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Abstract

Advancement of AI has opened new possibility for accurate diagnosis and prognosis using

digital histopathology slides which not only saves hours of expert effort but also makes the

estimation more standardized and accurate. However, preserving the AI model perfor-

mance on the external sites is an extremely challenging problem in the histopathology

domain which is primarily due to the difference in data acquisition and/or sampling bias.

Although, AI models can also learn spurious correlation, they provide unequal performance

across validation population. While it is crucial to detect and remove the bias from the AI

model before the clinical application, the cause of the bias is often unknown. We proposed a

Causal Survival model that can reduce the effect of unknown bias by leveraging the causal

reasoning framework. We use the model to predict recurrence-free survival for the colorectal

cancer patients using quantitative histopathology features from seven geographically dis-

tributed sites and achieve equalized performance compared to the baseline traditional Cox

Proportional Hazards and DeepSurvival model. Through ablation study, we demonstrated

benefit of novel addition of latent probability adjustment and auxiliary losses. Although

detection of cause of unknown bias is unsolved, we proposed a causal debiasing solution to

reduce the bias and improve the AI model generalizibility on the histopathology domain

across sites. Open-source codebase for the model training can be accessed from https://

github.com/ramon349/fair_survival.git
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1 Introduction

Definitive diagnosis of tissue lesions often requires the use of histopathology analysis. Digitiza-

tion of standard tissue glass slides into Whole Slide Images (WSIs) has opened a new possibil-

ity for the use of advanced computer vision techniques not only for diagnosis but also for

prognosis of advanced diseases [1, 2]. Colorectal cancer is particularly challenging as highly

complex image appearance often results in uncertain prognosis [3]. It thus serves as the ulti-

mate use case for computer vision, where an artificial intelligence (AI) model can be trained to

learn patterns indicative of poor prognosis. Pai et al. developed an AI-based model to reliably

stratify colon cancer samples by their risk for recurrence better than using standard risk fac-

tors. [4]. Introducing potential for AI models to improve the workloads of human pathologists.

Such models can even be applied to other populations where the availability of expert patholo-

gists may be limited [2].

Deployment of AI models depends on the validation of model performance on external

datasets [5]. However, the accuracy of the model is often significantly degraded on external

datasets, as reported by many studies in the literature. Drops in performance are usually

found to be caused by models being biased to spurious patterns in the training data [6]. As a

result, many machine learning methods are unsuccessful when applied to data from unseen

hospital sites despite achieving promising results on their development dataset. In addition,

disparities in model predictions can reflect and thus propagate existing health disparities

among underrepresented populations [7]. In a recent study, Howard et al. [8] reported that

some models trained on TCGA datasets use detected source site information to predict prog-

nosis or mutation states. Such performance could be based on the fact that the distribution

of clinical information, such as survival and gene expression patterns, significantly differs

among the samples provided by various laboratories. Many authors [9] considered differ-

ences in slide staining as a primary factor for the imaging bias and tried to solve it by color

augmentation and stain-normalization [10–12]. In addition to acquisition-specific bias, such

as scanner configuration and noise, stain variation, and artifacts, bias may exist in the tar-

geted population. For example, Zech et.al. [13] showed that AI can diagnose pneumonia

from radiology images, but it uses radiographic markers used in portable intensive care unit

scanners as surrogates. Similarly, Rueckel et al. found a pneumothorax detection model that

used shortcuts based on inserted chest tubes [14]. It has also been observed that imaging AI

models learn spurious age, sex, and race correlations from images when trained for seem-

ingly unrelated tasks [15]. More concerning direction, studies have shown AI imaging mod-

els demonstrate bias against historically underserved subgroups of age, sex, and race in

disease diagnosis [16].

Given the complexity of data collection and the risk of associated bias, a significant amount

of work has been done to solve bias using computational techniques [17]. Bias mitigation tech-

niques focus on the explicit use of target biasing attributes to reduce disparities. However, this

also serves as a limiting factor, given that the biasing variable must be known and made avail-

able for the development of a new model. Targeting one particular attribute leads to another

challenge known as the “whack-a-mole” phenomenon, where other biasing attributes are then

enhanced, restarting the cycle [18].

