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C A N C E R

Multiplex digital profiling of DNA methylation 
heterogeneity for sensitive and cost-effective cancer 
detection in low-volume liquid biopsies
Yang Zhao1, Christine M. O’Keefe1, Jiumei Hu2, Conor M. Allan2, Weiwen Cui1, Hanran Lei1,  
Allyson Chiu1, Kuangwen Hsieh2, Sonali C. Joyce3, James G. Herman3,  
Thomas R. Pisanic4,5*, Tza-Huei Wang1,2,4,5*

Molecular alterations in cancerous tissues exhibit intercellular genetic and epigenetic heterogeneity, complicat-
ing the performance of diagnostic assays, particularly for early cancer detection. Conventional liquid biopsy 
methods have limited sensitivity and/or ability to assess epigenetic heterogeneity of rare epiallelic variants cost-
effectively. We report an approach, named REM-DREAMing (Ratiometric-Encoded Multiplex Discrimination of 
Rare EpiAlleles by Melt), which leverages a digital microfluidic platform that incorporates a ratiometric fluores-
cence multiplex detection scheme and precise digital high-resolution melt analysis to enable low-cost, parallel-
ized analysis of heterogeneous methylation patterns on a molecule-by-molecule basis for the detection of cancer 
in liquid biopsies. We applied the platform to simultaneously assess intermolecular epigenetic heterogeneity in 
five methylation biomarkers for improved, blood-based screening for early-stage non–small cell lung cancer. In a 
cohort of 48 low-volume liquid biopsy specimens from patients with indeterminant pulmonary nodules, we show 
that assessment of intermolecular methylation density distributions can notably improve the performance of 
multigene methylation biomarker panels for the early detection of cancer.

INTRODUCTION
DNA methylation is a primary means of controlling cellular gene 
expression and the most widely studied form of epigenetic modifica-
tion to date (1). Numerous studies have demonstrated that virtually 
all human cancers exhibit aberrant DNA methylation, which can 
often contribute to carcinogenesis and subsequent therapeutic resis-
tance (2, 3). The accrual of aberrant DNA methylation, particularly 
within CpG (5'-C-phosphate-G-3') islands of gene promoter re-
gions, often occurs at early stages of, and even before carcinogenesis, 
making DNA methylation a highly attractive biomarker for detect-
ing early-stage cancers (4). However, assessment of DNA methyla-
tion at early stages can be complicated by the fact that the methylation 
patterns themselves evolve progressively and stochastically through-
out the genome, resulting in a high degree of intercellular methyla-
tion heterogeneity (5–8). The occurrence of these processes in both 
cancerous, and to a lesser extent, healthy tissues [e.g., cell cycle or 
age-related epigenetic drift (9)], can reduce the clinical sensitivity 
and specificity of diagnostic assays and undermine the utility of 
DNA methylation biomarkers for early-stage cancer detection and 
screening applications, in particular. Likewise, new methods are 
needed that can comprehensively sample methylation heterogeneity 
and epiallelic distributions at sufficient resolution and low cost to 
better leverage methylation biomarkers for improved detection of 
early-stage or low-volume tumors (10).

Numerous studies have demonstrated that liquid biopsies of pe-
ripheral blood (as well as other body fluids such as urine or stool) 

contain cell-free DNA (cfDNA) derived from tissues throughout the 
entire body. In patients with cancer, liquid biopsies also contain cir-
culating tumor DNA (ctDNA) with molecular alterations that re-
flect those found in the cancerous tissue sources themselves (11–14). 
Though promising, ctDNA exhibiting such molecular alterations 
can be exceedingly rare, and is often only present in variant allele (or 
epiallele) frequencies of 0.1% or lower (15, 16). Therefore, detection 
of these rare and sporadic heterogeneously methylated epialleles 
specific to tumors requires the development of methods that pro-
vide high sensitivity, specificity, and resolution, while being suffi-
ciently simple and affordable to allow for integration into routine 
diagnostic and screening practices.

DNA methylation analysis has been substantially advanced by 
methods such as polymerase chain reaction (PCR)–based approach-
es and next-generation sequencing (NGS) technologies. PCR-based 
techniques, including droplet digital methylation-specific PCR (ddMSP) 
and MethyLight, can detect hyper- or hypomethylation of loci in 
fractions as low as 0.01% but cannot reliably detect or quantify het-
erogeneous methylation patterns (17–23). Furthermore, fundamen-
tal technical constraints have limited most digital PCR (dPCR) 
methods to the analysis of four or fewer loci per assay (24, 25). Al-
ternatively, NGS-based approaches including bisulfite sequencing 
(26, 27) and microarray-based analyses, such as the Infinium Meth-
ylationEPIC BeadArray (Illumina) (28, 29), provide comprehensive 
analysis of DNA methylation and epigenetic patterns, respectively, 
across the genomic landscape, yet require high levels of input DNA 
(e.g., 20 ml of plasma) and face challenges in detecting epiallelic 
fractions lower than 0.1% (30–32). While several well-documented 
sequencing-based approaches have recently been developed to im-
prove clinical sensitivity through the use of large biomarker panels 
(33, 34), these techniques are currently not cost-effective for routine 
screening applications and require substantial amount of input DNA, 
substantial expertise, sample preparation, and time to implement.
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Methylation-sensitive high-resolution melting analysis (MS-HRM) 
is a bulk post-PCR technique that is used to assess the methylation sta-
tus of amplicons derived from bisulfite-treated (BST) template DNA by 
monitoring their denaturation as a function of temperature (35–37). In 
prior work, we expanded on this approach by developing an improved 
method called DREAMing (Discrimination of Rare EpiAlleles by Melt) 
that allows locus-specific detection and analysis of heterogeneous 
methylation patterns of rare copies of ctDNA epiallelic variants (38). 
We subsequently demonstrated that the DREAMing assay could be 
implemented with a 4096-nanowell digital microfluidic device to ex-
pand the dynamic range, allowing quantification of epialleles over four 
orders of magnitude even in the presence of a background of 2 million 
unmethylated targets (0.00005%) (39). Nonetheless, a seemingly fun-
damental limitation common to DREAMing and other HRM-based 
techniques is their general inability to be parallelized for multiplexed 
analysis of biomarker panels, greatly reducing throughput, and limiting 
translational potential. Molecular probes like TaqMan probes, which 
are commonly used to identify only fully methylated biomarker loci in 
multiplex methylation-specific PCR (MSP) or digital MSP assays, are 
generally incompatible with HRM-based methods due to the need to 
detect heterogeneous methylation patterns. As a result, despite the high 
sensitivity to detect or quantify heterogeneous methylation patterns, 
HRM-based and digital HRM-based methods have historically been 
limited to single-plex detection.

