anatomically driven patterns of activity:
dorsolateral and medial prefrontal, sensorimotor and temporal,
medial and posterior parietal, and occipital patterns. These
patterns are uniformly distributed in the cortex across frequency
bands, yet they exhibit diverse interactions among themselves.
Notably, these patterns are in line with the disposition of resting-
state networks identified in electrophysiological MEG data by
Brookes et al. (2011), clustering cortical activity in crucial nodes
of the default mode network: the frontoparietal network, the
sensorimotor network, the medial parietal network, and the
visual network. Concerning the relationship between power and
strength variables with alcohol misuse, the distribution of these
RSn within the two similarity clusters contrasts between each
other, that is, regions pertinent to one variable in Cluster 1
correspond to those related to the other variable in Cluster 2.
These results evidence the complex and nonlinear interactions
between power and FC dynamics within cortical networks.

General results showed that patterns of higher FC across fre-
quency bands and functional networks correspond to higher
levels of alcohol use in the future. On the other hand, power
exhibited diverse associations depending on the frequency and
the cortical network. Interestingly, slower frequency bands tend
to exhibit an inverse relationship of power and strength variables
with alcohol use. Contrarily, within faster frequency bands both
power and strength variables showed patterns of positive corre-
lations with alcohol consumption. However, there are notable
exceptions, concerning the prefrontal power within the alpha
and gamma bands, which reversed these patterns. Such divergent
patterns of prefrontal alpha and gammabands are coincidentwith
their unique distribution within the prefrontal cortex, separating
the activity of medial and orbital regions from the dorsolateral
part. Such regions have been demonstrated to be the core of the
neuromaturative changes of the adolescence’s brain (Blakemore
and Choudhury 2006) and have been found to be particularly
associated with the potential development of risk behaviors such
as substance consumption (Blakemore and Choudhury 2006;
Caballero, Granberg, and Tseng 2016; Crane et al. 2018).
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4.3 Relevance and Relationship With Prior
Findings

Prior studies have pointed the neurological underpinnings predis-
posing adolescents to substance consumption, often highlighting
the differences of neural pathways regulating self-control and
risk assessment (Crews, He, and Hodge 2007; Spear 2000). This
relationship gains complexity when considering prior research
indicating variances in RSn among adolescents, which are
thought to underlie various cognitive and behavioral aspects of
addiction. Studies have shown alterations in RSn in adolescents
with substance abuse disorders, including those prone to BD
(Antón-Toro et al. 2022; Chen and Lasek 2020; Correas et al.
2016; Sousa et al. 2019). These networks are instrumental in self-
referential thinking, emotional regulation, and cognitive control,
respectively, and their dysregulation has been associated with
increased impulsivity and risk-taking behaviors, prevalent in
individuals with adolescent alcohol misuse (Green et al. 2023).
Our observation of the distinct cortical activity clusters coin-
cides with these studies, suggesting a distinct interplay between
various cortical networks and their developmental trajectories.
For instance, the heightened sensitivity in the dorsolateral and
medial prefrontal regions, as corroborated by our power and
FC dynamics, resonates with their established role in decision-
making and emotional regulation, faculties often compromised
in adolescents prone to BD (Casey, Jones, and Hare 2008). Fur-
thermore, this cortical complexity works as a potential mediator
of behavior, reflecting theneuroadaptive processes, critical during
adolescence (Blakemore and Choudhury 2006).

