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Abstract

The purpose of this study is to explore nonlinear and threshold effects of traffic statuses and

road geometries, as well as their interactions, on traffic accident severity. In contrast to ear-

lier research that primarily defined road alignment qualitatively as straight or curved, flat or

slope, this study focused on the design elements of road geometry at accident locations.

Additionally, this study considers the traffic conditions on the day of the accident, rather than

the average annual traffic data as previous studies have done. To achieve this, we collected

road design documents, traffic-related data, and 2023 accident data from the Suining sec-

tion of the G42 Expressway in China. Using this dataset, we tested the classification perfor-

mance of four machine learning models, including eXtreme Gradient Boosting, Gradient

Boosted Decision Tree, Random Forest, and Light Gradient Boosting Machine. The optimal

Random Forest model was employed to identify the key factors infulencing traffic accident

severity, and the partial dependence plot was introduced to visualize the relationship

between severity and various single and two-factor variables. The results indicate that the

percentage of trucks, daily traffic volume, slope length, road grade, curvature, and curve

length all exhibit significant nonlinear and threshold effects on accident severity. This

reveals sepecific road and traffic features associated with varying levels of accident severity

along the highway section examined in this study. The findings of this study will provide

data-driven recommendations for highway design and daily safety management to reduce

the severity of traffic accidents.

1. Introduction

In 2022, more than 256,409 road traffic accidents occurred in China, resulting in 60,679

deaths, 263,621 injuries, and direct property losses of 1,239.26 million RMB, according to data

from the National Bureau of Statistics [1]. Road traffic accidents have become one of the
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leading causes of death. Due to the high speeds on highway, traffic accident can lead to more

severe casualties and property losses [2]. In the field of highway traffic safety research, reducing

the severity of traffic accidents has consistently been a major concern for researchers and

practitioners.

Identifying the influencing factors of accident severity and understanding the relationships

between them are crucial for formulating effective traffic accident prevention strategies. The

influencing factors of road traffic accident severity are typically classified into driver, vehicle,

road, and environment-related factors [3, 4], from which researchers identify the keys. Driver’s

age [5, 6], unsafe driver behavior such as fatigue and drunk driving [5, 6], road-related factors

like road geometry [5, 7–9] and road type [10, 11], traffic-related factors including annual

average daily traffic [11–13], heavy vehicle percentage [11, 14], and speed limit [15], as well as

inclement weather conditions [7, 11], have all been found to significantly impact accident

severity. Although drivers play a significant role in traffic accidents, controlling driver behav-

ior and vehicle performance on the highway can be challenging. Moreover, improving road

conditions and adverse traffic statuses are helpful to indirectly control and avoid driver’s

unsafe behavior and vehicles unsafe state, thus reducing the occurrence of traffic accidents

[16]. For example, well-designed road alignment helps to prevent driver errors, reduce the dif-

ficulty of vehicle operation, and lower the likelihood of vehicle failure [17]. Implementing

measures to alleviate adverse traffic conditions, such as congestion and the mixing of trucks

and cars, can help mitigate drivers’ unsafe behaviors stemming from anxiety and impatience.

Examining the impacts of road design feature and traffic characteristics on the highway

accident severity is crucial for improving highway design quality and preventing accidents.

While many studies have examined these impacts in the past, most treat road alignment as cat-

egorical variables, defining them simply as straight or curved, flat or slope [7, 11, 16, 18–20].

This qualitative approach limits the ability to derive valuable insights for high-quality road

design aimed at enhancing traffic safety. Moreover, existing studies primarily consider annual

average traffic volume and truck percentages [2, 12, 13, 21], which may significantly differ

from the conditions at the time of the accident. To address this gap, we collected road design

documents and daily traffic data, and focus on the specific road geometry design element val-

ues at the location of each accident and the traffic conditions at the time of occurrence. This

approach enables a more comprehensive assessment of how these factors contribute to varying

levels of accident severity.

The nonlinear relationship between contribution factors and accident severity well estab-

lished and has been extensively studied [5, 9, 22, 23]. The related studies primarily relied on

statistical analysis methods, such as multinomial logistic regression model, logit model and its

extensions [5, 11, 12, 14, 24, 25]. However, such statistical models are based on strong assump-

tions of log-linear [5, 13] or polynomial [23] relationships between independent and depen-

dent variables, which may not hold true in many cases. As a result, they are insufficient to fully

explore the complex nonlinear effects of contributing factors on accident severity. In recent

years, with the development of machine learning algorithms and their modeling advantage of

not requiring predefined relationships, Random Forest (RF), eXtreme Gradient Boosting

(XGBoost), Gradient Boosted Decision Tree (GBDT), Light Gradient Boosting Machine

(LightGBM) and other machine learning methods have been employed to explore the nonlin-

ear effects on accident severity [5, 8, 22, 26]. Moreover, compared to traditional statistical

models, machine learning methods have demonstrated superior classification and prediction

performance [5, 9, 13].

The goal of this paper is to give an insight into the nonlinear and threshold effects of traffic

status and road geometry and their interactions on highway traffic accident severity. Based on

the 2023 imbalanced traffic accident data of the Suining section of the G42 Expressway in
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China, this paper proposes a data-driven framework. First, we select four classification models

including RF, GBDT, XGBoost, and LightGBM to evaluate their performances in classifying

the accident severity. The best-performing model, RF, is then employed to identify the key fac-

tors influencing traffic accident severity. Further, we introduce partial dependence plot to

explain the RF model and explore the nonlinear rela-tionships between accident severity and

individual or paired factors related to traffic status, road geometry. The findings of this study

provide valuable insights for high-quality road design and traffic safety management.