Computational approaches view generalization as two possible types of data shift. Domain

shift sees the distribution of input features to models change across dataset sites. This could be

due to differences in staining or different acquisition devices. Label shift, on the other hand, is

a change in the labels with the same image appearance. We observed this event where different

institutions/professionals disagreed on labeling a slide as either stage 2 or stage 3, subtle differ-

ences that impact model performance.
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Alabdoulmohsin et al. proposed that the key challenge to generalization across sites is a

mixture of domain and label shift, making the use of only one technique suboptimal. This

work discusses how the dual domain and label shift is caused by a change in the latent popula-

tion. This latent population is present across all data sites; however, its occurrence across

domains is shifted such that the relationship between patients and diseases is changed. The

main challenge is thus to identify this latent population in order to leverage existing adaptation

techniques. Their group introduced a causal analysis framework where this hidden population

captured by hidden variable U can be learned from the data should several additional proxy

variables be available. The causal diagram in Fig 3 demonstrates the relationship between the

hidden variable U, the task variable Y, and the image feature X. Two additional variables,

proxy W and C, are introduced to better estimate the hidden variable U. The variable C is a

concept variable following the work of Koh et al. [19]. Concepts are used to guide a model in

learning feature representations directly related to the main task through auxiliary training

tasks. The proxy variable W, identified by researchers, provides a potential glimpse into the

hidden population in the data and is used to guide the learning of the latent population. The

group proposed a methodology to learn the hidden population indicator and used domain

adaptation techniques to adapt the model to new populations, lessening the effect of the shift

on the model performance.

In this work, we propose a novel survival model by incorporating the concept of latent-shift

to reduce the effect of unknown bias by treating the generalization as a domain adaptation

problem. We followed Alabdulmohsin et al. [20] unsupervised domain adaptation technique

to the latent distribution shifts, which generalize the standard settings of covariate and label

shift of the domain. We leverage auxiliary data in the source domain in the form of tumor stag-

ing and hospital site information, a proxy for socioeconomic status, and apply it to derive an

identification strategy for the optimal predictor under the target distribution.

2 Methods

2.1 Dataset

The study population consisted of patients with colorectal carcinoma from the Colon Cancer

Family Registry (CCFR, participating sites: Seattle, Australia, Mayo Clinic, Ontario, and

Hawaii) as well as three sites external to the CCFR: University of Pittsburgh Medical Center

(UPMC), Mount Sinai Hospital Toronto, and Seattle-Puget Sound (Access) Cancer Registry

[21]. The CCFR enrolled participants after colorectal carcinoma diagnosis with prospective

follow-up. The UPMC and Mount Sinai cohorts consisted of consecutively resected colorectal

carcinoma at these institutions between 2010 and 2015 and 2011 and 2016, respectively. The

Seattle-Puget Sound Cancer Registry cohort has been previously described and consists of

patients between 20 and 74 years of age diagnosed with CRC between 2016 and 2018. Recur-

rence was assessed by manual review of medical records and was available for 3,349 stage I–III

CRCs with a median follow-up of 58 months. For the prognostic model training and external

validation, the stage I–III CCFR CRCs with recurrence data (n = 2,411) formed the internal

cohort, and the UPMC, Mount Sinai, and Seattle-Puget CRCs (n = 938) formed the external

validation cohort. This study was approved by the Mayo Clinic institutional review board (IRB

806–96 and 18–11309). The data was available to the research team on Jan 14, 2019. No

patients were involved in any part of the study, including concept and study design, data col-

lection, analysis and interpretation, drafting of the manuscript, and critical revision.

Table 1 shows the center, disease, and demographic characteristics of train, validation, and

test sets that were randomly selected. Fig 1 shows the survival data for both internal and exter-

nal sites Difference in survival rates between populations was measured using the log-rank
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test, a metric which quantifies the difference in survival rates between two populations [22].

P-values from the log-rank test are measured by considering Ontario, the largest site, as a ref-

erence. We found survival rates from Mayo Clinic and UPMC are not significantly different

from the Ontario data. However, the remaining sites, Seattle, Australia, Mt.Sinai, and Access,

have significantly different survival rates (based on p-values).

2.2 Quantitative image feature extraction

We followed the standard histopathology image acquisition pipeline for image staining and

scanning; however, given the geographical distance, the slides were scanned at different

Table 1. Description of the dataset—Shows the characteristics of both internal and external datasets.

