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Background: Cuproptosis, a metal-ion-dependent form of regulated cell death induced by copper overload, is emerging as a potential 
mechanism in high-grade glioma (HGG). Despite its significance, the role of cuproptosis in predicting the prognostic and therapeutic 
response in HGG remains poorly understood.
Methods: We performed unsupervised clustering to stratify patients with HGG in the Chinese Glioma Genome Atlas (CGGA) 
according to the expression of 14 cuproptosis-related genes (CRGs) and validated in The Cancer Genome Atlas (TCGA). Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were applied to explore the biological processes and 
pathways involved within distinct groups. We constructed the CupScore model to predict the responsiveness to immune checkpoint 
inhibitors (ICIs) therapy and chemotherapy in patients with HGG. Additionally, in vivo and in vitro experiments were performed to 
investigate the potential biological function of CDKN2A in HGG.
Results: We identified two cuproptosis-related molecular subgroups with significantly different survival probabilities. Patients with 
HGG in cluster 1 were characterized as immune-desert phenotype with higher CupScore and lower expression of MHC complex, 
interferons, chemokines, interleukins, and immune checkpoints. In contrast, cluster 2 showed an immune-inflamed signature. We 
screened PI-103 as the most promising candidate for patients with higher CupScore and confirmed its experimental evidence and 
clinical trial status. Patients with lower CupScore showed higher response rates to anti-PD-L1 and anti-PD1 combined with anti- 
CTLA4 ICI therapy. Furthermore, in vivo and in vitro experiments revealed that CDKN2A enhanced the malignant phenotype of 
HGG.
Conclusion: Cuproptosis has the ability to reprogram the tumor microenvironment (TME) in HGG, leading to the stratification of 
patients into two distinct molecular subgroups. The CupScore model emerged as a robust metric for predicting the prognostic and 
therapeutic benefits, as well as may therefore facilitate personalized treatment strategies for patients with HGG.
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Introduction
High-grade gliomas (HGGs) are the most common primary central nervous system (CNS) malignancies and account for 
approximately 50% of all primary brain tumors, representing the leading cause of death among primary CNS tumors.1 

According to the 2021 WHO classification of CNS tumors, HGGs are classified into four subtypes: grade 3 oligoden-
droglioma (1p/19 codeleted, IDH-mutant); grade 3 IDH-mutant astrocytoma; grade 4 IDH-mutant astrocytoma, and grade 
4 IDH wild-type glioblastoma (GBM).2 Survival rates for gliomas vary significantly depending on the subtype. Low- 
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grade gliomas (LGG) can have relatively high 5-year survival rates, reaching up to 80%. On the other hand, HGGs have 
much lower 5-year survival rates, typically below 5%.3 Furthermore, HGGs are characterized by their high infiltrative 
nature and resistance to therapy, making them largely incurable. Hence, the pursuit of effective therapeutic strategies for 
HGGs stands as a pivotal endeavor towards enhancing patient survival rates and prognostic outcomes.

Regulated cell death (RCD), encompassing autophagy, apoptosis, pyroptosis, necroptosis, and ferroptosis, plays 
a crucial role in tumor biology and is linked to cancer metastasis and the remodeling of the tumor microenvironment 
(TME).4 Metal ion-dependent forms of RCD, particularly ferroptosis, have been implicated in the progression and 
therapeutic responses of a range of tumors.5 Notably, copper, an essential cofactor for several enzymes, exhibits elevated 
levels in certain cancer types, including brain tumors,6 contributing to PD-L1 expression modulation in glioma7 and 
metastasis in triple-negative breast cancer.8

Cuproptosis, an emerging form of RCD triggered by excessive intracellular copper accumulation,9 has been 
associated with the destabilization of iron-sulfur cluster proteins.10 A recent study identified key regulators of cuproptosis 
and underscored its potential impact on inflammation-associated immunosuppression and TME reprogramming, parti-
cularly in glioma.11 The cuproptosis-related signature has been linked to immune infiltration and patient prognosis in 
glioma,12 suggesting its significance in HGG cluster identification and prognostic prediction.