The remaining sections of this paper are structured as follows. Section 2 reviews the rele-

vant existing literature. Section 3 decribles the dataset and intrudece the methodology adopted

in this paper. Section 4 discusses the model results. Section 5 summarizes the main findings

and the future work.

2. Literature review

The analysis of factors influencing traffic accident severity has long been a subject of research-

ers’ attention. In practice, traffic accident severity is typically classified according to property

damage, injuries, and fatalities [27]. Researches related to the influencing factors that contrib-

ute to traffic accidents severity have two main objectives: (1) to identify the crucial contribut-

ing factors and (2) to explore the influence mechanism between these factors and the accident

severity. The summary of these researches is shown in Table 1.

Regarding the influencing factors, a survey conducted in Sistan and Baluchestan Province

showed that human factors were the most important factor contributing to the increase in

road traffic accidents, followed by vehicle status, road status, and environmental conditions

[3]. Through a review of relevant existing literature, Ditcharoen concluded that the factor with

the greatest impact on road traffic accident severity was vehicle speed, followed by human-

related factors, including driver fatigue and alcohol consumption [4] The research in [5, 6]

both analyzed the factors contributing to truck-related crashes, finding that driver fatigue was

the significant factor leading to the severity of crashes. The latter also showed that enough

width of curbs, medians, lanes and shoulders can prevent severe truck-related crashes. Eboli

classified relevant influencing factors into three angles: road, external environment, and driver,

and analyzed the factor characteristics influencing the severity of different crash types [20].

Zainuddin et.al specifically identified important factors leading to fatal heavy-goods vehicle

(HGV) crash from the road and environment perspectives, finding that road geometry, shoul-

der type, road type, speed limit, and light conditions contributed to fatal crash, while the effects

of road defects, road surface type, road surface condition, weather, month, and day of the

week were not strong [16]. Hyodo found that in addition to traffic conditions and road-related

factors, weather also had a significant impact on accident severity [11]. I. M. Almadi focused

on investigating the impact of changes in speed limits under weather conditions on vehicle

crashes on highway, indicating that crashes mainly occurred in snowy and icy weather condi-

tions, and in these adverse weather conditions, driving speed had a significant impact on the

occurrence of traffic accidents [15].

To examine the relationships between influencing factors and accident severity, numerous

researchers have constructed various models based on actual accident data, among which sta-

tistical models are the most common and dominant ones, such as multinomial logistic regres-

sion model [7, 13, 15], ordered logit model [11, 12], binary logit model [24], and random

parameter logit model [5, 14, 25, 32]. Haghighi et.al established a multilevel ordered logit

model to quantify the impacts of geometric features and environmental conditions on accident

severity, finding that 10-foot-wide lanes and narrower shoulders were significantly associated

with accident severity, while increasing driveway density and barrier length could reduce
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accident severity [12]. Lee et al. used a logit model to specifically investigate how the age and

gender of negligent drivers influence crash severity [31]. Results showed that as age increases,

the probability of drivers suffering physical injuries or fatalities decreases, but this trend is

weak before old age. To investigated the impact of weather on road vehicle collision severity,

Islam et al. employed a multinomial logistic regression model and discovered that increases in

humidity, temperature, and rainfall all increased the probability of fatal collision accidents,

while wind speed had no significantly impact [7]. Hyodo et al. indicated that temperature and

visibility factors might increase the likelihood of severe and fatal multi-vehicle accidents in a

research by using ordered logit model [11]. A mixed logit model is used by Milton et al. to

examine the influences of traffic, road, and weather [14]. Results showed that an increase in

average daily traffic per lane would decrease the probability of property-damage-only acci-

dents, while an increase in average daily truck traffic would decrease the probability of injury

accidents, and an increase in the percentage of trucks might slightly increase the occurrence of

possible injury accidents. Other researches showed that head-on collision, elevated speed, the

use of private car, and weekend also significantly caused the severe injuries [24]. However,

most statistical models have their own model assumptions and predefined relationships

between independent and dependent variables, especially log-linear relationships, which is not

flexible enough to capture the actual complex nonlinear relationships [5, 13, 24].

Compared with traditional statistical models, machine learning methods, such as XGBoost,

RF, GBDT, and Support Vector Machines (SVM), have been widely used to uncover and

examine nonlinear relationships between independent and dependent variables, as they do not

require predefined relationships between them [33]. Techniques like partial dependence plot

Table 1. The summary of previous literatures related to accident severity.

Author Goal Influencing factors considered Severity considered Models

A B C I II III IV V VI VII VIII IX

Sattar et al. [10]
p p p p p p p

severe, non-severe GNN, RF, XGBoost, ANN

Yan et al. [8]
p p p p p p p p

non-fatal, fatal LightGBM

Mohammadpour et al.