Here, we present an approach called REM-DREAMing (Ratiometric- 
Encoded Multiplex Discrimination of Rare EpiAlleles by Melt) that 
provides a simple and cost-effective means of achieving highly sen-
sitive, multiplex analysis of intermolecular epiallelic heterogeneity 
at single-copy resolution. REM-DREAMing uses a ratiometric fluo-
rescence labeling technique with methylation-agnostic probes and pre-
cise digital high-resolution melt (dHRM) analysis to allow concurrent 

differentiation and analysis of methylation patterns on a copy-by-
copy basis for all loci in the panel. The REM-DREAMing platform 
employs digital microfluidics comprising four independent but 
identical modules, each containing 10,400 nanowells to provide suf-
ficient digitization power enabling performance of multiple highly 
multiplexed assays in parallel. To demonstrate the utility of REM-
DREAMing, here we design and evaluate a multiplex dHRM assay 
for assessing and leveraging intermolecular methylation heteroge-
neity in a panel of five biomarkers previously investigated for early 
detection of non–small cell lung cancer (NSCLC). Using a group of 
48 low-volume liquid biopsy samples sourced from individuals with 
computed tomography (CT) scan indeterminate pulmonary nod-
ules, our study reveals that a notable improvement in performance 
over traditional methylation assessment techniques can be achieved 
through the assessment of intermolecular methylation density dis-
tributions across multigene panels, achieving a clinical sensitivity of 
93% at 90% clinical specificity and an overall area under the receiver 
operating characteristic (ROC) curve (AUC) of 0.96 [95% confi-
dence interval (CI), 0.91 to 1].

RESULTS
Overview of the REM-DREAMing platform
REM-DREAMing uses a ratiometric fluorescence labeling scheme 
with dHRM analysis to achieve simultaneous assessment of epigen-
etic heterogeneity on a copy-by-copy basis for a given panel of meth-
ylation biomarkers. A general overview of the REM-DREAMing 
platform is shown in Fig. 1. Circulating cfDNA is first extracted from 
peripheral blood liquid biopsy specimens by magnetic silica beads 
and undergoes bisulfite conversion (Fig. 1A) (39–42). Bisulfite treat-
ment is used to convert unmethylated cytosine residues to uracil 

Fig. 1. REM-DREAMing overview. (A) DNA is extracted from a liquid biopsy specimen and undergoes bisulfite conversion treatment. (B) The sample containing a hetero-
geneous population of converted epialleles is added to a PCR mix containing pairs of methylation-agnostic probes labeled with red or yellow fluorophores and quenchers 
and DNA binding dye, specifically EvaGreen. (C and D) Following absolute digitization in a microfluidic chip and dPCR, each amplified target is identified by its distinct 
red-to-yellow fluorescence signature ratio. The subsequent EvaGreen-based dHRM analysis measures the melting temperature of the DNA target, thereby determining 
the methylation density of amplified target. (E) Detected epialleles with methylation densities greater than the predetermined threshold are tallied and fed into a logistic 
regression model to predict the cancer status of the sample.
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while methylated (CpG-dinucleotide) cytosine residues remain un-
changed, thus directly translating DNA methylation patterns into 
corresponding changes in the primary sequences of the template mol-
ecules. REM-DREAMing assesses heterogeneous methylation pat-
terns by leveraging thermodynamic differences of amplicons derived 
from bisulfite-converted template molecules to quantify the fraction 
of methylated CpGs (or methylation density) from each individual/
digitized template copy. Specifically, bisulfite-induced changes from 
cytosine to uracil alter nucleic acid base stacking (43) and decrease 
the thermodynamic stability of the double-stranded DNA (dsDNA), 
resulting in a measurable shift in the temperature at which a se-
quence denatures, termed the amplicon melt temperature Tm (fig. 
S1). Compared to unmethylated epialleles, the observed melt tem-
perature of amplified methylated epialleles increases proportionally 
to the number of methylated CpG dinucleotides (viz. methylation 
density) in the respective template molecules (figs. S3 and S4). Thus, 
the combination of single-copy sensitive digital assays with parallel-
ized assessment of melt temperature on a molecule-by-molecule basis 
allows rapid comprehensive epiallelic profiling of all target molecules 
in the sample.

To enable the simultaneous assessment of multiple methylation 
biomarkers, REM-DREAMing introduces a probe-based ratio-
metric fluorescence labeling approach to the dHRM assay. A key 
challenge in using probe-based methods for detecting heterogeneous 
DNA methylation is the requirement for defined target sequence. 
However, bisulfite conversion of a given epiallelic target template 
molecule yields any one of 2n possible sequence permutations, 
where n is the number of CpG sites in the target locus. To resolve 
this issue, methylation-agnostic probes were designed by incorpo-
rating degenerate bases [Y (C or T) or R (G or A)] complementary 
to each methylation-dependent (CpG) base in the target sequence, 
thereby enabling hybridization to the target locus, regardless of the 
epiallelic methylation pattern. Moreover, the spectral overlap of 
fluorophores has traditionally limited the ability to achieve promi-
nent levels of multiplexing in fluorescence probe-based assays. REM-
DREAMing overcomes this through a ratiometric fluorophore labeling 
technique to achieve expanded levels of multiplexing capability. 
Briefly, identical TaqMan probes are designed against each respec-
tive target sequence but are synthesized with either red/Cy5 or yel-
low/HEX fluorophores and quenchers, which allow the probes to be 
mixed at a predefined stoichiometric ratio to create a locus-specific 
dual-color ratiometric fluorescence signature (Fig. 1B). Multiplex-
ing is then achieved by adding probe pairs, each with a unique red-
to-yellow molar ratio, for each respective target in the panel of 
interest, which can then be identified post-PCR by two-channel fluo-
rescence analysis. The coupling of the ratiometric fluorescence encod-
ing technique with methylation-agnostic probe design thus permits 
multiplexing while maintaining compatibility with DNA binding 
dyes, such as EvaGreen, thereby enabling simultaneous identification 
and methylation heterogeneity analysis of epiallelic gene target panels.

Digitization of extracted, bisulfite-converted DNA on the REM-
DREAMing platform is accomplished by loading samples onto a 
microfluidic device comprising four modules, each holding 10,400 
2.5-nl nanowells that are used to effectively digitize all template 
molecules into discrete reaction chambers. Following dPCR on the 
microfluidic device, each PCR-amplified target can be identified by 
its distinct fluorescence signature ratio (Fig. 1, C and D). Subse-
quent EvaGreen-based dHRM analysis is then used to determine 
the Tm of the amplified DNA target, from which the methylation 

density of original template molecule in each nanowell can be di-
rectly inferred (Fig. 1D). A “DREAM analysis” frequency histogram 
describes the observed frequency of each methylation-density vari-
ant, which can then be plotted to visualize a given sample’s epigen-
etic heterogeneity at each target locus in the biomarker panel. Last, 
a multivariate logistic regression (or other) model can be constructed 
based on statistical differences in single-molecule sample methylation 
density distributions to identify ideal thresholds of the biomarker panel 
for distinguishing healthy controls and cancer cases (Fig. 1E).