Amidst the inter- and intra-tumor heterogeneity of HGG, precise molecular subtype classification becomes imperative 
for personalized treatment strategies. Previous studies, including The Cancer Genome Atlas (TCGA) classification and 
various signatures related to m6A regulation,13 immune response,14 autophagy,15 and ferroptosis,16 have shed light on 
HGG molecular subtyping, but treatment options remain limited and the mortality rates remain high. In this context, 
exploring the molecular characteristics of cuproptosis-related genes (CRGs) may unravel the heterogeneity of HGG, 
offering potential avenues for effective classification schemes and precision therapeutic strategies.

The aim of the present study was to delineate the CRG-based molecular subtypes in HGG, and introduce a CupScore 
model derived from the expression of 14 CRGs. The study further screened potential chemotherapeutic compounds for 
HGG with a high CupScore, identifying PI-103 as a promising candidate. Additionally, the potential of the CupScore 
model as a robust metric for predicting immune checkpoint inhibitors (ICIs) therapy benefits was validated, highlighting 
novel perspectives for the clinical treatment of HGG.

Materials and Methods
Data Acquisition and Filtration
HGG transcriptomic profiles and matched clinical information were obtained from the China Glioma Genome Atlas 
(CGGA) (http://www.cgga.org.cn/, DataSet ID: mRNAseq_693) and The Cancer Genome Atlas (TCGA; https://portal. 
gdc.cancer.gov/). The Genotype-Tissue Expression (https://www.genome.gov/) brain tissue mRNA-seq data served as 
a control. Patients lacking matched survival information were excluded, resulting in the inclusion of 236 patients from 
CGGA, 165 tumors from TCGA, and 207 normal samples.

Cuproptosis-Related Regulator Identification and Expression Profile Characterization
A total of 14 CRGs were identified from the recent publications.17,18 The mRNA expression profiles of these 14 genes were 
analyzed in patients with HGG using the data obtained from TCGA and CGGA. Protein expression profiles were obtained 
using immunohistochemistry (IHC) samples downloaded from the Human Protein Atlas database (HPA; https://www. 
proteinatlas.org/). The genetic variation landscape of these 14 genes in TCGA HGG was visualized using the “maftools” 
R package.19 We explored the expression profiles of 14 genes at the single-cell level using eight single-cell RNA sequencing 
datasets obtained from the Tumor Immune Single-cell Hub (http://tisch.comp-genomics.org/home/). We have uploaded all the 
R codes for to Github (https://github.com/xiaoying-codeLab/Cuproptosis.GBM.git). We investigated subcellular localization 
using immunocytochemistry (ICC) data from the Human Protein Atlas (HPA) in the human glioblastoma cell line U251.
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Unsupervised Clustering Based on Cuproptosis-Related Genes
Unsupervised clustering analysis was performed using the “ConsensusClusterPlus” R package based on the mRNA 
expression of the 14 CRGs.20 Principal component analysis (PCA) was employed by “factoextra” R package to 
demonstrate distribution differences,21 and Kaplan-Meier survival analysis was applied by “Survival” R package to 
compare patient survival between the different groups.22 The HGG data obtained from TCGA was used for unsupervised 
clustering validation.

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene 
Set Variation Analysis (GSVA) pathway enrichment analysis
Differentially expressed genes (DEGs) between cuproptosis subtypes were identified using the “limma” R package.23 

“ClusterProfiler” R package was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis, and the GSVA algorithm explored the significantly differentially enriched pathways within clusters.24

Construction of the CupScore Model
To evaluate the prognostic value of cuproptosis signatures, we utilized a penalized Cox regression model with LASSO 
penalties to calculate correlation coefficients for the 14 CRGs. These coefficients, derived from LASSO regression, 
quantify the relationship between gene expression and patient prognosis. By multiplying the gene expression levels with 
their respective coefficients, we obtain the CupScore, which sums up the results to represent the combined prognostic 
significance of the CRGs. Therefore, the CupScore formula is defined as follows: CupScore = ∑ (correlation coefficient × 
gene expression). A total of 236 cases were stratified into high and low CupScore groups based on the optimal cutoff 
value determined by “Survminer” R package.25 Subsequently, survival analysis was conducted to compare the patient 
outcomes between these two groups. Finally, the “survivalROC” R package was used to construct a Receiver Operating 
Characteristic (ROC) curve, thus assessing the predictive efficacy of the CupScore model.26