[28]

p p p p p p p p
fatal and severe injury, less severe injury,

PDO

RF, KNN, GBDT, SVM, Multi-Layer

Perceptron

Hyodo et al. [11]
p p p p p p p p

minor, severe, or fatal Ordered Probit Model

Hosseinzadeh et al. [6]
p p p p p p p p

fatal, non-fatal SVM, random parameter logit model

Li et al. [5]
p p p p p p p p p

incapacitating crash, fatal crash RF, GBDT, AdaBoost, Mixed Logit

Islam et al. [7]
p p p p p p p

fatal, non-fatal crashes multinomial logit model

Ahmed et al. [18]
p p p p p p p p p

fatal, serious, minor, and non-injury RF, Decision Jungle, AdaBoost,

XGBoost, LightGBM, CatBoost

Shiran et al. [13]
p p p p p p p p

PDO, fatality, severe injury, other visible

injuries, and complaint of pain

MNL, ANN-MLP, CHAID, and C5.0

Zainuddin et al. [16]
p p p p p p

non-fatal or fatal accident. Descriptive and chi-square test

Ahmed et al. [18]
p p p p p p p p p

fatal, serious, minor, and non-injury crashes RF, Decision Jungle, AdaBoost,

XGBoost, LightGBM, CatBoost

Zhou et al. [29]
p p p p p p p p

no injury, injury, fatality MNL, Naive Bayes, SVM, and XGBoost

Panda et al. [30]
p p p p p p p

killed and injured SVM, RF, GBDT, XGBoost

Yang et al. [22]
p p p p p

property loss, Injuries, Fatal XGBoost + Bayesian network model

Mahashhash et al. [24]
p p p p p p

non-severe injury, Severe injury or fatal Binary logit model

Lee et al. [31]
p p p p p p p p

PDO, bodily damage Logit Model

A. Identify the key contributing factors; B. Examine the relationships between factors and accident severity; C. Compare several model’s performance.

I. Driver-related and driving behavior factors. II. Vehicle-related factors. III. Road geometry factors. IV. Traffic characteristic factors V. Weather factors. VI. Lighting

conditions. VII. Crash characteristic factors. VIII. Temporal variables. IX. Other environment factors, such as built environment, spatial configuration.

https://doi.org/10.1371/journal.pone.0314133.t001
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(PDP) and SHAP (SHapley Additive exPlanation) value are often used to visualize these rela-

tionships. Li et al. compared machine learning models such as GBDT and RF, with traditional

mixed logit model and demonstrated that machine learning models, especially GBDT, can

effectively identify key influencing factors of large truck crashes, and can reveal the nonlinear

relationships between them by partial dependence plots [5]. Yang et al. identified that built

environment factors, particularly demographics, land use, and road networks, are highly cor-

related with three injury types of truck-related crashes, and nonlinear relationships between

them were exist [9]. While Yang et al. discovered nonlinear interactions between various fac-

tors in the road and environment dimensions by using XGBoost and SHAP method [22]. The

studies utilizing machine learning models all demonstrated the existence of nonlinear relation-

ships between influencing factors and accident severity. However, existing applications of

machine learning method in accident severity analysis have primarily focused on the classifica-

tion prediction of accident severity [10, 28, 29, 34], emphasizing the predictive performance of

varies machine learning models versus traditional statistical models [19, 35]. Researches specif-

ically employing machine learning models to explore the nonlinear effects of independent var-

iables on the dependent variable remain relatively scarce.

Furthermore, performance comparisons of various classification models reveal that no sin-

gle machine learning model consistently outperforms others under different research scenarios

and accident datasets. In a study identifying risk levels of highway bridge segments, Zhao et al.

found that Random Forests had better predictive accuracy than traditional multinomial logis-

tic regression [26]. Zhou et al. employed five classification models, including a multinomial

logistic regression model, to investigate the influencing factors of injury severity for passenger

car and truck drivers, finding that XGBoost performed better in terms of G-mean, overall

accuracy, and area under the curve [29]. Ahmed et al. utilized six explainable machine learning

models, mainly including Random Forest, XGBoost, CatBoost, and LightGBM, to identify

contributing factors of road accident [18]. They found that Random Forest achieved the high-

est prediction accuracy, precision, and recall under the balance-addressed accident severity

data, which is consistent with the result reported in Mohammadpour et al. [28]. The later also

indicated that GBDT performed better under the imbalanced data.

Therefore, to identify a suitable machine learning method for this study’ dataset, we selected

four machine learning models, including RF, GBDT, XGBoost, and LightGBM, each recog-

nized for its effective classification performance in accident analysis research. We evaluated

each algorithm’s classification capabilities using several performance metrics such as predic-

tion accuracy, recall, and G-mean. The model with the highest performance was ultimately

chosen to explore nonlinear relationships. The research framework is shown in Fig 1.

3. Materials and methods

3.1 Data description and varibales selection

The Suining section (milepost range K1819-K1912) of the G42 Expressway in China spans 94

km and serves as a crucial highway connecting Chengdu, the provincial capital of Sichuan,

with the major cities of Suining and Nanchong. This section experiences a high average daily

traffic volume, particularly during holidays, frequently leading to congestion. Historical traffic

accident statistics from 2023 shows an average of 11 accidents per kilometer per year on this

section, significantly higher than the adjacent section’ rate of 6. The Suining section is a fully

access-controlled, four-lane, bidirectional highway in a hilly area, characterized by relatively

complex road conditions. It is designed for a speed of 100 km/h, with a carriageway width of

3.75 m, a median greenbelt width of 3.5 m, and a shoulder width of 3.75 m. To investigate the

impact of traffic conditions and road geometry features on accident severity, we collected
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traffic accident data for the entire year of 2023, along with road design documents and traffic-

related data from the highway operator.

(1) Traffic accident data. The accident data was obtained through the highway operator

and originally collected from traffic accident records complied by the Sichuan Provincial Traf-

fic Police Corps Highway Detachment during each accident investigation. The data obtained

in this paper primarily include information on the date and time of the accident, location,

weather conditions, type of accident, and details regarding casualties and road property

Fig 1. Framework of modeling and accident severity analysis.

https://doi.org/10.1371/journal.pone.0314133.g001
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damage. In the one-year period, a total of 968 traffic accidents occurred on the selected high-

way section. This included 54 accidents resulting in minor injuries, 5 accidents leading to seri-

ous injuries or fatalities, 280 accidents involving only road property damage, and 629 minor

accidents that did not involve casualties or road property damage.