Grouped by Data Split

Overall external-test internal-test internal-train internal-val

n – 3411 946 766 1456 243

center, n (%) ACCESS 128 (3.8) 128 (13.5) – –

Mt. Sinai 361 (10.6) 361 (38.2) – –

UPMC 457 (13.4) 457 (48.3) – –

Australia 233 (6.8) – 75 (9.8) 136 (9.3) 22 (9.1)

Hawaii 37 (1.1) – 8 (1.0) 25 (1.7) 4 (1.6)

Mayo 561 (16.4) – 182 (23.8) 326 (22.4) 53 (21.8)

Ontario 1118 (32.8) – 347 (45.3) 657 (45.1) 114 (46.9)

Seattle 516 (15.1) – 154 (20.1) 312 (21.4) 50 (20.6)

Stage, n (%) 1 689 (20.2) 209 (22.1) 151 (19.7) 278 (19.1) 51 (21.0)

2 1364 (40.0) 376 (39.7) 292 (38.1) 601 (41.3) 95 (39.1)

3 1358 (39.8) 361 (38.2) 323 (42.2) 577 (39.6) 97 (39.9)

Time to event, mean (SD) 42.2 (20.7) 38.3 (22.2) 43.9 (19.9) 43.8 (19.9) 42.5 (20.3)

https://doi.org/10.1371/journal.pone.0303415.t001

Fig 1. Recurrence-free survival for the colorectal carcinoma patients—(a) internal and (b) external sites. P-values are computed as a log-rank test using

the internal site Ontario as a reference (ref).

https://doi.org/10.1371/journal.pone.0303415.g001
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locations. From each of the surgically resected colorectal cancer studies, one representative

H&E slide was digitized using Leica Aperio GT450 or AT2 at ×40 magnification. The images

from the internal cohort were stained with H&E and scanned at Mayo Clinic. The Seattle-

Puget cases were stained with H&E at Fred Hutchison Cancer Center and scanned at Mayo

Clinic. The UPMC and Mount Sinai cases were stained with H&E and scanned at their respec-

tive institutions. After staining, all images were uploaded to the Aiforia Create deep learning

cloud-based platform (Aiforia Technologies, Helsinki, Finland), a commercially available plat-

form designed explicitly for histologic images. Each image was manually reviewed by an expert

gastrointestinal pathologist (Dr. Pai), and the entire tumor bed was outlined (median 96.5

mm2 analyzed per CRC).

Previously developed deep learning quantitative segmentation algorithm, QuantCRC [23],

was applied to the tumor bed to segment colorectal carcinoma digitized images into 13 regions

and one object (Fig 2). The QuantCRC algorithm uses convolutional neural networks (CNN)

to segment the image in a stepwise manner and is trained using 24,157 annotations made on

559 images, which are not used in this study. First, the tumor bed is segmented into carcinoma,

TB/PDC, stroma, mucin, necrosis, fat, and smooth muscle. The second layer segments stroma

into immature (loose, often myxoid stroma with haphazardly arranged plump fibroblasts and

collagen fibers), mature (densely collagenous areas with scattered fibroblasts, often with paral-

lel collagen fibers), and inflammatory (dense clusters of chronic inflammatory cells obscuring

stromal cells) subtypes. The third layer segments carcinoma into low-grade, high-grade, and

signet ring cell carcinoma (SRCC). The fourth layer identifies TILs. To re-validate QuantCRC,

30 images (15 from each GT450 and AT2 scanners) were selected from the 3,349 CRCs with

recurrence data. For layers 1 to 3, the algorithm output was compared with annotations by five

gastrointestinal pathologists. The results from the segmentation algorithm compare favorably

with annotations by gastrointestinal pathologists for all features. The most variation was seen

between immature and mature stroma, where disagreement among the five pathologist raters

was noted. This is likely related to the fact that stroma subtyping is a new concept and is not

done routinely by pathologists for clinical practice.