Microfluidic device design and operation
The REM-DREAMing microfluidic device was designed to provide 
substantial improvements over our previously reported microfluidic 
device (39), which used an ultrathin soft lithography method that 
alleviates evaporation loss during thermocycling and reduces opti-
cal scattering over traditional designs (Fig. 2A). Nonetheless, this 
design exhibited several limitations, most notably a sample loading 
efficiency of 10% and a single module housing 4096 wells limited its 
utility for multiplex assays due to its low digitization power. In con-
trast, the REM-DREAMing platform includes several key amend-
ments to enable the performance of parallelized DREAMing of 
panels containing multiple methylation biomarkers. Overall, the 
REM-DREAMing microfluidic array was designed to meet three 
key parameters: (i) sample loss less than 10% during oil partitioning; 
(ii) ability to accommodate three or more replicates/samples; and 
(iii) sufficient digitization power to simultaneously assess and quan-
tify a panel of four or more biomarkers.

The poor loading efficiency of the previous chip design was pri-
marily due to losses in the loading channels. We thus optimized the 
height difference between the nanowells and channels to substan-
tially improve the loading efficiency while also ensuring the struc-
tural robustness of the device. By introducing a height difference 
between the nanowells and channels (aspect ratio), the volume ratio 
between nanowells and channels could be increased from 1:1 to 9:1, 
resulting in a loading efficiency of approximately 90%, or a ninefold 
improvement over the previous design (Fig. 2A). Another issue that 
has plagued many digital platforms is sample throughput. To ad-
dress this issue, some commercial devices, such as Crystal dPCR 
chip from Stilla (44, 45) and QIAcuity from Qiagen, have been de-
veloped with multiple microfluidic modules or compartments to 
achieve parallelized sample analysis (46, 47). Similarly, we designed 
incorporation of four independent but identical modules into the 
REM-DREAMing microfluidic device to enable simultaneous anal-
ysis of sample replicates or up to four independent samples (Fig. 2B).

Beyond parallelization, an important aspect of digital analysis 
techniques is ensuring that the number of microchambers and input 
number of targets are matched to ensure accurate quantification. 
Specifically, Poisson statistics can be used to determine the probabil-
ity, P, of a nanowell containing k number of target molecules, as 
follows (48, 49)

where λ is the number of copies of target molecule per nanowell.
Similarly, multiplex digital assays require that all target species 

are sufficiently digitized to enable accurate quantification of all target 
molecules. To meet this requirement, we calculated the λ value in an 
n-plex assay based on setting the probability that each nanowell only 

P(k) =
e−λλ

k

k!
, k = 0, 1, 2, 3 (1)
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has zero or one target (k = 0 or 1) to be 95% (only 5% of nanowells 
will have more than one molecule) as follows

For a five-plex assay, λ values ≤0.071 are sufficient to achieve ab-
solute digitization of ≥95% of all template molecules. To fulfill the 
requirements of assaying up to 1000 target copies, we designed our 
microfluidic device to have 10,400 nanowells in each respective 
module. Multiple modules or devices can be used in parallel to in-
crease clinical sensitivity and/or accommodate higher cfDNA con-
centrations.

Sample digitization and chip imaging (Fig. 2C) were performed 
using our previously published protocol (42). The device incorporates 
a rapid, vacuum-assisted loading mechanism, allowing sample load-
ing and digitization to be performed in under 15 s. Digitization relies 
on surface tension and pressure-driven partitioning of an oil-based 
solution through the microchannels to isolate the reaction chambers. 
To prevent sample leakage during PCR, partitioning oil is kept under 
pressure. The partitioning oil also contains polydimethylsiloxane 
(PDMS), which solidifies during PCR to produce a physical barrier 
between reaction chambers. This technique ensures that the microflu-
idic device can be easily handled for digital melting and fluorescence 
imaging analyses without requiring continuous pressurization, while 
also minimizing the risk of contamination. Endpoint fluorescence 
imaging was achieved using a flatbed fluorescence scanner, which 

uses lasers paired with emission filters matched to the excitation and 
emission spectra of the DNA binding dye (EvaGreen) and each re-
spective fluorophore. To perform dHRM, we developed a thermal 
optical platform consisting of a flatbed thermal cycler and a wide-field 
imager that captures fluorescence images of the entire array at tem-
perature increments of 0.1°C.

Ratiometric fluorescence labeling validation
We first sought to assess the ability of ratiometric fluorescence en-
coding to effectively differentiate amplified target species. Technical 
validation of the technique was performed by introducing synthetic 
DNA sequences, equivalent to bisulfite-converted fully methylated 
and unmethylated epialleles of CDO1, into a single module on the 
microfluidic device along with the corresponding the CDO1 DREAMing 
primer pair and Cy5- or HEX- labeled TaqMan probes at pre-
defined concentration ratios (4:0, 3:1, 2:0, 0:0, 0:2, 0:4, 1:3, and 2:2). 
Following dPCR on chip, amplification was identified by positive 
EvaGreen fluorescence signal in a given nanowell. The endpoint 
fluorescence signal of all positive nanowells is shown in fig. S6 along 
with the color-coded Cy5 (red) and HEX (yellow) fluorescence im-
ages. Our results indicate that at least eight ratiometric codes could 
be reliably distinguished providing the ability to perform parallel-
ized digital analysis on up to eight targets with only two fluorophore 
colors (Fig. 3A). While we limited our validation to two colors for 
proof of concept, our preliminary data strongly suggest that higher 

P=n
[

P(k=0)+P(k=1)
]

=n(e−λ+λe−λ)=n
[

(1+λ)e−λ
]

(2)

Fig. 2. Microfluidic device design and operation. (A) The microfluidic device is composed of four layers: a PDMS-coated thick glass slide, an ultra-thin PDMS layer, a 
PDMS pattern layer, and a thin glass coverslip between adapters accommodating inlets and outlets. The height of nanowells and channels (aspect ratio) is 150 and 50 μm, 
respectively, resulting in a ninefold increase in sample loading efficiency compared to the previous designs. (B) Each device comprises four independent modules, and 
each module holds 10,400 2.5-nl nanowells. (C) Samples are rapidly drawn into the device, which has been desiccated to create a negative pressure differential. A parti-
tioning liquid is then injected into the inlet to achieve absolute digitization of DNA fragments. The device is maintained under pressure to lock the digitized sample in 
place during PCR.
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degrees of multiplexing can be readily achieved by using more fluo-
rophores/channels. Extrapolation from our initial results indicates that 
35 targets could be reliably distinguished by adding only one additional 
spectrally distinct fluorophore (such as Texas Red). Nonetheless, our 
results indicate that the variance of fluorescence intensities can be 
target-assay dependent and thus additional ratiometric codes may 
lead to overlapping clusters on the fluorescence map. These issues 
can often be resolved by simply fine-tuning the assay conditions, 
including probe concentration and PCR conditions, to reduce vari-
ance and enhance confidence levels.

We next sought to validate that the ratiometric detection scheme 
could be used without interfering with EvaGreen-based DREAMing 
analysis of methylation density. This was achieved by adding synthetic 
DNA sequences equivalent to bisulfite-converted fully methylated 
and unmethylated epialleles to the reaction mixture. The representa-
tive traces of fluorescence signals from individual wells are shown in 
Fig. 3B and were classified by melting temperatures via thresholding 
and color coded by methylation density. The presence of two clearly 
distinct melt curves indicated methylation-independent amplification 
of both fully methylated and unmethylated template molecules.