Researchers typically categorize accidents into three types: property damage only, injury

accidents, and fatal accidents [13, 18, 22, 29]. In some studies, due to the low incidence of seri-

ous injuries and fatalities, these accidents are reclassified together with minor injury accidents

as bodily damage accidents [31, 36], which also applies to the accident data in this study. Acci-

dents involving property damage only are the most common type, which can be further subdi-

vided into road-related and non-road-related damages. The former includes damage to roads

and associated facilities, such as guardrails, automated toll barriers, and asphalt surfaces, while

the latter primarily involve vehicles and the cargo. Road-related property damage accidents

often imply that vehicles may drive out of the road, and if safety barriers are not in place, this

could lead to more severe traffic incidents [6, 11]. Therefore, it is essential to differentiate

between road property damage and non-road property damage accidents to conduct an in-

depth analysis of how various factors influence the severity of accidents. Considering the char-

acteristics of accidents, this study ultimately classifies accident severity into three categories:

(1) no injury and no road property damage (referred to as NINP), (2) no injury but with road

property damage only (referred to as NIWP), and (3) with injuries and fatalities (referred to as

WIWF), accounting for 64.97%, 28.93%, and 6.10%, respectively.

(2) Road geometry factors. Unlike most previous research that qualitatively defines road

alignment as straight or curved, flat or sloped, or combined alignment types [7, 11, 16, 18], this

study additionally selects horizontal and vertical alignment design elements based on engi-

neering design experience, past research, and exploratory analysis. Key elements affecting road

traffic safety primarily include straight length, curve length, curvature, superelevation, road

grade, and slope length [17, 21, 37]. To obtain the corresponding alignment element values at

each accident location, we segment the road both horizontally and vertically. Horizontally, we

divide the road into tangent and curve segments based on curvature [17, 23], with a curvature

of 0 for tangent segments. The length of each horizontal segment is defined as either straight

length or curve length. It is important to note that the curve superelevation is equivalent to the

cross slope on the tangent segment. Vertically, we segment the road based on changes in gradi-

ent, with points where the gradient changes serving as the starting or ending points of a seg-

ment, indicating that the gradient within the same vertical segment is uniform. For accidents

occurring on flat segments, both the road grade and slope length are set to 0. Moreover, refer-

ring to the Specifications for Highway Safety Audit [38], we classify road alignment combina-

tions into four types based on a curve radius threshold of 1000 m and a gradient threshold of

3%: straight + flat, straight + slope, curve + flat, and curve + slope.

(3) Traffic conditions. The traffic data we collected consists of daily vehicle counts by

type between adjacent toll stations on the expressway. Each direction along the study highway

section contains eight toll stations, forming seven toll units. The daily traffic volume and truck

percentages within the same toll unit vary from day to day. In this study, each individual acci-

dent serves as the unit of analysis. We identify the toll unit for each accident based on its loca-

tion and use the traffic volume and percentage of trucks on the day of the accident within that

toll unit as traffic related factors. The truck percentage is calculated as the ratio of truck traffic

volume to total traffic volume on that day. Both factors are standardized to passenger car units

(pcu) using appropriate conversion coefficient to account for different vehicle types.

(4) Other environment factors. In addition to traffic conditions, we consider other envi-

ronmental factors such as weather, lighting, and day type that may influence traffic accidents,

all of which are commonly examined in most literature [7, 26, 29]. The traffic accident data we
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collected records weather conditions, which we categorize as sunny, overcast, light to moder-

ate rain, and heavy to torrential rain [18, 26]. Lighting conditions are classified into two cate-

gories: daytime and nighttime. Daytime is defined based on month and time of day,

specifically from 6:00 AM to 8:00 PM during April to September, and from 7:00 AM to 7:00

PM from October to March of the following year, with all remaining hours classified as night-

time [11, 39].

The description of all variables used in this study is shown in Table 2. Categorical variables

are coded and continuous variables are calculated in actual value. It is important to note that

650 accidents occurred on curve segments, while 318 occurred on tangent segments, and no

accidents took place on segments with a 0% road grade.

3.2 Data imbalance treatment

As shown in Table 2, there are 629 NINP accidents, 280 NIWP accidents, and 59 WIWF acci-

dents, showing a distinctly unbalanced characteristic, which is common in many multi-classi-

fication datasets [28, 29, 36]. To improve the classification performance of a machine learning

model, it is necessary to increase the number of samples for the minority classes (i.e.

Table 2. Description of the independent and dependent variables.