For each image, fat and smooth muscle were subtracted from the tissue area to generate the

tumor bed area. From the tumor bed area, the following 15 quantitative parameters were

Fig 2. Quantitative feature extraction pipeline on 2 sample images, which segments the image in a stepwise

manner. First, the image is segmented into carcinoma (green), stroma (light blue), mucin (dark blue), TB/PDC (red),

necrosis (brown), smooth muscle (purple, and fat (yellow). Next, the stroma is segmented into immature (teal), mature

(green), and inflammatory (gray). The carcinoma is segmented into low-grade (purple), high-grade (orange), and

signet ring cells (light green). Finally, TILs are recognized as objects (blue dots) within the tumor. After this

segmentation, 15 features are calculated from each image as shown. Abbreviations: B, tumor bed; ST, stromal region.

https://doi.org/10.1371/journal.pone.0303415.g002
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measured: %tumor, %stroma, tumor:stroma ratio, %TB/PDC within the tumor, %mucin

within the tumor, %necrosis within the tumor bed, %high-grade, %SRCC, TILs per mm2 of

tumor, %immature stroma (tumor bed), %inflammatory stroma (tumor bed), % mature

stroma (tumor bed), %immature (stromal region), % inflammatory (stromal region), and %

mature (stromal region). These 15 quantitative parameters comprise the QuantCRC features

used for downstream analysis.

2.3 Causal survival model

Fig 3 presents the proposed causal modeling framework for recurrence-free survival estima-

tion across multiple sites. Our primary hypothesis is that by using the proxy (W) and auxiliary

(C) variable in a causal framework, we will be able to adapt to the latent subgroup shift that

appears between sites without knowing the cause of bias and able to predict the survival Y
given the input X (Fig 3.i). Following [20], if we have two domains (P source and Q target), we

frame the learning Q(Y|X) as identification problem where observations are drawn from P(X,

C, Y, W) and Q(X). We assume that C and W are observed in the source distribution and thus

can be used during learning when U is unobserved and U is a discrete variable. We also assume

that conditional dependencies in the data exist iff they exist in the graph (Fig 3.i). Note that we

only observe (X, C, Y, W) in the source P and X in the target Q.

We adopted the latent shift causal framework for predicting recurrence-free survival (Y) of

colorectal carcinoma patients using the quantitative histopathology features (X). Given the

issue of not knowing the unobserved bias variable, we model the treatment site as a proxy (W)

and the cancer stage as a concept (C). We assume that input histopathology features (X) are

affected by the site due to the bias in acquisition and population variations, and the cancer

stage directly affects recurrence-free survival (Y). The learning uses three core components

(Fig 3).

2.3.1 Auto encoder training (Module A). First, in module A, we learn the discrete unob-

served latent variable U by training an auto encoder to reconstruct the input, i.e., QuantCRC

Fig 3. Causal modeling framework: (left) latent shift assumption and causal relations; (right) proposed model diagram demonstrates 3 main

components of the model. A) learns a latent representation capturing task relevant information alongside proxy information. B) Attempts to infer the

latent variables directly from the input features. C) A risk estimation model is trained, predictions are modified using the latent estimates.

https://doi.org/10.1371/journal.pone.0303415.g003
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features. The auto-encoder consists of a single linear layer that produces a smaller ten-dimen-

sional tensor. Followed by a single decoder layer that reproduced the original input. Mean

squared error loss is used to guide the auto-encoder’s training. The latent space is constrained

to make a discrete representation using the Gumbel-softmax trick where through annealing

the temperature value, the output probabilities become discrete one hot representation [24].

Allowing us to ultimately use the latent space to represent the discrete latent variable U. In

addition to the reconstruction loss for the features, the encoder component is also trained with

two auxiliary classifiers—(i) classify tumor staging (classify concept vector C), (ii) predict hos-

pital of origin (predict the proxy W). The classification task uses categorical cross-entropy

losses. KL divergence (KLD) against uniform prior ~U is added to reduce the potential for prior

collapse, a known issue in autoencoders. Eq 1, demonstrates the final loss for training the auto-

encoder model where X is the input and reconstructed variables are represented with a hat.

Ltotal ¼ bXLMSEðX; X̂Þ þ bCLCEðC; ĈÞ þ bWLCEðW; ŴÞ þ bklLKLDðÛ ; ~U Þ ð1Þ

2.3.2 Latent estimation (Module B). To properly estimate the latent shift between source

P and target site Q, we would need a reliable estimate of the latent variable probabilities. Fig 3

module B demonstrates the parallel latent estimation branch trained to predict U from the

original QuantCRC features directly without referring to the proxy and concept loss. The

auto-encoder is frozen and provides the ground truth latent variable labels. The estimation

branch is thus trained using the binary cross entropy loss between predicted latent Û and auto

encoder latent U. The outputs of this module are used to modify the final risk prediction seen

in Eq 2 by providing the terms P(U = i|X), Q(U = i), P(U = i).