Tumor Immune Infiltration Analysis
Dying cancer cells trigger an immune response, impacting the quantity and composition of immune infiltrations to 
reshape the TME and thereby contributing to apoptosis resistance and immune evasion.27 To assess these effects, the 
“ESTIMATE” R package was used to predict the stromal, immune, and overall ESTIMATE scores across distinct 
cuproptosis subtypes in HGG.28 Furthermore, we computed the Tumor Inflammation Signature (TIS) score by evaluating 
the expression of an 18-gene set,29 which was developed through a cross-validated penalized regression modeling 
strategy on a large cohort of pembrolizumab-treated patients across nine different tumor types. This score was used to 
compare the differences in T cell infiltration among the various CupScore clusters.

Correlation Between the CupScore and Drug Sensitivity
The area under the curve (AUC) values of drug responses were compared among clusters to pinpoint effective 
medications, leveraging the Genomics of Drug Sensitivity in Cancer (GDSC) database, which contains 367 compounds 
(https://www.cancerrxgene.org/). Expression data for human cancer cell lines (CCLs) were accessible through the Cancer 
Cell Line Encyclopedia (https://sites.broadinstitute.org/ccle/). The PRISM dataset (https://www.theprismlab.org/) and the 
Cancer Therapeutics Response Portal (CTRP2.0) were used to identify potential therapeutic agents for patients with high- 
grade glioma. Subsequently, the Connectivity Map (CMap) score was employed to identify promising compounds for 
patients with an elevated CupScore. Information regarding target genes, clinical trial status, and experimental evidence of 
chemotherapeutic agents was sourced from Drugbank (https://go.drugbank.com/) and the National Center for 
Biotechnology Information (NCBI) (https://pubmed.ncbi.nlm.nih.gov/).

Correlation Between the CupScore and ICI Therapy Response
An urothelial cancer cohort treated with anti-PD-L1 immunotherapy was used to delve deeper into the association 
between the CupScore and immunotherapeutic benefits, utilizing the “IMvigor210CoreBiologies” R package. The 
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present study included a total of 298 patients with comprehensive clinical information, excluding cases lacking 
detailed information regarding the effectiveness of immunotherapy. Concurrently, the predictive value of the 
CupScore in anti-PD-1 and anti-CTLA-4 combination therapy was investigated by incorporating patients with 
melanoma from PRJEB23709.

Histological Analysis
High-grade glioma and their corresponding normal tissue samples were procured from the Department of Neurosurgery 
at Huaian Cancer Hospital (Huaian, China) between January 2020 and September 2022. The research protocol was 
approved by the Ethics Committee of the Huaian Cancer Hospital (No.2019036) and the present study conformed with 
the guidelines described in the Declaration of Helsinki.30 Informed patient consent was obtained prior to the inclusion of 
patients. Tissues were preserved in 10% neutral formalin fixative and sectioned into 5 μm-thick slices. These sections 
underwent a comprehensive staining regimen, using hematoxylin (RT for 3 min) and eosin (RT for 30 sec) (H&E), 
copper salt (dithiooxamide method; cat. no. G3040; Beijing Solarbio Science & Technology Co., Ltd)., and IHC staining 
with an anti-SLC31A1 antibody incubated overnight at 4°C (cat. no. 67221-1-Ig, dilution 1:1000, ProteinTech 
Group, Inc).

Reverse Transcription-Quantitative PCR (RT-qPCR)
Total RNA was extracted from high-grade glioma and paired normal tissues using an RNA isolation kit (cat. no. RC112-01, 
Vazyme Biotech Co., Ltd)., and 1 μg RNA was used for reverse transcription (cat. no. R323-01, Vazyme Biotech Co., Ltd). Gene 
expression was normalized to GAPDH expression. The sequences of the primers used were: GAPDH forward, GTCTCCT 
CTGACTTCAACAGCG and reverse, ACCACCCTGTTGCTGTAGCCA A; SLC31A1 forward, CCAGGACCA 
AATGGAACCATCC and reverse, ACCACCTGGATGATGTGCAGCA; and CDKN2A forward, CTCGTGCTGATGCTAC 
TGAGGA and reverse, GGTCGGCGCAGTTGGGCTCC.