Variable types Variables levels Code Count Percent

Traffic accident severity NINP 0 629 64.97%

NIWP 1 280 28.93%

WIWF 2 59 6.10%

Environment conditions Weather conditions Sunny 1 613 63.33%

Overcast 2 132 13.64%

Light rain 3 168 17.36

Heavy rain 4 55 5.68%

Lighting condition Daytime 1 715 73.86%

Nighttime 2 253 26.14%

Day type Weekdays 1 608 62.81%

Weekends 2 187 19.36%

Holidays 3 173 17.87%%

Road geometry Combine alignment Straight + flat 1 767 79.24%

Curve + flat 2 187 19.32%

Straight + slope 3 14 1.45%

Horizontal alignment Straight 1 318 32.85%

Left curve 2 359 37.09%

Right curve 3 291 30.06%

Variable types Variables levels Min Max Mean

Road geometry Tangent length a (m) Continuous variable 245.75 2413.08 916.56

Curve length b (m) 514.38 3140.25 1044.47

Curvature c (*0.001) 0 2 0.5024

Superelevation (%) 0.13 8 2.35

Road grade (%) -3 3 0

Slope length (m) 320 2200 1068.10

Traffic status Traffic volume (1000 pcu/day) 7.25 51.53 28.38

Percentage of trucks (%) 1 37 19.81

a. 0 is not considered here, which represents that the horizontal segment is curve. b. 0 is not considered here, which represents that the horizontal segment is tangent. c.

If without considering the tangent segment (curvature = 0), the minimum curvature is 0.167, and the mean is 0.7482.

https://doi.org/10.1371/journal.pone.0314133.t002
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oversampling) to balance the proportion among different classes in the dataset. SMOTE (Syn-

thetic Minority Over-sampling Technique), a data enhancement technique for data balancing,

was first proposed by Chawla et al. [40] and subsequently widely applied in imbalanced data

processing [29]. The core idea of SMOTE is to increase the number of samples in the minority

class by synthesizing new samples, thereby achieving a more balanced distribution classes in

the dataset [8]. This approach is particularly suitable for the imbalanced accident data in this

paper, as the percentage of WIWF incidents is very small. The basic steps of SMOTE are as

follows:

1. Select K nearest neighbors: For a minority class sample, first select K nearest neighbors in a

minority class sample. K is a pre-set hyperparameter that controls the number of new sam-

ples synthesized.

2. Random generation of new samples: For each minority class of samples, a sample is ran-

domly selected from its K nearest neighbors, and the difference between the two samples

(the difference in position in the feature space) is calculated.

3. Synthesize a new sample: For each difference, multiply by a random number (usually a ran-

dom number between [0,1]), and then add the result to the original sample to get a synthe-

sized new sample.

4. Repeat steps: Repeat the above steps until a predetermined number of new samples are

generated.

5. After the oversampling process, the data are prepared for the following works.

3.3 Random Forest (RF)

RF, introduced by Breiman [41], is an ensemble learning method that constructs multiple deci-

sion trees during training and outputs the mode of the classes (for classification) or mean pre-

diction (for regression) of the individual trees. Each tree is built using a random subset of

features and data samples, which helps reduce overfitting and increase generalization. For clas-

sification problem, RF decides the final classification by majority voting. That is, the final clas-

sification result ŷ for the sample is the mode of the prediction result of each decision tree:

ŷ ¼ modeðy1; y2; � � � ; yTÞ ð1Þ

Where yt is the prediction from the t-th tree, and T is the total number of trees. In the imple-

mentation of RF, two key parameters must be determined: the total number of trees and the

number of features randomly selected as candidates for each node split. RF can provide feature

importance metrics [42], based which we can identify the key factor contributing accident

severity.

3.4 Gradient Boosted Decision Tree (GBDT)

The GBDT is an ensemble method that builds trees sequentially. Each tree is trained to predict

the residuals (errors) of the previous trees, effectively minimizing the loss function through

gradient descent [43]. This allows the model to correct its errors iteratively. The iterative

update rules are as follows:

FmðxÞ ¼ Fm� 1ðxÞ þ Z � hmðxÞ ð2Þ

Where x denotes the set of dependent variables, Fm(x) is the outcome at iteration m, hm(x) is

the base learner (decision tree), and η s the learning rate. GBDT is flexible and performs well
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on various tasks but prone to overfitting, particularly if hyperparameter tuning is not con-

ducted effectively. To mitigate this risk, tree complexity and learning rate serve as regulariza-

tion parameters that need careful adjustment. The learning rate specifically controls the pace

of updates following each iteration, playing a crucial role in stabilizing the model’s

performance.

3.5 eXtreme Gradient Boosting (XGBoost)

XGBoost is an optimized implementation of GBDT that incorporates regularization to prevent

overfitting and speed up computations [44]. It also supports parallel processing, which

increases training efficiency. The goal of XGBoost is to minimize the following loss functions:

LðyÞ ¼
Xn

i¼1

lðyi; ŷiÞ þ
XK

k¼1

OðfkÞ ð3Þ

where θ denotes model parameters which need to be careful tuning; yi and ŷi is the actual label

and model prediction for the ith data sample, respectively; l is the loss function of the ith data

sample; O(fk) is the regularization term, aiming to control the model complexity to aviod over-

fitting; K is the number of trees.

3.6 Light Gradient Boosting Machine

LightGBM is a gradient boosting framework developed for efficiency and scalability, especially

with large datasets. It uses a histogram-based approach for finding the best split points and

supports categorical features directly, reducing preprocessing time. The objective function of

LightGBM is similar with that of XGBoost. However, LightGBM employs a leaf-wise growth

strategy for trees, directly handles categorical features, and is optimized for faster training on

large datasets. In contrast, XGBoost adopts a layer-wise tree growth approach and requires fea-

ture encoding for categorical variables [18]. Compared with other machine learning models,

LightGBM excels with large datasets and low memory usage but may overfit on smaller data-

sets and needs parameter tuning to manage this risk.