2.4 Recurrence risk prediction (Module C)

In the final stage of the training process (module C), we train a final risk prediction model that

leverages the QuantCRC features (X) and learned latent variable U (module A) to predict the

risk of recurrence at different time points. The model is trained using the negative log-likeli-

hood loss until convergence. Adaptation to the target domain is done using the QuantCRC

features of the external data (domain Q), the latent estimation branch (module B) is used to

predict latent variables, and a shift ratio is then estimated. The estimates from the training data

(domain P) and external data (domain Q) are compared, and the difference is used to re-scale

the model predictions (see Eq 2). The recurrence risk estimation head (module C) is then fine-

tuned using the internal data (P) to account for the new latent shift estimations based on an

estimate of U.

HRQðt;XÞ ¼ H0ðtÞ
Xku

i¼0

HRPðX;U ¼ iÞPðU ¼ ijXÞ
QðU ¼ iÞ
PðU ¼ iÞ

ð2Þ

During inference, the model uses the predicted latent shift of the new data to re-scale pre-

dictions. For our use case, we will treat samples from the external dataset (Q) as a single

domain for which we adjust our model predictions. All models were trained using the same

parameters: batch size of 256, Adam optimizer with a learning rate of 0.01, and early stopping

based on validation loss.

2.5 Model evaluation

Model performance was evaluated for two essential metrics. We first leveraged the concor-

dance index (C-index) to evaluate the predictive power of our mode [25]. The C-index is
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similar to the area under the receiver operating curve metric with the extension of being aware

of time and occurrence of events of interest. The metric functions by comparing concordant

and discordant pairs based on the ordering of events and the individual’s risk factor. The sec-

ond metric we used was to evaluate the AUC over time, where for each time point in the study,

2- 58 months, we evaluated the predictive power of the model’s risk score to predict recur-

rence. The main distinction is that the AUC is evaluated across each time point. At the same

time, the C-index will provide a single value for the model’s predictions while accounting for

the occurrence of censoring. Furthermore, to provide a robust statistical comparison, we ran a

procedure known as auto-bootstrapping. Where the test set is subsampled randomly over 100

iterations, and performance is calculated on a randomly selected subset. A 95% confidence

interval is calculated for our concordance metric to measure the robustness. Each bootstrap

run utilized the same random seed for reproducibility and fair comparison, ensuring each

model was evaluated on the same subset of samples.

3 Results

Feature correlation was measured using the Pearson correlation coefficient to find a link

between center and survival as a potential source of bias. Fig 4 shows the pair-wise Pearson

correlation coefficient values between QuantCRC features, stage, center, and recurrence. As

we can observe, individual features do not have a high correlation (>0.5) with recurrence (Y);

Fig 4. Pearson correlation coefficient between Stage (C), Center (W), QuantCRC features (X) and target recurrence (Y)—(a) represents stage and

center as separate variables, (b) represents stage and center as a combined variables, and (c) Correlation with recurrence.

https://doi.org/10.1371/journal.pone.0303415.g004
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however, stroma and tumor bed-related features are highly correlated among themselves and

also moderately correlated with center and stage. Interestingly, a combination of center and

stage increase the correlation with the target recurrence Y, which follows our hypothesis that

the unobserved variable (U) that affects the outcome (Y) can be estimated from the stage (C)

and center (W).

As a baseline, we compared our proposed model performance against the traditional Cox

Proportional Hazard (CPH) model trained using the lifelines package [26] and DeepSurv

model [27]—a multi-layer deep neural network with hazard loss. Model evaluation was done

by measuring the concordance index of the model’s risk score at 60 months, comparing the

ranking of at-risk patients adequately. The 95% confidence interval was obtained for all the

model performances using the autobootstraping. Overall and site-based performance is pre-

sented in Table 2.

Overall, the CPH baseline (CI internal: 0.696, external:0.698) and Causal Survival (CI inter-

nal:0.702, external:0.699) models achieve comparable performance on the overall internal and

external test sets while DeepSurv performance is consistently lower with higher variability.