Cell Culture
Human U87MG ATCC (glioblastoma of unknown origin; #CL-0238) and U251 (#CL-0237) cells verified using short 
tandem repeat profiling, were obtained from Procell Life Science & Technology Co., Ltd. The 293T cell line was 
purchased from Shanghai Cafa Biological Technology Co. Ltd (Shanghai, China). Cells were cultured in DMEM (Gibco; 
Thermo Fisher Scientific, Inc)., supplemented with 10% FBS (Gibco; Thermo Fisher Scientific, Inc)., and incubated in 
a humidified incubator at 37°C supplied with 5% CO2 air.

shRNA Preparation and CDKN2A Knockdown
The lentiviral shRNA vector (pGLV-U6/Puro), designed to target human CDKN2A, was constructed and manufactured 
by GemPharmatech; the specific shRNA sequence was GCTCTGAGAAACCTCGGGAAA.

For the lentivirus packaging process, a recombinant lentiviral vector plasmid (pGLV-U6/Puro-sh CDKN2A, 12 μg), 
a packaging plasmid (psPAX2, 9 μg), and an envelope plasmid (pMD2G, 3 μg) were utilized to transfect 4×106 293T 
cells in a 10 cm dish. The plasmids were resuspended in 1.5 mL Opti-MEM and then mixed with an additional 1.5 mL 
Opti-MEM containing 60 μL polyetherimide, and incubated at room temperature for 20 min. The resulting mixture was 
added dropwise to the 293 cells. After 8 h, the culture media was replaced with fresh media.

Following a 24 and 48 h incubation period, the culture medium, now containing the lentivirus, was collected. 
Subsequently, U87MG cells were infected with the lentiviruses and subjected to selection using puromycin (2 μg/mL) 
to establish stable cell lines.

Proliferation Assay
U87MG and U251 cells, transfected with either control or CDKN2A shRNA, were plated in a 48-well dish at a density of 
1×104 cells per well in serum-free medium. Subsequently, the cells were labeled using CFDA-SE (cat. no. C1031, 
Beyotime Institute of Biotechnology).
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Gap Closure and Migration Assays
U87MG and U251 cells,31,32 transfected with either control or CDKN2A shRNA, were seeded in two-well culture inserts 
(cat. no. 80209; Ibidi GmbH) placed within a 24-well cell culture plate. The following day, the culture inserts were 
carefully removed, and the closure of the resulting cell-free gaps were monitored continuously for 12 h under 
a microscope.

Subcutaneous Tumor Growth Assay
U87MG cells, stably infected with lenti-shControl or lenti-shCDKN2A (GemPharmatech), were injected at a density of 
3×106 cells in 0.1 mL PBS into nude mice aged 6–8 weeks (n=4). The developing tumor was assessed every 2 days to 
ensure that its maximum size did not exceed 2.0 cm. Tumor dimensions were measured using calipers, and the volume 
was calculated using the formula: V = (S2 × L)/2, where V is the volume, S is the shortest diameter, and L is the longest 
diameter. On day 15, the mice were euthanized using 100% CO2 asphyxiation with a chamber volume displacement rate 
of 50% per min, for a minimum duration of 3 min. Cervical dislocation was then performed to confirm death. 
Subsequently, the tumors were isolated, imaged, and measured. All animal procedures were approved by the 
Laboratory Animal Core Facility of Nantong Medical University.

Statistical Analysis
Data analysis was performed using R version 4.0.4. Comparisons between groups were performed using a Wilcoxon test, 
Student’s t-test, or one-way ANOVA. To evaluate the equality of variances among the different groups, we initially 
conducted Levene’s Test for the t-tests. The obtained p-values for the Levene’s Test were greater than 0.05, suggesting 
that the variances were not significantly different from one another. Relationships were explored using Spearman 
correlation analysis. Survival curves were generated using the Kaplan-Meier method and analyzed using Log rank 
tests. P<0.05 was considered to indicate a statistically significant difference.