3.7 Perfermance metrics

Accuracy, recall, and precision are critical metrics for evaluating machine learning models,

providing insights into different aspects of model performance. Accuracy serves as a general

and intuitive indicator of correct predictions [8, 10, 13, 18]. However, for the imbalanced data-

sets, relying solely on overall accuracy can lead to skewed evaluations. Tharwat et al. demon-

strated that both recall and precision are valuable for evaluating classification performance

with data imbalances [45]. Recall emphasizes the model’s capability to correctly identify true

positive samples among all predicted true samples, which is crucial in scenarios where missing

a positive case is costly, while precision quantifies the proportion of predicted positive samples

that are actual positive. Given that this study aims to accurately classify the categories of acci-

dent severity, focusing on the recall for each category aligns more closely with this objective.

Moreover, the geometric mean (G-mean) is also a widely used metric in imbalanced dataset

analysis [24, 28, 29], which combines both sensitivity and specificity, providing a balanced

view of performance [45]. Based on this analysis, overall accuracy, recall, and G-mean have

been selected to ensure a comprehensive evaluation of model performance in this study. For

three-classification model, the relevant definitions of the metrics are as follows:

Accuracy ¼
X

i2K

TPi=
X

i2K

ðTPi þ FNiÞ ð4Þ
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Recalli ¼ TPi=ðTPi þ FNiÞ ð5Þ

G � mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Recall0 � Recall1 � Recall2

3
p

ð6Þ

Where i indicates the class of traffic accident severity. K is the set of traffic accident severity classes

(K = {0,1,2}). TPi, namely true positive, is the number of samples that are truly class i and predicted

to be class i. FNi, namely false negative, is the number of samples that are truly class i but predicted

to be non-class i. To calculate these metrics, the confusion matrix is calculated to identify TPi and

FNi. For three-classes accident severity, the confusion matrix is represented by a 3×3 table.

3.8 Partial dependence plot

Given the ability of partial dependence plot (PDP) to analyze the effects of single or multiple

variables on the prediction results [26], we adopt PDP to visualize the model results to explore

the nonlinear and interactive relationship between factors and traffic accident severity. If PDP

needs to deal with multiple classes, it will plot per OvR (One vs Rest) class to show the effects

of feature variables (explanatory variables) on each class. The partial dependence function is

defined as follows:

f̂ xSðxSÞ ¼ ExC
½f̂ ðxS; xCÞ� ¼

Z

f̂ ðxS; xCÞdPðxCÞ ð7Þ

Where S is the set of features we are interested in, usually includes one or two features. C is the

set of other features used in the classification model. S and C form all the feature sets of the

model. xS and xc are eigenvectors corresponding to sets S and C, respectively, with the former

used to plot the partial dependency functions.

The partial dependence function f̂ xS is estimated by calculating the mean value in the

model training dataset, see in (8), also known as the Monte Carlo method.

f̂ xSðxSÞ ¼
1

n

Xn

i¼1

f̂ ðxS; xC
ðiÞÞ ð8Þ

Where xC(i) is the actual eigenvalue of the feature we are not interested in, and n is the number

of samples in the dataset.

4. Results and discussion

In this study, open-source libraries like scikit-learn and PDPbox were employed for training

machine learning models and drawing partial dependent plots. For model tuning and optimi-

zation, the dataset is randomly divided into training set and test set according to the ratio of

7:3. We used a grid search optimization method for hyperparameter tuning, accompanied by

ten-fold cross-validation. These processes involved randomly splitting the training data into

10 subsets, where each training iteration utilized 9 subsets for training and 1 subset for valida-

tion. These works were implemented using the python programming language on the

PyCharm platform. The experimental environment was Windows 11, 12th Gen Intel(R) Core

(TM) i5-12500H 2.50 GHz with 16.0 GB RAM.

4.1 Classification performance comparation

The confusion matrixes obtained from the four models is shown in Fig 2, form which true pos-

itive (TP) and false negative (FN) of each severity class are identified to calculate the
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performance metrics. Based on the confusion matrixes, the overall accuracy, class recall, and

G-mean are calculated, as shown in Table 3. The result shows that RF model achieves the high-

est accuracy of 76.90%, the highest G-mean of 75.23%, and highest recall rates of 65.34% for

NINP, 71.23% for NIWP, and 91.43% for WIWF. This model demonstrates the best classifica-

tion performance in this paper, especially in identifying injury and fatal accidents. Therefore,

the RF model is employed to identify the significant contributing factors and examine the non-

linear effects.

4.2 Feature importance ranking

By analyzing the contribution of each feature (explanatory variable) to RF’s classification per-

formance, the importance of all features can be ranked. The higher the feature importance, the

greater its impact on the classification results. As shown in Fig 3, the top six ranked variables

are the percentage of trucks, daily traffic volume, slope length, road grade, curvature, curve

length, with the importance values of 16.9%, 14.4%, 12.5%, 12.1%, 7.7%, and 7.6%, respec-

tively. This indicates that traffic statuses and road geometry characteristics have a significant

impact on traffic accident severity.

4.3 The nonlinear effect of a single factor

We used partial dependence plot (PDP) to more intuitively explore the nonlinear relationship

between factors and traffic accident severity. In the PDP plot of a single feature for a class, the

value of the ordinate represents the relative probability of the class prediction corresponding

to the feature value. An ordinate value greater than 0 indicates that the feature value increases

the probability of being predicted for the class; otherwise, it decreases the probability. If the

ordinate value is close to 0, this feature value has no significant effect on this class. Base on the

feature importance ranking in Fig 3, six feature variables with greater influence were selected

Fig 2. Confusion matrices for the four models.

https://doi.org/10.1371/journal.pone.0314133.g002

Table 3. Classification performances of four models.