However, the performance differences between the sites are significant in the baseline Cox

model, e.g., the C-index for Seattle is 0.727, and for Australia is 0.644. While maintaining the

overall performance, the Causal survival model reduces the disparities between the site perfor-

mance, e.g., the C-index for Seattle is 0.737, and for Australia is 0.673. Similar results can be

observed for the external dataset, such as that the causal survival model improved the perfor-

mance of all the sites, including ACCESS.

In Fig 5, we represent comparative performance between the models in terms of the area

under the operating characteristics curve (AUROC) at different time intervals. Causal survival

model performance is consistently better for all the time points on the internal dataset, except

two months, which has the lowest rate of recurrence. A similar consistent performance boost

was observed for the external data for predicting short-term as well as long-term recurrence.

On the external data, causal survival model has a huge performance boost over DeepSurv (�

5% AUC).

3.1 Ablation

To demonstrate the efficacy of our proposed adaptation of the causal domain adaptation

framework, the modularized framework allows us to evaluate the effect of key modules on the

final predictions. Table 3 highlights the ablation performance for different configurations.

Table 2. Performance of the models on the internal and external test sets in-terms of C-index. 95% confidence interval is calculated using auto-bootstraping. Bold

front represents optimal performance.

Data Center Baseline(Cox Model) DeepSurv Causal Survival

Internal Australia 0.644 (0.601,0.686) 0.641 (0.598,0.684) 0.673 (0.636,0.71)

Mayo 0.703 (0.651,0.754) 0.734 (0.686,0.782) 0.736 (0.682,0.79)

Ontario 0.658 (0.630,0.685) 0.609 (0.582,0.637) 0.640 (0.611,0.67)

Seattle 0.727 (0.648,0.807) 0.775 (0.704,0.847) 0.737 (0.660,0.813)

External ACCESS 0.643 (0.550,0.736) 0.632 (0.532,0.732) 0.660 (0.571,0.749)

Mt. Sinai 0.698 (0.666,0.73) 0.661 (0.629,0.693) 0.684 (0.653,0.714)

UPMC 0.711 (0.689,0.734) 0.675 (0.648,0.703) 0.716 (0.692,0.739)

Overall Internal 0.696 (0.677,0.714) 0.687 (0.665,0.708) 0.702 (0.683,0.72)

Overall External 0.698 (0.675,0.721) 0.651 (0.626,0.676) 0.699 (0.675,0.723)

https://doi.org/10.1371/journal.pone.0303415.t002
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i. Removal of Latent Shift Adjustment (dropped module C): First, we remove the proposed

domain adjustment component from module C, i.e. P(U)/Q(U) and evaluate the perfor-

mance on the internal and external test data. As expected, the removal of latent shift

domain adjustment actually improved the performance on the internal data (P) but

dropped the performance on the external test (Q). This shows the fact that the proposed

latent shift adjustment helps to improve the generalizability of the model on the external

data.

ii. Infer only using Latent Variable (dropped module B and C): As the second experiment, we

only use the latent variable derived by module A and pass it through hazard layer to com-

pute the survival risk. The performance of the model remains high in the internal test,

which demonstrates the latent features from the encoder are able to capture task-relevant

correlations. Given the latent estimation head and the adjustment parameter for the

domain P are missing, the performance dropped on the external datasets.

iii. Infer only using QuantCRC features (dropped modules A, B, and C): In the final experiment,

we only used the QuantCRC features. We observed that the model performance decreased

Fig 5. Comparative area under the receiver operating characteristics curve (AUROC) calculated for every time step on the internal and

external dataset—(left) internal and (right) external. Blue: Baseline Cox model, Orange: DeepSurv, and Green: Proposed Causal Survival

model.

https://doi.org/10.1371/journal.pone.0303415.g005

Table 3. Configuration of ablation study. Removed components of the causal survival model is marked as X. Performance measured as C-index with 95% confidence

interval.

Latent Shift Probability

Adjustment

Infer Using Latent

Variable

Infer using Quant CRC

Features

Internal-Test Concordance

Index

External Test Concordance

Index

X 0.712 (0.694,0.73) 0.691 (0.669,0.713)

X 0.538 (0.513,0.562) 0.486 (0.462,0.51)

X 0.702 (0.683,0.721) 0.686 (0.661,0.711)

https://doi.org/10.1371/journal.pone.0303415.t003
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to be in range with the Deepsurv model in the internal test set. Performance on the external

set Drops to the lowest amongst all models. Suggesting the predictive power of the latent

features adjusted based on proxy and concept is essential for proper risk prediction.