Research on the electrophysiological signatures of predisposition
to BD is currently limited, and it is therefore challenging to
connect present findings with existing literature. Nevertheless,
the observed outcomes can be evaluated in the context of
developmental trajectories. Established research has considered a
typical neurodevelopment of electrophysiologicalmarkers during
adolescence (Brookes et al. 2018; Hunt et al. 2019). Broadly,
throughout adolescence, there is a decline in power–spectra den-
sity in the theta band (in posterior regions), whereas there is an
increase in beta and gamma bands (in the latter, in the prefrontal
regions), having a mixed evolution in the alpha band (increase
in temporoparietal regions and reduction in prefrontal regions).
Given this backdrop, our results suggest that a precocious matu-
ration profile within specific cortical areas and frequency bands
could correlate with increased future consumption tendencies. In
contrast, patterns discerned in the alpha band for both prefrontal
and parieto-occipital zones seem to present an inverse correlation
with the conventional neuromaturational trajectory. This inverse
correlation is also noticeable in the prefrontal pattern of power
in the gamma band, suggesting a contradictory link between
consumption and cortical power compared to standard neurode-
velopmental progression. In relation to FC, a consistent increase
across all frequency bands is noted during adolescence, with the
exception of the gamma band, which exhibits a reduction with
age. Interestingly, our results indicate that pronounced alcohol
misuse aligns with elevated FC in the gamma band, especially
within the frontal cortex. All these neuroadaptive mechanisms
might identify individuals more susceptible to substance use as a
function of both the unique neural maturational profiles and the

concurrent psychosocial pressures typical of this developmental
stage.

4.4 Relevancy of Machine Learning, Future
Implications, and Limitations

The results obtained in this work underscore two key points
regarding the utility of ML in the analysis of neurophysiological
variables. First, it prompts consideration for the optimization
and refinement of analyses that would involve a substantial
effort, performing complementary analyses to those made by
classical statistics. The use of such tools has successfully nav-
igated studies that would otherwise have been impossible or
exceedingly laborious and costly (Drysdale et al. 2017; Längkvist,
Karlsson, and Loutfi 2012; Molano-Mazon et al. 2018). This
also mitigates potential biases that researchers may introduce
when analyzing or processing their data. Within the field of
neuroscience, reducing noise and enhancing the coherence of
analyses is important, and the application of these automated
techniques might contribute to increase precision and objectivity
(Glaser et al. 2019; Ullman 2019; Vu et al. 2018), giving support to
the existing knowledge. Second, the study of neuroscience aims
to go beyond the analysis of isolated variables, but rather the
examination of interactions among them, with a holistic perspec-
tive. In this context, the application of non-linear methodologies
that allow for the visualization or identification of links among
variables is essential. Techniques such as those used in this work,
or ML strategies like reinforcement learning (RL) (Botvinick
et al. 2020; Matsuo et al. 2022), are invaluable. They significantly
diminish the dimensionality and intricacy of the data, displaying
the information into a comprehensible structure. These advanced
approaches are crucial for refining complex datasets, particu-
larly in studies dealing with multifaceted electrophysiological
information and its behavioral outcomes.

The findings presented here are consistent with empirical obser-
vations in natural settings. The extraction of patterns could be
used in the future as a foundational source of information for
training convolutional neural networks (CNNs) that predict the
occurrence of intensive alcohol consumption behaviors in ado-
lescents solely using noninvasive neuroimaging measures. This
would enable the identification of potential future consumers,
allowing institutions to increase the resources provided to prevent
these behaviors.

These findings, while pointing in a direction that alignswith prior
knowledge and providing new insights into the next steps to be
taken, have several limitations worth highlighting. The use of ML
techniques, as employed in this article, poses significant issues
regarding explainability. In neuroscience, the use of induction
algorithms like these can be highly beneficial, but it is crucial to
minimize reliance on the “black boxes” that ML algorithms rely
on to function. Peering into these boxes to avoid being left with
prediction values lacking relevant information can be costly and
requires the use of simpler techniques or a thorough understand-
ing of the methods employed. The use of UML or RL and deep
RL techniques may be a step toward adding explainability, albeit
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at the expense of some efficiency and robustness compared to the
more commonly used methods.

5 Conclusion

This work points out that areas closely related to the neu-
rodevelopment of teenagers, such as the prefrontal cortex, the
DMN, and the somatosensory cortex, are pivotal areas within
the clustering performed by UML techniques, serving as patterns
within the observed dynamics, and providing new information
regarding abnormal neurodevelopment as predisposing factor
toward alcohol consumption. These results openup future studies
in the search for predisposition patterns and the assessment of
alcohol consumption in adolescents, as well as providing new
insights on the usage of novel automatic techniques.
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