REM-DREAMing clinical validation
Having demonstrated the multiplexing and methylation assessment 
capacity of REM-DREAMing for at least eight targets using only two 
fluorophore colors, we next aimed to preliminarily assess the perfor-
mance of the assay platform in a clinically relevant application. To-
ward this end, we developed a five-plex REM-DREAMing liquid 
biopsy assay targeting a five-gene panel of DNA methylation bio-
markers that had previously shown promise for NSCLC screening ap-
plications. This panel was originally selected based on examination of 
data from The Cancer Genome Atlas. In particular, the genome-wide 
methylomic data from Illumina 450K Methylation analysis of NSCLC 
and matched normal lung was used to identify loci exhibiting preva-
lent, NSCLC-specific hypermethylation within CpG islands of gene 
promoter regions (50). The biomarker panel comprising five genes 
(CDO1, TAC1, HOXA7, HOXA9, and SOX17) was clinically validat-
ed by implementing single-plex, real-time methylation-specific PCR 
(MethyLight) (19, 51) assays in a case-control study of liquid biopsies 
from a cohort of high-risk patients in which indeterminant pulmo-
nary lung nodules were identified by low-dose CT scan screening 
(17). The results of this study confirmed that hypermethylation in 
these loci could be detected much more frequently in cfDNA derived 
from patients with NSCLC when compared to samples derived from 

patients with no or benign disease (17, 18). While these results were 
promising, we reasoned that the inability of traditional MSP approach-
es like MethyLight to detect partial, or heterogeneous, methylation 
might compromise the clinical performance of the panel (52). To test 
this hypothesis, we created a single, multiplex REM-DREAMing assay 
targeting the five-gene panel to explore whether the uniquely rich data 
afforded by the digital assessment of heterogeneous methylation could 
be leveraged to further improve clinical performance.

For the creation of the NSCLC REM-DREAMing assay, we first 
designed a five-plex DREAMing assay according to the design 
guidelines described above. We then validated the analytical perfor-
mance of the assay using synthetic DNA sequences equivalent to 
bisulfite-converted fully methylated and unmethylated epialleles of 
each target in the gene panel. The synthetic templates were added 
into a single reaction mixture along with all five primer pairs and 
Cy5- or HEX-labeled TaqMan probes at a predefined concentration 
ratio (0:9, 0:5, 5:0, 9:0, or 0:0) for each respective target locus (table 
S1). Following dPCR on chip, positive amplification could be read-
ily identified by strong EvaGreen fluorescence signals within the 
nanowells (Fig. 4A, top). The endpoint fluorescence signals from 
individual nanowells are shown in Fig. 4 (A and B), which are color 
coded into five populations based on their dual color (red/Cy5 and 
yellow/HEX fluorophores) ratiometric fluorescence signatures. Pos-
itive wells were determined by the presence of EvaGreen signals and 
peaks in the negative derivative of their respective melt curves. To 
distinguish the five ratiometric-labeled populations, a Gaussian 
Mixture Model (GMM) was applied to the fluorescence intensity 
values for each fluorescence channel to assign each data point to an 
appropriate cluster. The resulting data demonstrate that the GMM 
results in five differentiable signal clusters (fig. S2). The fluorescence 
signature corresponding to each respective biomarker could be 
readily distinguished based on the respective Cy5-to-HEX ratios 
observed in the positive sample wells (Fig. 4B). Within each cluster, 
the negative derivative melt peaks derived from the EvaGreen-based 
dHRM analysis determined the methylation density of each ampli-
con (Fig. 4C). As expected, each positive nanowell exhibited a melt 
temperature corresponding to either a fully methylated or fully un-
methylated variant.

We next validated the analytical performance of our five-plex 
REM-DREAMing platform by constructing a standard curve using 
synthetic DNA sequences equivalent to bisulfite-converted, fully meth-
ylated epialleles in concentrations ranging from 0 to 150 copies per 
reaction module. Fixed numbers of synthetic copies equivalent to 

Fig. 3. Ratiometric labeling validation for REM-DREAMing. (A) Eight different ratios (4:0, 3:1, 2:0, 0:0, 0:2, 0:4, 1:3, and 0:0) can be distinguished by two TaqMan probes 
labeled with either Cy5 or HEX fluorophores and quenchers. (B) Representative melt curve derivatives from experiments with a 4:0 Cy5 to HEX ratio for synthetic DNA 
molecules equivalent to converted fully methylated (labeled in green color) and unmethylated (labeled in gray color) epialleles.
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converted unmethylated epialleles were also added to the reaction 
mixture. Linear fits from 0 to 150 copies produced slopes in the 
range of 0.80 and 0.85 (Fig. 5). This discrepancy is consistent with 
our previous “HYPER-Melt” design and is likely attributable to well 
shrinkage due to inelastic deformation of PDMS under vacuum 
(53). Linear fits of the standard curves exhibited R2 values ≥0.98, 
suggesting that REM-DREAMing provides strong absolute quantita-
tion capability across a broad range of target concentrations. Results of 
this validation demonstrate that by coupling a ratiometric fluores-
cence labeling technique and dHRM analysis, REM-DREAMing plat-
form provides simultaneous methylation detection of five biomarkers 
at single-copy sensitivity.

Multiplexed detection of methylation biomarkers in plasma
We next sought to preliminarily assess the diagnostic potential of the 
five-plex NSCLC REM-DREAMing assay by comparing the epiallelic 
distributions of the five target loci in 48 DNA samples derived from liq-
uid biopsy specimens collected from patients with CT scan–identified 
indeterminate pulmonary nodules. Overall, the cohort comprised 24 
patients who were later diagnosed with early-stage (I or II) NSCLC, 5 
diagnosed with late-stage (III or IV) NSCLC and 19 with nodules subse-
quently confirmed as benign upon pathological examination (table S2). 
Representative REM-DREAMing analyses of the five-gene panel from 
cfDNA derived from liquid biopsies taken from a cancer-positive and 
healthy control patient, respectively, are shown in Fig. 6. The detected 
epialleles for each locus and sample were first visualized by stratifying 
their respective methylation density into the following bins: unmethyl-
ated molecules (<25% methylation), low methylation (25 to 50% meth-
ylation density), medium methylation (50 to 75% density), and high 
methylation (75 to 100% density) based on the corresponding melt 

temperature of the amplicons (Fig. 6B). The REM-DREAMing platform 
provided absolute quantification of heterogeneously methylated epial-
leles in both healthy controls and NSCLC cases for all five biomarkers in 
the panel (Fig. 7A and fig. S7).