Performance metric RF GBDT XGBoost LightGBM

Overall accuracy (%) 76.90% 67.72% 71.96% 69.66%

Class NINP recall (%) 65.34% 56.82% 56.25% 58.52%

Class NIWP recall (%) 71.27% 61.33% 70.17% 65.19%

Class WIWF recall (%) 91.43% 82.38% 86.67% 87.62%

G-mean (%) 75.23% 65.97% 69.94% 69.40%

https://doi.org/10.1371/journal.pone.0314133.t003
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to draw single-factor PDPs to examine their nonlinear effects. PDPs for other factors are pro-

vided in the Supporting Information section of this paper (See S2 File).

Percentage of trucks

Fig 4 shows the partial dependence plots of the percentage of trucks, in which class0, class1,

and class2 represent NINP, NIWP, and WIWF, respectively. As depicted in Fig 4, percentage

of trucks has significant nonlinear effect on accident severity. The ordinate value in the PDP

for Class0 is less than 0, while it is greater than 0 for class1 and class2, indicating that mixed

traffic of trucks and cars on the highway is associated to a lower likelihood of NINP accidents

but a higher likelihood of NIWP and WIWF accidents. In addition, as the percentage of trucks

increases, the probabilities of NIWP and WIWF accident rise. Once the percentage of trucks

exceeds 20%, the probability of WIWF accident decreases, while the probability of NINF acci-

dent continue to rise until the percentage reaches 27%. This result may be attributed to the

speed difference between trucks and cars. At lower truck percentages, traffic conditions are

less complex but the average speeds are relatively high, leading to a higher likelihood of driving

out of roadway and severe casualties. Once the truck percentage increases to a certain thresh-

old, vehicle speeds decrease, potentially reducing the occurrence of casualties.

Fig 3. Feature importance of RF model.

https://doi.org/10.1371/journal.pone.0314133.g003

Fig 4. The partial dependence plot of the percentage of trucks.

https://doi.org/10.1371/journal.pone.0314133.g004
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Daily traffic volume

As observed in Fig 5, the effect of daily traffic volume on the severity of traffic accidents is non-

linear. When the traffic volume is below 20,000 pcu/day, an increase in traffic volume raises

the probability of WIWF (class2) accident, and the probability remains high in the range of

20,000 to 32,000 pcu/day. This may be attributed to low traffic volumes creating a free traffic

flow environment which encourages drivers to speed and become less attentive. This lack of

vigilance makes them more prone to unsafe behaviors such as speeding and reckless lane

changes, ultimately leading to accidents and injuries. The traffic volume has a completely

opposite nonlinear effect on NINP (class0) accident, with 32,000 pcu/day serving as the thresh-

old. For the NIWP (class1) accidents, a low traffic volume (below 25,000 pcu/day) has no sig-

nificant effect, but once the volume exceeds 25,000 pcu/day, the likelihood of NIWP accidents

decreases as traffic volume increases. This can be explained by the fact that as traffic volume

grows, vehicles tend to travel at lower speeds and in queues, reducing the chances of vehicles

running off the roadway into guardrails and increasing the likelihood of rear-end or side-

swipe collisions.

Slope length

Fig 6 shows a threshold effect of slope length on all accident severity types, although the effct

on NINP accident (class 0) is not siginificant. NIWP (class1) accident are less likely to occur

on slope sections as the ordinate value less than 0 in PDF for class1. Similarly, Regardless of

slope length, WIWF accident are more likely to occur on the slope sections, with a higher

probability observed within the slope length range of 750 to 1000 m. Beyond this range, the

likelihood decreases but still maintains high. This decline is likely due to the presence of traffic

signs providing safety warnings on excessively long uphill or downhill sections, which

promptes the driver to take preventive measures in advance.

Fig 5. The partial dependence plot of daily traffic volume.

https://doi.org/10.1371/journal.pone.0314133.g005

Fig 6. The partial dependence plot of slope length.

https://doi.org/10.1371/journal.pone.0314133.g006
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Road grade

Fig 7 illustrates the impact of road grade on accident severity. Compared to a slope of -3%, the

ordinate value for WIWF (class 1) is greater than 0, with significant values observed within the

range of -1% to 1%. This suggests that accidents involving casualties are more likely to occur

on relatively flat road segment. This may be attributed to the fact that drivers tend to exercise

more caution when navigating slopes. Therefore, it is also important to implement safety driv-

ing warnings on flat road sections. In contrast, both NIWP and NINP accidents are less likely

to occur on relatively flat road segment. NINP accidents are more common on uphill segments

with gradient greater than 2%, while NIWP accidents are even less likely to occur on such seg-

ments, which aligns with expected outcomes.

Curvature

As shown an Fig 8, compared to curved segments with a curvature of less than 0.0005, WIWF

(class2) accidents are more likely to occur on curved segments with a curvature greater than

0.0005 (i.e., radius lower than 2000 m), which starkly contrasts with NINP (class0) accidents.

For NIWP (class1) accidents, the curvature has a minimal impact on occurrence. The likeli-

hood of NIWP slightly decreases on curve segments with a radius smaller than 2,000 m. This

demonstrates that smaller curve radius have a significantly adverse effect on traffic safety.