Results
SLC31A1 Expression and Intracellular Copper Overload in HGG
Copper, an indispensable micronutrient crucial for cell growth and survival, has been established as a promoter of 
tumorigenesis,33 tumor metastasis,8 and PD-L1 expression.7 Previous studies have demonstrated increased intratumoral 
copper distribution in various cancer types, particularly in brain tumors that exhibit a pronounced affinity for copper.34 To 
delineate the features of copper homeostasis in glioma, the mRNA expression levels of SLC31A1 in TCGA and CGGA 
glioma datasets were assessed. The results revealed that SLC31A1 was up-regulated in tumors, correlating with glioma 
stage, IDH mutation, and 1p/19q co-deletion status (Figure 1A–C). Subsequently, SLC31A1 mRNA expression was 
assessed in normal and HGG tissues; its expression was upregulated in tumor tissues compared to normal samples 
(Figure 1D). Similarly, intratumoral copper accumulation was significantly higher in HGG tissues than in normal brain 
samples, and SLC31A1 exhibited upregulation at the protein level in HGG tissues (Figure 1E). These findings 
collectively characterize HGG as a malignancy associated with increased copper intake. In recent study published 
studies,17,18 a distinctive pattern of RCD induced by intracellular copper overload was defined as cuproptosis, identifying 
14 key cuproptosis regulated genes (Table S1). Consequently, the present study aimed to explore the impact of 
cuproptosis on tumor molecular subtyping and analyze the correlation between cuproptosis and therapeutic benefits in 
HGG, as illustrated in the flow chart (Figure S1).

Genetic Variations and Expression Profiles of CRGs in HGG
The chromosomal location and coding sequence length of the 14 CRGs were obtained from NCBI (Table S1). The 
protein-protein interaction network highlighted DBT as the hub gene (Figure 2A). Somatic mutations of the 14 genes 
revealed that six (4.03%) of the 149 samples exhibited genetic variations (Figure 2B). Copy number variation (CNV) 
analysis showed a significantly high frequency of copy number deletion (62.26%) for CDKN2A (Figure 2C), with the 
chromosomal location of CNV alterations visualized in the circos plot (Figure 2D). Differential analysis demonstrated 
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significant upregulation of ATP7A, CDKN2A, FDX1, LIPT1, MTF1, PDHA1 and SLC31A1 in HGG in the CGGA 
dataset, while ATP7B, DBT, GLS, DLAT, and DLD were down-regulated (Figure 2E). In TCGA, ATP7A, CDKN2A, 
FDX1, LIPT1 and SLC31A1 were identified as up-regulated genes, whereas ATP7B, DBT, GLS and PDHA1 were 
significantly down-regulated (Figure 2F). At the protein level, IHC staining downloaded from HPA revealed strong 
staining for ATP7A, DLD, CDKN2A, and PDHB in HGG (Figure S2A). In primary glioma patients from CGGA, 

Figure 1 Intracellular copper overload and SLC31A1 up-regulation in HGG. (A–C) The expression profile of SLC31A1 in glioma in TCGA and CGGA datasets. (D) qPCR 
analysis of SLC31A1 mRNA expression in normal tissues (n=3) and HGG tissues (n=4). Data were compared using a Student’s t-test. (E) Histopathological examination using 
H&E staining, copper salt staining, and IHC staining of HGG and paired normal tissues. 
Abbreviations: HGG, high-grade glioma; TCGA, The Cancer Genome Atlas; CGGA, China Glioma Genome Atlas; qPCR, quantitative PCR; H&E, hematoxylin and eosin; 
IHC, immunohistochemistry.
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upregulated expression of FDX1 and DLAT was significantly associated with worse OS (Figure S2B and C), while 
patients with upregulated expression of CDKN2A and GLS exhibited better OS (Figure S2D and E).

Figure 2 Characterization of the genetic variations and the expression profiles of the 14 CRGs in HGG. (A) Protein-protein interaction network of the 14 CRGs obtained 
from STRING 11.5 and plotted using the “igraph” R package. (B–D) Somatic mutation signature, CNV frequency, and chromosomal location of the CNVs of the 14 CRGs in 
the HGG cohort obtained from TCGA. (E and F) Expression profiles of the 14 CRGs in the CGGA and TCGA cohorts. Data were compared using a Student’s t-test, 
*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. (G) Expression of the 14 CRGs at the single-cell level across eight single-cell RNA sequencing datasets downloaded from the 
TISCH portal. 
Abbreviations: HGG, high-grade glioma; CRGs, cuproptosis-related genes; CNV, copy number variation; TCGA, The Cancer Genome Atlas; TISCH, Tumor Immune 
Single-cell Hub.