To analyze the resulting data, we adapted and expanded upon a 
previously developed bioinformatic tool called EpiClass (Epiallelic 
Methylation Classifier) that uses single-molecule methylation data 
to identify precise thresholds for methylation density and epiallelic 
read counts to maximize performance for cancer diagnostic appli-
cations (54). Here, we sought to use EpiClass to investigate whether 
the richness of (multiplex) REM-DREAMing data and quantitative 
single-molecule methylation density analysis could improve the over-
all diagnostic performance of methylation biomarkers in compari-
son to traditional methods that rely on predefined methylation patterns 
(e.g., MSP). We first classified each detected epiallele based on its 
methylation density into five-percentile bins (0, 5, 10, …, 100%) and 
subsequently constructed a methylation density histogram for each 
target locus in the biomarker panel (54). We then explored the im-
pact of using different methylation density thresholds on the diag-
nostic performance of each biomarker by comparing the number of 
epiallelic molecules with methylation densities over the threshold 
value in each sample locus; for example, a 30% methylation density 
threshold identifies the number of molecules that exhibited epial-
lelic methylation patterns with methylation densities of at least 30%, 
up to 100%. The AUC was then computed for all samples at each 
methylation density threshold by comparing the number of hyper-
methylated read counts for each locus in patients with and without 
NSCLC (Fig. 7B and fig. S7). For each locus, we also calculated the 
clinical sensitivity and specificity of each biomarker using the thresh-
old that maximized the difference between the true-positive and 

Fig. 4. Five-plex REM-DREAMing validation. (A) Representative micrographs of subsets of the EvaGreen and merged red and yellow color-coded fluorescence images 
of the chip showing multiplexed detection of CDO1 (green), TAC1 (orange), HOXA7 (red), HOXA9 (purple), and SOX17 (blue) on chip. (B) Five clusters are identified by ap-
plying a GMM to the two-dimensional signal intensity dot plots. The red/Cy5 and yellow/HEX fluorophore ratio of each cluster is shown below. (C) Representative melt 
curve derivatives of fully methylated (color coded) and fully unmethylated (labeled in gray color) epialleles.
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false-negative rates (fig. S7 and table S3). For CDO1, HOXA7, and 
SOX17, an intermediate-level methylation threshold (45%, 60%, 
and 45%) resulted in the highest AUC. In contrast, the optimal meth-
ylation density threshold for the HOXA9 locus was determined to 
be 90%, indicating epigenetic drift at this locus in otherwise healthy 
individuals (55). Consistent with this interpretation, HOXA9 also 
demonstrated the lowest AUC among all five biomarkers.

We next used a multivariate logistic regression model to assess 
the performance of the biomarker panel in combination. This model 
was used to determine the optimal methylation density thresholds 
for each respective biomarker that would achieve the highest AUC 
for the panel as a whole based on leave-one-out cross-validation. 
Overall, the results of the multivariate model substantially outper-
formed any of the individual markers, achieving a clinical sensitivity 
of 93% at 90% clinical specificity for an overall AUC of 0.96 (95% CI, 
0.91 to 1) (Fig. 8 and tables S4 and S5). Notably, the methylation 
density cutoffs that optimized the panel AUC for CDO1, TAC1, 
HOXA7, and SOX17 were identical to those found previously for 
each individual marker. However, the optimal methylation density 
threshold for HOXA9 in combination now shifted from heavy meth-
ylation (90%) to intermediate methylation (50%). Overall, for this 

pilot cohort, the five-plex REM-DREAMing platform substantially 
outperformed the previously published diagnostic performance for 
these markers based on combined single-plex MSP (AUC 0.77, 95% 
CI, 0.68 to 0.86) (17), as well as multiplex digital MSP (mdMSP) 
(AUC 0.86, 95% CI, 0.77 to 0.96) (56). To address the imbalance in 
the number of case and control samples, a precision-recall curve, 
shown in fig. S9, was also constructed, demonstrating high precision 
and recall with an AUC of 0.97 (95% CI, 0.92 to 1). Taken as a whole, 
these results strongly suggest that consideration of intercellular epi-
genetic heterogeneity can substantially improve the performance of 
methylation biomarkers for the detection of early-stage cancers.

DISCUSSION
The implementation of dPCR- or NGS-based methods for detecting 
heterogeneously methylated epialleles in early-stage screening and 
diagnosis has been historically impeded by technical challenges in 
analyzing multiple methylation biomarkers in parallel at high sensi-
tivity while also remaining cost-effective. These methods have typi-
cally required high volumes of liquid biopsies such as 20 ml of 
plasma, limiting their practicality for routine use. Previous studies 

Fig. 5. REM-DREAMing detected versus expected DNA copy number. Synthetic DNA equivalents to the converted CDO1, TAC1, HOXA7, HOXA9, and SOX17 loci ranging 
in copy numbers of 0, 9.375, 18.75, 37.5, 75, or 150 are mixed with 150 unmethylated background molecules. Each experiment was performed in triplicate to test the re-
producibility of each assay.

Fig. 6. Representative cfDNA analysis by REM-DREAMing. Results of a CT-positive healthy control (A) and an early-stage NSCLC (B) are shown here as examples. Fluorescence 
signal intensity plots are color coded into five populations representing five targets, CDO1 (green), TAC1 (orange), HOXA7 (red), HOXA9 (purple), and SOX17 (blue). (A) dHRM 
curves. All melt derivative curves are color coded into unmethylated (in gray color) or heterogeneously methylated. (C) REM-DREAMing analysis visualization histograms.
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exploring the utility of HRM methods for analyzing heterogeneous 
methylation patterns projected that the expansion of dPCR methods 
would greatly facilitate the ability to leverage heterogeneous methylation 

data to improve the performance and utility of DNA methylation-
based biomarkers (39, 57). While numerous digital technologies are 
now commercially available, to the best of our knowledge, there cur-
rently does not exist a commercial technology that offers users the 
ability to perform parallelized dHRM. Here, we presented an innova-
tive, low-cost method called REM-DREAMing that leverages digital 
microfluidics with a ratiometric fluorescence detection scheme and 
precise dHRM analysis to enable parallelized analysis of intermolec-
ular epigenetic heterogeneity of methylation biomarker panels at single- 
copy sensitivity (table S7).

Liquid biopsies have engendered substantial interest as a prom-
ising approach for the detection of a myriad of cancer types, includ-
ing NSCLC. NSCLC accounts for 85% of all lung cancer cases and 
has a 5-year survival rate of only 25% (58). While low-dose CT 
screening has led to a 20% reduction in lung cancer mortality, it is 
nonetheless plagued by a high false-positive rate, leading to overdi-
agnosis, as well as substantial patient risk associated with follow-up 
procedures (58–64). Consequently, there has been considerable in-
terest in the development of complementary screening approaches 
that might supplement low-dose CT screening tests by providing 

Fig. 8. ROC performance for the detection of NSCLC from REM-DREAMing in 
plasma. (A) ROC curve showing the diagnostic performance of five-plex REM-
DREAMing of CDO1, TAC1, HOXA7, HOXA9, and TAC1 methylation in cfDNA from 
300 μl of plasma of patients. (B) Probability of disease based on the binomial re-
gression model fit. ****P < 0.0001 on Wilcoxon rank sum test.