Curve length

Fig 9 illustrates a limited impact of curve length on traffic accident severity. Simillar to curva-

ture, the ordinate value of class2 in the PDP is greater than 0, meaning that WIWF accident is

more likely to occur in the curve sgement compared to the straight segment, which contrasts

with NINP (class0) accidents. The range of 750 to 1250 m is an threshold, where WIWF

Fig 7. The partial dependence plot of road grade.

https://doi.org/10.1371/journal.pone.0314133.g007

Fig 8. The partial dependence plot of curvature.

https://doi.org/10.1371/journal.pone.0314133.g008
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accidents are most likely to happen, while NINP accident is least likely to occure. Beyond the

range, the effect of curve length on WIWF and NINP accidents remain almost unchanged.

4.4 The interaction effect under two factors

The causes of traffic accidents are complex and may be influenced by multiple factors. Since

the accidents with injuries and fatalities (WIWF accidents) may bring serious casualties and

property losses, this section focuses on how dual factors interactively impact the occurrence of

WIWF accidents and constructs two-factor PDPs for analysis. The factors are selected from

the top six most important features in Fig 3, which are related to traffic status and road geome-

try. Their interaction effects on accident severity are shown in Fig 10. In this figure, the hori-

zontal and vertical axes represent the values of the main effect and interaction effect variables,

respectively, and the vertical bar legend on the right displays the probability of WIWF accident

as predicted by the RF model.

Fig 10(A) indicates that a truck proportion of 12% to 17% has a significant negative impact

on different levels of daily traffic volume, particularly when the traffic volume is between

30,000 and 35,000 pcu/day. Fig 10(B) shows that the likelihood of casualty accident is highest

on uphill sections when traffic volume is about 20,000 pcu/day. Fig 10(C) demonstrates that

casualty accidents are more likely to occur on tangent or curve segments with larger radius

when the traffic volume is between 25,000 and 30,000 pcu/day. Fig 10(D)–10(F) illustrate that

the threshold effects of truck proportions on casualty accidents vary across road segments with

different grades, slope lengths, and curvatures. Under mixed traffic conditions with a percent-

age of trucks ranging from 10% to 20%, special attention should be given to uphill slopes with

lengths of 700 to 1,000 meters and curved segment with a radius of less than 2,000 meters (i.e.,

curvature greater than 0.0005). Interestingly, when the percentage of trucks exceeds 20%, casu-

alty accidents are more likely to occur on uphill segments. Conversely, when the truck propor-

tion is below 10%, there is a greater probability of casualties occur ring on downhill sections

compared to uphill ones. These findings highlight the importance of considering both traffic

conditions and road characteristics when assessing traffic safety risks.

Fig 10(H) and 10(I) illustrate the interaction effects of main road geometry combinations

on fatal accidents. It is evident that the likelihood of casualty accidents is higher on relatively

flat segments approximately 750 m in length, uphill sections longer than 1,250 m, curve seg-

ments with a radius less than 1,000 m and a length greater than 1,000 m, as well as combina-

tions of non-downhill and curve with a radius less than 1,000 m. Therefore, these specific

geometry features should be avoided in road planning and design, and daily operations should

prioritize enhancing safety management for these segments, especially the curve and slope

combinations and the small-radius curve.

Fig 9. The partial dependence plot of curve length.

https://doi.org/10.1371/journal.pone.0314133.g009
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5. Conclusions

Based on the 2023 traffic accident data, road design documents, traffic-related data of the Suin-

ing section of G42 Expressway in China, this paper investigates the complex nonlinear effects

of traffic status, road geometry, weather, lighting conditions and day type on traffic accident

severity by using Random Forest method and partial dependence plot. The main findings of

this study are reflected in the following aspects.

1. We used the Random Forest model to evaluate the relative importance of 14 feature factors

influencing severity of traffic accidents. Our analysis revealed that the six most important

factors are the percentage of trucks, traffic volume, slope length, road grade, curvature, and

curve length, with the feature contribution degree of 16.9%, 14.4%, 12.5%, 12.1%, 7.7%, and

7.6%, respectively. All these factors are related to traffic and road conditions, indicating

their significant impact on traffic accident severity.

Fig 10. The partial dependence plots for WIWF accident under two interactive factors.

https://doi.org/10.1371/journal.pone.0314133.g010
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2. Focusing on the six most important factors, we visualized the relationships between single

and dual factors and the three classes of traffic accident severity by drawing the partial

dependence plot. The results show that there is an obvious nonlinear relationship and

threshold effect on accident severity.

3. Concentrating on traffic accidents with injuries and fatalities (WIWF), we conducted a

detailed analysis of the threshold and interaction effects of two factor related to traffic and

road features. The results highlight specific traffic statuses, road geometry features, and

their combinations, such as the curve and slope combinations and the small-radius curves,

especially under traffic conditions where the truck ratio rangs from 10% to 20% and the

traffic volume rangs from 20,000 to 30,000 pcu/day. These features significantly contribute

to WIWF accidents. Therefore, safety management should be strengthened on these road

segments by establishing necessary warning and protection facilities, and taking relevant

actions to control the traffic volume and the proportion of trucks.

The findings drawn from this study can inform highway design and safety management.

However, there are several limitations. Firstly, the accident data utilized in this paper were

sourced from a specific highway section over a one-year period, which may constrain the gen-

eralizability and applicability of the findings to other contexts. The current work should be

extended to gathering more reliable data sources for further examination. Secondly, while

vehicle-related and driver-related factors, particularly those associated with driver’ age, gender,

and unsafe driving behavior factors, are known to significantly influence accident severity,

these factors were not included in our analysis due to data availability constraints. Therefore,

future research may focus on collecting more comprehensive data to facilitate a deeper explo-

ration of the complex interactions and nonlinear effects of various factors on traffic accidents,

ultimately providing more valuable insights for the highway safety management.
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