OncoTargets and Therapy 2024:17                                                                                                 https://doi.org/10.2147/OTT.S481443                                                                                                                                                                                                                       

DovePress                                                                                                                       
1075

Dovepress                                                                                                                                                               Xia et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=481443.pdf
https://www.dovepress.com/get_supplementary_file.php?f=481443.pdf
https://www.dovepress.com/get_supplementary_file.php?f=481443.pdf
https://www.dovepress.com/get_supplementary_file.php?f=481443.pdf
https://www.dovepress.com
https://www.dovepress.com


At the single-cell level, GLS, ATP7A and SLC31A1 exhibited preferential expression in immune cells, while the other eleven 
genes were predominantly expressed in malignant cells across eight scRNA-seq datasets (Figure 2G). At the subcellular level in 
the U251 cell line, ICC staining from HPA suggested that FDX1, DLD, DLAT, PDHB, and GLS were primarily localized in the 
mitochondria, whereas CDKN2A and MTF1 was predominantly localized in the nucleoplasm (Figure S2F). The cellular and 
subcellular location and expression patterns of the 14 CRGs in tumor cells suggest that cuproptosis may occur in HGG tumor 
cells by targeting lipoylated TCA cycle proteins, a phenomenon not previously reported.

Cuproptosis-Related Subtype Identification and Functional Enrichment Analysis
To investigate the association between CRG signatures and HGG subtyping, consensus clustering analysis on the CGGA 
dataset was employed. Patients were stratified into two groups (K=2) with distinct intergroup correlations (Figure 3A–C). 
Kaplan-Meier analysis revealed that patients in Cluster 1 (C1) exhibited a worse survival probability (Figure 3D). PCA 
demonstrated clear differentiation between the two cuproptosis subtypes based on the expression of the 14 CRGs 
(Figure 3E). No significant differences were observed in IDH mutation status, endpoint event, 1p19q co-deletion status, 
TMZ status, radio status, or MGMTp methylation status between the groups (Figure S3). In comparison to C1, C2 
exhibited a low cuproptosis phenotype with elevated expression of negative hits (CDKN2A and GLS) (Figure 3F).

For a more in-depth analysis of these distinct groups, the DEGs with a fold change of |≥1.5| were selected, as shown 
in the volcano plot (C2 vs C1; Figure 3G). GO analysis of the up-regulated DEGs indicated significant enrichment in 
biological processes related to lymphocyte mediated immunity (Figure 3H). Down-regulated DEGs were preferentially 
enriched in activities associated with metal ion transmembrane transport and ion channel regulation (Figure 3I). These 
findings suggested that C2 exhibited lower ion transport activity, increased phagocytosis, and enhanced humoral 
immunity. Furthermore, KEGG analysis revealed enrichment in Epstein-Barr virus (EBV) infection and viral carcino-
genesis pathways in C2, potentially due to tumor cells in this subgroup being less susceptible to cuproptosis, making 
them ideal hosts for viruses (Figure 3J). Additionally, GSVA indicated a higher enrichment score for hallmark interferon 
α and γ response pathways in C2, closely linked to viral infection (Figure S4). A previous study confirmed that increased 
intracellular copper levels in the host reduced the severity of influenza infection.35 Meanwhile, down-regulated DEGs 
were significantly enriched in the cAMP signaling pathway and proximal tubule bicarbonate reclamation (Figure 3K). 
Activation of the cAMP signaling pathway ultimately contributes to HGG cell migration and invasion,36 which may 
explain the better prognosis observed in C2. To confirm the robustness of the CRGs-based classification, the glioma 
cohort obtained from TCGA was used for consensus clustering analysis, identifying two subgroups with different OS that 
were consistent with CGGA (Figure S5A–D).