Fig. 7. Diagnostic performance of individual biomarkers. (A) Quantitative methylation detection in plasma. Five-plex REM-DREAMing detection of CDO1, TAC1, HOXA7, 
HOXA9, and SOX17 in plasma samples from 48 patients with CT scan–identified pulmonary nodules. For each locus, the detected epialleles were binned by methylation 
density (Unmethylated, Low M, Med M, and High M). The full profile is shown in fig. S7. Only Low M, Med M, and High M are shown here for a better visualization. 
(B) Performance of each biomarker across methylation density thresholds. AUC optimized for each locus based on the different methylation density cutoff is listed on 
the left, and ROC curve with the highest AUC for each locus is shown on the right (with 95% confidence interval labeled in color).
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additional information that can help to reduce false positives and 
improve the accuracy of NSCLC detection. Toward this end, in 
our prior work, we identified a panel of five epigenetic biomarkers, 
CDO1, TAC1, HOXA7, HOXA9, and SOX17, which are commonly 
hypermethylated in NSCLC and demonstrated that cancer-specific 
aberrant methylation can be detected in noninvasively collected liq-
uid biopsies from patients with cancer using traditional approaches 
[i.e., quantitative methylation-specific PCR (qMSP)] (17, 50). While 
cancer-specific methylation can be detected in plasma using tradi-
tional PCR-based approaches, current methods are fundamentally 
limited by an inability to detect heterogeneous methylation patterns. 
Likewise, a key goal of the present study was to determine whether 
digital high-resolution epiallelic analysis (by REM-DREAMing) could 
address this barrier to further improve the clinical performance of 
these biomarkers. To test this hypothesis, we developed an analo-
gous, multiplex DREAMing assay for this five-biomarker panel as a 
model system to determine whether the superior analytical perfor-
mance of REM-DREAMing would translate into improved clinical 
performance for early-stage cancer detection. Toward this end, a key 
advantage of the REM-DREAMing platform over traditional MSP-
based approaches is the resulting richness of data that provides a 
comprehensive assessment of epiallelic distributions of biomarkers 
or loci of interest in a given panel. More specifically, DREAMing 
provides copy-by-copy analysis of methylation density that can bet-
ter resolve subtle statistical differences in the epiallelic distributions 
of healthy versus cancerous tissues, which can then be leveraged to 
improve clinical sensitivity while maintaining appropriate specifici-
ty. Our results demonstrate that assessing methylation density at the 
level of individual DNA molecules can help establish effective 
thresholds capable of overcoming noise arising from various back-
ground sources such as biological or technical variation and age-
related epigenetic drift. Using data from REM-DREAMing analysis, 
we were able to demonstrate that optimized methylation density 
thresholding substantially improved clinical sensitivity to 93% at 
90% specificity, yielding a corresponding AUC of 0.96 (95% CI, 0.91 
to 1), in comparison to previously reported single-plex data, which 
exhibited a clinical sensitivity of 86% at 78% specificity and an AUC 
of 0.77 (95% CI, 0.68 to 0.86) (17). Another advantage of REM-
DREAMing is the ability to obtain enriched datasets for multiple 
biomarkers in smaller sample volumes (e.g., 1 ml) compared to many 
NGS-based techniques that can require upward of 5 ml or more per 
assay. Overall, the results of this study suggest that the five-marker 
REM-DREAMing assay holds potential to improve outcomes in CT 
scan–positive patients by substantially reducing unnecessary inva-
sive, and potentially hazardous, follow-up procedures. It also empha-
sizes the potential clinical utility of improved digital approaches as a 
strategy to enhance patient outcomes and decrease health care 
expenses.

While dPCR-based approaches often offer high sensitivity for 
cancer biomarker detection in liquid biopsies, they are traditionally 
limited in their ability to achieve higher degrees of multiplexing ca-
pability. Most dPCR methods are limited by using one fluorescent 
channel (one fluorophore-labeled probe) for each target, restricting 
analysis to no more than four targets per assay (17, 19–21, 65, 66). 
This challenge is particularly problematic for HRM and dHRM-based 
assays due to the need to reserve a fluorescence channel for profiling 
DNA melting that can only resolve a single melt curve in each reaction 
volume. The most used commercial digital PCR technologies exhibit 
several limitations and are currently unsuitable for applications 

involving digital HRM. For example, while several high-density 
array-based platforms (e.g., Biomark from Fluidigm, QuantStudio 
from Thermo Fisher Scientific, and QIAcuity from Qiagen) are com-
mercially available, these universally rely on endpoint measurements 
and do not support dHRM analysis.

Other complications that commonly plague multiplex PCR assays 
are issues arising from competitive amplification between targets and 
nonspecific interactions (e.g., heteroduplexes, primer dimers, etc.). 
Primer-dimer issues are particularly exacerbated in assays with high 
multiplexing orders as the number of potential primer-primer inter-
actions for an n-plex assay is equal to 2n2 + n (67). Overcoming this 
problem can be a tedious and intricate process, often requiring mul-
tiple rounds of design modifications that may alter the target loci 
and compromise the analytical and diagnostic performance of the 
assay. To address these challenges, we adopted a multiplex primer 
design bioinformatic pipeline designed to identify groups of primer 
sequences that exhibit minimal interprimer interactions. As dis-
cussed in our prior work (38), nonspecific interactions are sometimes 
observable in the resulting melt profiles; however, these interactions 
are uncommon and have negligible effect on REM-DREAMing assay 
because they produce minor secondary melt peaks that lie below the 
amplicon Tm range.

While REM-DREAMing effectively employs dHRM to assess 
epiallelic methylation density, one potential limitation is an inability 
to determine precise epigenetic polymorphisms. While elucidation 
of precise methylation patterns can be of utility for particular ap-
plications, we have found that this information is not essential for 
maximizing sensitivity for cancer diagnostic and screening applica-
tions. In our previous publication, EpiClass, we conducted a com-
parison of diagnostic performance between DREAMing and other 
methods that use epigenetic polymorphisms for cancer detection. In 
short, we demonstrated that by using EpiClass to optimize methyla-
tion density thresholds, our method is able to reliably outperform 
assays based on methylation haplotypes (54). While our technique is 
not designed for detecting epi-polymorphism directly, it can identify 
clinical samples that are meaningful for further investigation into 
epi-polymorphism to uncover underlying biological implications.

There are also a few limitations in the current platform that need 
refinement for better clinical applicability. The present chip has a 
restricted number of nanowells per module that constrains the dy-
namic range for DNA measurements, particularly for multiplex 
digital assays that require all targets to be digitized into independent 
nanowells. While multiple modules can in principle be used to 
achieve higher digitization power for samples with high DNA quan-
tities, this approach would compromise overall sample throughput. 
These challenges could be overcome by enhancing the nanowell 
density (68) or by incorporating more modules into an expanded 
device. These amendments will require incorporation of improved 
optical instrumentation with higher resolution and sensitivity in 
next-generation devices. Last, the statistical power of our study was 
constrained by a cohort size of 48 specimens, and the retrospective 
design might be susceptible to selection bias. Follow-up studies will 
require validation in a larger, prospectively collected cohort to re-
duce overfitting and more comprehensively assess clinical per-
formance.