4 Discussion

Bias in AI models for the histopathology domain can arise from several sources—(i) Data bias:
If the training data is not representative of the whole population, the model may not generalize

well on new data. For example, if the training data only includes samples from one scanner,

the model may not perform well on samples from other acquisition devices; (ii) Algorithmic
bias: The algorithms used to train the model may introduce bias. For example, if the algorithm

is designed to optimize for a specific metric (e.g. AUC), it may ignore other important factors.

Such as disparities between the ethnic subgroups; (iii) Human bias: Human bias can be intro-

duced during the data annotation process or when selecting the data used to train the model.

It is important to identify and address these sources of bias to ensure that the AI model per-

forms accurately and fairly. There existing supervised techniques in the field of domain adap-

tation that attempt to mitigate biases that are known. However, the true cause of bias is

unknown or related to multiple factors.

In this work, we proposed a causal survival model that can reduce the effect of unknown

bias via a causal reasoning framework incorporated within a deep learning paradigm. As our

first use case, we evaluated the model for predicting recurrence for colorectal cancer patients

across seven geographically distributed sites using the Colon Cancer Family Registry (CCFR)

and showed improvement in performance across sites. Our primary contribution is to adapt

the unsupervised domain adaptation technique to adjust the deep latent space of the out-of-

domain samples and ultimately obtain analogous performance across in-domain and out-of-

domain samples.

Interestingly, as shown in the correlation plots (Fig 4), cancer stage and recurrence-free sur-

vival across sites have limited to no correlation. Indicating that other factors beyond staging

can mediate the risk of recurrence for colorectal cancer patients. Our causal modeling

approach suggests that the models are able to learn to measure the hidden variations in data,

in other words, ‘unknown bias’, and utilize it to improve prediction generalizability and effi-

ciently handle distribution shifts between internal and external data. In particular, we observe

that survival rates from Australia, Seattle, Mt. Sinai, and Access are significantly different

(p< 0.1) from the reference internal site Ontario. Additionally, there is a positive correlation

between the linear combination of center and stage and recurrence-free survival. The disparity

is reflected in the models’ performance, where the baseline models (Cox and DeepSurv) under-

performed or overperformed on these sets. Our proposed architecture demonstrates an overall

improvement in both internal and external datasets. We observe a significant improvement in

the risk prediction on the three external datasets without utilizing fine-tuning or data harmo-

nization techniques. Our ablation study demonstrated that by learning the latent features with

auxiliary losses based on potential bias factors, an improvement in model predictions can be

obtained. Finally, incorporating the latent shift adjustment further guarantees the stability of

model predictions in a new domain.

The proposed framework is an adaption of the unsupervised latent distribution shift

method, where we introduce deep latent space features and a domain adjustment factor. We

also extend the framework for the prognosis of recurrence-free survival for colorectal cancer

patients using quantitative histopathology features. Though detection and interpretation of

‘unknown bias’ is still an unsolved challenge, our proposed solution estimates the bias via the
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proxy and concept variable and reduces the bias to improve AI model generalizability. This

framework could be extended to other applications, such as breast cancer risk prediction and

chest x-ray pathology detection, where it is possible to incur both domain and label shifts. The

methodology could assist research in moving from a single source of the biasing attributes to

tackle the true distribution shift by using the population latent shift.

4.1 Limitation

The study has several limitations. First, the causal survival framework requires the availability

of two mediating concepts C and of a proxy variable W at training time. These measures might

not be readily available for other studies, or they may not satisfy all the assumptions described

in the framework. Another limitation is the quality of the auxiliary variables. In other studies,

the variables may not be as easily learnable, producing an unreliable network. Furthermore,

the causal assumptions are typically not testable as U is not observed. Second, we validated the

model on the quantified histopathology features, but ideally, the paradigm can also be used on

the raw image data. Third, we only observed a moderate improvement in performance due to

the fact that the slides are scanned and digitized using a standard protocol, reducing variations

between the scanned slides within CCFR. Furthermore, manual annotation variations were

reduced in our data by having a single expert gastrointestinal pathologist drawing the tumor

boundary. We believe that a scenario where multiple sites contribute to clinically scanned

slides without a common protocol will result in site-specific variations amplifying biases. In

such a case, our proposed method will provide better performance over baseline survival

models.
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