In conclusion, we showed that REM-DREAMing provides a simple, 
low-cost means of comprehensively profiling intermolecular methyla-
tion heterogeneity in extended panels of methylation biomarkers by 
providing simultaneous assessment of epiallelic methylation patterns at 
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single-copy sensitivity. This approach presents a few technical advan-
tages over other existing methylation diagnostic approaches (see table 
S7), particularly in terms of sensitivity, resolution, and multiplexing 
capability, while substantially reducing time and cost in comparison to 
NGS-based assays. Our work underscores the importance of further 
biological studies to explore the biological implications of methylation 
density and epigenetic heterogeneity more deeply, particularly in the 
context of carcinogenesis and cancer biology. Overall, REM-DREAMing 
offers a solution for assessing epigenetic heterogeneity of biomarker 
panels for numerous diagnostic applications, with the potential to 
serve as a routine screening tool for early-stage cancer detection.

MATERIALS AND METHODS
Primer and probe selection
A methylation-independent primer design was used by adapting our 
previously published design criteria and an online tool PrimerSuite 
(38, 69) (fig. S5). Briefly, the design rules were as follows: (i) inclusion 
of no more than two CpG sites in each primer toward the 5′ end of 
the primer; (ii) amplicon size preferentially shorter than 150 bp; (iii) 
primer melting temperatures near 60°C and within 2°C of each other; 
(iv) specificity check by BiSearch toward both bisulfite converted and 
genomic DNA (70); (v) no or minimized primer-dimer formation; 
(vi) single-peak melt profiles for both fully methylated and fully un-
methylated BST sequences, as determined by uMELT Quartz and 
bulk experiments (fig. S10) (71); and (vii) at least seven CpG sites in 
the internal region between primers as the melting temperature dif-
ference between fully unmethylated and fully methylated DNA is 
generally proportional to the number of CpG sites. Forward-reverse 
primer pairs that met the above criteria were added to a candidate 
DREAMing primer pool for in silico assessment of nonspecific inter-
actions between all candidate primers. Primer pairs with no predict-
ed primer-dimer formation or primer dimers with a ΔG higher than 
−1 are added into the final REM-DREAMing primer pool (69). 
Probe design follows general TaqMan probe design rules. Briefly, no 
more than two CpG dinucleotides could be present in the probe se-
quences. Melting temperatures are at least 4°C higher than those of 
the corresponding primers (higher is generally better). All primers 
and probes were ordered from Integrated DNA Technologies (IDT).

Microfluidic device fabrication
Microfluidic devices were fabricated using standard photolithography 
and soft lithography techniques. Photomasks were designed using 
AutoCAD software and printed by Artnet Pro. The reusable master 
molds were fabricated using SU-8 3025 and SU-8 3050 photoresists 
(MicroChem) to create multilayer patterns on a 4-inch silicon wafer. 
SU-8 3025 was spun on a dehydrated silicon wafer at 2000 rpm for 
30 s. After soft baking at 65°C for 5 min and 95°C for 30 min, the 
wafer was exposed at 200 mJ/cm2 and developed to define micro-
channel patterns. After a hard bake at 200°C for 2 hours, SU-8 3050 
was spun on top of the microchannel layer at 1000 rpm for 30 s. The 
wafer was then soft baked at 65°C for 15 min and at 95°C for 1 hour. 
Last, the wafer was exposed at 320 mJ/cm2, developed, and baked at 
200°C for 2 hours to define the resulting nanowell pattern.

Each microfluidic device was fabricated from this mold using our 
previously published ultrathin soft lithography technique (39, 56). Briefly, 
the wafer was treated with chlorotrimethylsilane (Sigma-Aldrich) in 
a vacuum chamber for 2 min to increase the hydrophobicity of the 
silicon wafer surface. A 10:1 mixture of PDMS from SYLGARD 184 

Silicone Elastomer Kit (Dow Chemical Company) was spun on the 
wafer surface at 400 rpm and spun on a blank wafer at 100 rpm as a 
sacrificial layer. Both were baked for 5 min at 80°C. The sacrificial 
layer was then peeled off and overlaid on the top of the pattern sur-
face and baked for 6 min at 80°C. The two partially bonded PDMS 
layers on the pattern layer were peeled off together. A large micro-
scope glass slide (75 mm by 50 mm by 1 mm thick; Ted Pella) was 
cleaned and air-dried. A 10:1 mixture of PDMS was spun on the glass 
slide at 2100 rpm and then baked at 80°C for 6 min. The patterned-
sacrificial-jointed layer and PDMS-covered glass slide were oxygen 
plasma treated at 40 to 45 W for 45 s and then bonded. After bonding, 
the sacrificial layer was removed. Subsequently, a thin cover glass 
slide and tubing adapter layer were oxygen plasma bonded to the top 
surface. The fabricated devices were baked at 80°C overnight, sealed 
with a piece of thin adhesive tape (Scotch), and desiccated for at least 
3 hours.

Sample loading and digitization
Each dPCR master mix contains 28 μl of PCR mixture consisting of 
16.6 mM (NH4)2SO4, 67 mM tris (pH 8.8), 2.7 mM MgCl2, 10 mM β-
mercaptoethanol, 200 nM primers (IDT), 200 μM each deoxynu-
cleotide triphosphate (dNTP, MilliporeSigma), Platinum Taq DNA 
polymerase (0.07 U/μl; Thermo Fisher Scientific), bovine serum albu-
min (1 mg/ml; New England BioLabs), 0.01% Tween 20 (Sigma-
Aldrich), and 1× EvaGreen Plus (Biotium). Cy5- and HEX-labeled 
TaqMan probes specific to each biomarker were added based on 
the predefined concentration ratios with a total concentration of 
0.16 μM. For clinical sample tests, 5 μl of bisulfite converted DNA 
sample was used. Sample loading for digitization was conducted based 
on the previously described approach (39, 56). Briefly, a 1-ml syringe 
(BD Syringe) storing PCR master mix was used to puncture the sealed 
inlet of a microfluidic device. The negative pressure difference present 
in the sealed microfluidic device due to desiccation affects sample 
loading. Partitioning fluid was prepared by mixing 5 g of silicon oil and 
1 g of a 10:1 mixture of PDMS and was then drawn into microcentri-
fuge tubing (Cole-Parmer). Partitioning oil was pressurized into the 
channels of a microfluidic chip to digitize the 10,400 wells of each 
module. All synthetic control DNA was also purchased from IDT and 
used based on the concentration provided by the manufacturer.

Digital PCR and image acquisition
The microfluidic chip was placed on a flatbed thermal cycler (Bull-
dog Bio) with partitioning fluid pressurized to 11 psi at one end and 
sealed at the other end. Thermal conductivity was enhanced by hav-
ing FC 40 (Sigma-Aldrich) between the glass slide and the heating 
block. The dPCR cycling conditions were 95°C for 5 min and 70 cy-
cles of 95°C for 30 s, 58°C for 30 s, and 72°C for 30 s. Because of the 
addition of PDMS, the partitioning fluid solidified during thermocy-
cling to provide barriers between channels and nanowells to digitize 
the sample and prevent cross-contamination between nanowells dur-
ing PCR and subsequent analyses. Following the completion of PCR, 
the microfluidic device was detached from the pressure regulator and 
removed from the thermal cycler. The microfluidic device was then 
scanned with an Amersham Typhoon 5 Biomolecular Imager (GE 
Healthcare) equipped with lasers with excitation wavelengths of 488, 
532, and 635 nm and accompanying filters for emission wavelengths 
ranging from 515 to 685 nm to obtain the whole-field fluorescence 
images for EvaGreen, HEX, and Cy5-labeled probes. To conduct dig-
ital melt, the chip was placed on a flatbed heater (Bulldog Bio) and 
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illuminated by a blue light-emitting diode (LED) array (Thorlabs). 
The wide field-of-view images were captured by a Sony Alpha 7 III 
with a Sony FE 50-mm F2.8 Macro lens, which was coupled to a green 
filter (Omega Optical). The temperature of the heater ramped at a rate of 
0.1°C/s from 70 to 95°C. Images were captured at 1 Hz with a 0.6-s 
exposure time. The principles for distinguishing various methylation 
patterns using dHRM analysis have been described previously (39). 
Briefly, after dPCR, methylation density profiling of amplified ampli-
cons in positive wells relies on measuring the temperature-dependent 
release of dsDNA binding dye due to amplicon denaturation during 
thermal ramping. Fluorescence images of the chip area are captured 
simultaneously during temperature ramping to record the denatur-
ation of each digitized target. The fluorescence signal is then extract-
ed and filtered to produce a melt curve for each amplicon in every 
positive nanowell. The peak in the negative derivative of the melt 
curve (Tm) corresponds to the methylation density of the original 
template molecules at the target loci.

Imaging processing
Image processing was conducted using a custom-developed program 
written in MATLAB as previously described (39, 56). In short, four 
corner points of the array were selected and a script generates a lin-
early scaled mask of the array. To address any misalignment, a homog-
raphy transformation was applied to the array mask using the four 
user-selected points and the generated corners. Empty spaces or dark 
strips among nanowell columns and rows were used as features to fur-
ther correct misalignment if present. The well boundaries were cropped 
by 20% on each side so that only the central mass of the mixture was 
used for the measurement of Cy5 or HEX fluorescence intensity. Posi-
tive wells were determined by the presence of EvaGreen-positive sig-
nals and peaks in the negative derivative of the melt curves. Biomarker 
identification was achieved using a threshold based on ~95% CIs for 
each ratiometric fluorescence signature (fig. S1). The EvaGreen fluo-
rescence intensity values within each nanowell were averaged in tem-
perature intervals of 0.3°C. Low-pass and Savitzky-Golay filters were 
applied to generate smoothed melt curves. The melt temperature of 
each amplicon was identified as the peak of the negative derivative of 
the signal as a function of temperature.

Sample population and plasma extraction
The study population comprised a prospective, observational cohort, 
initiated in 1996 within the University of Pittsburgh (“Detection of 
Genetic Markers of Lung Cancer Initiation and Progression,” IRB no. 
19,060,269). All patients provided informed consent. Patients had a 
CT scan due to the suspicion of lung cancer and were subsequently 
referred to surgery for resection. Surgical resection with curative in-
tent and pathological analyses of suspected lung cancer lesions were 
completed in all patients and staged according to revised TNM Clas-
sification of Malignant Tumors (TNM) guideline classification crite-
ria (71). Cases had pathologically confirmed NSCLC and controls 
were pathologically confirmed to have a benign condition. Pack-
years of cigarette smoking were defined as the average number of 
packs smoked per day times the number of years smoked. Plasma 
samples were collected in tubes containing sodium heparin (Becton, 
Dickinson and Company) and then stored at −80°C until use.

DNA extraction and bisulfite conversion
DNA extraction from plasma was performed with the NeoGeneStar 
Circulating DNA Purification Kit (NeoGeneStar) according to the 

manufacturer’s protocol. Briefly, 1.0 to 2.0 ml of plasma was digested 
in a solution containing Protease Buffer and 1× Proteinase K (New 
England Biolabs) for 30 min at 55 to 60°C. DNA was then precipitated 
by isopropanol, washed by a series of decantation steps, and eluted into 
30 μl of elution buffer. Long interspersed nuclear element 1 (LINE-1) 
standards were used to estimate the overall cfDNA copy numbers with 
300 nM forward primer, 5′-AGG GTT TTT ATG GTT TTA GGT T-
3′, 300 nM reverse primer, 5′-ATC CCT TCC TTA CAC C-3′, span-
ning 82-bp regions, and 100 nM probe, 5′-∖6FAM∖TTG AAT TGA 
TTT TGT ATA A∖MGBNFQ∖-3′. Cycling conditions were 95°C for 
5 min, and 50 cycles of 95°C for 30 s, 50°C for 30 s, and 72°C for 
30 s. PCR was conducted using a PCR buffer containing 16.6 mM 
(NH4)2SO4, 67 mM tris (pH 8.8), 10 mM β-mercaptoethanol, and 
magnesium chloride to yield a final magnesium concentration of 
6.7 mM, 200 μM dNTP (MilliporeSigma), and 0.04 U μl−1 of Plati-
num Taq polymerase (Thermo Fisher Scientific). Final reaction vol-
umes for LINE-1 quantification assays were 25 μl. The resulting DNA 
was bisulfite treated using the EZ DNA Methylation-Lightning Kit 
(ZYMO RESEARCH) according to the manufacturer’s instructions 
and eluted into a final volume of 30 μl. The yields of the BST cfDNA 
were quantified by LINE-1 quantification assay as described above.

Univariate and multivariate analysis
The method used to determine the optimal methylation density cutoff 
for each individual biomarker follows our previously published Epial-
lelic Methylation Classifier (EpiClass) pipeline (54). Briefly, a range of 
values for methylation density (0, 5, 10, …, 100%) was tested for each 
respective biomarker, with a range of methylated epiallele counts to 
determine the optimal methylation density and count cutoff. The sen-
sitivity + specificity or, equivalently, true-positive rate (TPR) − false-
positive rate (FPR) is calculated and the maximum is used to determine 
the optimal cutoff. In the multivariate analysis, a logistic regression 
was used to construct a predictive model for cancer status based on 
the DNA methylation levels of any marker panel combination. The 
full model of multivariate analysis is shown in table S4. To minimize 
the impact of overfitting, the evaluation of performance was conduct-
ed through the use of a leave-one-out cross-validation design. The 
input entering the ROC curve computation was the probability, pre-
dicted for each observation validation sample. This probability deter-
mined whether the observation would be categorized into the case or 
control class, as assigned by the algorithm. These probabilities were 
used as classification thresholds to identify the number of true and 
false positives and negatives and are further converted to true-positive 
rate and false-positive rate. The resulting metrics were subsequently 
used to construct the ROC curves. The performance was assessed by 
an AUC and reported with its accompanying bootstrap-derived 95% 
CIs. All analyses were performed using the R statistical software suite, 
accessible at http://r-project.org, with both standard software packages 
and custom code implementations.

Supplementary Materials
This PDF file includes:
Figs. S1 to S10
Tables S1 to S7
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