Characterization of the Immune Landscape in the Cuproptosis-Related Subgroups
The interplay between cuproptosis and the reprogramming of the TME was investigated next. The heatmap revealed up- 
regulated expression of chemokines (CXCL10, CXCL11, CXCL13, CXCR2, CXCR3, CXCR4, CXCR9, and CCR10) in 
C2 compared to C1 (Figure 4A), leading to the recruitment of CD8+ T cells and dendritic cells (DCs). Similarly, 
interleukins (IL6, IL24, IL27, IL32, IL2RG, IL9R, IL17B, and IL27RA), interferons (IFNE, and LTA), other cytokines 
(CSF1) (Figure 4A), and the major histocompatibility complexes (MHC; HLA-B, HLA-C, HLA-DOB, HLA-F, and 
HLA-F-AS1) exhibited higher expression in C2 (Figure 4B). Subsequently, the stromal, immune, ESTIMATE, and TIS 
scores were compared between C1 and C2, with C2 displaying elevated immune and TIS scores (Figure 4C–F).

Among the 24 immune cell populations, Th17 cells, Tregs, cytotoxic cells, NK CD56dim cells, and ɑDC sparsely 
infiltrated C1, while Tcm and Th1 cells were more abundant in C1 according to ssGSEA (Figure 4G). Furthermore, the 
immune cell network depicted a comprehensive signature of tumor-immune cell interactions and cell lineages in HGG 
(Figure 4H). Interestingly, the expression of CRGs was positively correlated with the infiltration of T helper cells and 
showed a negative association with NK cell infiltration (Figure 4I). Notably, CD27, CTLA-4, LAG3, PD-1, and VTCN1 
were significantly down-regulated in C1 (Figure 4J), potentially stemming from the scarce immune cell infiltration in C1. 
Indeed, these observations revealed two distinct immune phenotypes of HGG through H&E staining, characterized by 
either abundant or poor immune cell infiltration in tumors (Figure 4K). Together, cuproptosis transformed TME into an 
immune-desert signature with sparse immune infiltration, lower immune checkpoint expression, and a poorer OS.
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Figure 3 Unsupervised clustering and functional enrichment analysis in distinct subgroups of HGG using data obtained from CGGA. (A–C) The “ConsensusClusterPlus” 
R package was employed to generate the consensus CDF, δ area, and consensus matrix (K=2) in HGG patients using data obtained from CGGA. (D) Kaplan-Meier survival 
analysis of the two clusters; data were compared using a Log-rank and Wilcoxon-Breslow test. (E) PCA distinguishes the distinct clusters based on the expression of the 14 
CRGs. (F) Expression levels of the 14 CRGs between distinct clusters. (G) Volcano plot showing the DEGs between the different clusters (fold change = 1.5). (H–K) GO 
and KEGG enrichment analysis between the two distinct subgroups of HGG. 
Abbreviations: HGG, high-grade glioma; CGGA, China Glioma Genome Atlas; CDF, cumulative distribution function; PCA, principal component analysis; CRG, 
cuproptosis-related gene; DEG, differentially expressed gene; Go, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 4 Correlation analysis of cuproptosis and the tumor microenvironment landscape in HGG. (A) Heatmap illustrating the mRNA expression levels of chemokines, 
interleukins, interferons, and other cytokines in clusters C1 and C2. (B) Split violin plot showing the variations in the MHCs between clusters C1 and C2. Data were 
compared using a Wilcoxon test. (C–F) Comparison of the stromal, immune, ESTIMATE, and TIS scores between the two clusters. Data were compared using a Wilcoxon 
test. (G) Infiltration analysis of the 24 immune cell populations in C1 and C2 by ssGSEA. Data were compared using a Wilcoxon test. (H) The immune cell interaction 
network was assessed using Spearman correlation analysis based on the expression of the 14 CRGs. The line connecting two cells indicates an interaction between them. (I) 
Correlation analysis between the expression of the 14 CRGs and infiltration of the 24 immune cell populations. (J) mRNA expression levels of immune checkpoints between 
the two subtypes. Data were compared using a Wilcoxon test. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. (K) Representative images of H&E staining depicting two 
immune phenotypes of HGG. 
Abbreviations: HGG, high-grade glioma; MHC, major histocompatibility complex; TIS, Tumor Inflammation Signature; CRG, cuproptosis-related gene; H&E, hematoxylin 
and eosin.
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Construction of the CupScore Scoring Model
The above results highlight the pivotal role of cuproptosis in TME remodeling and survival outcomes in HGG. Next, 
a scoring model named CupScore was developed, derived from the expression patterns of the 14 CRGs. Employing the 
formula described earlier, patients with HGG were classified into high and low CupScore groups using a cutoff of −0.01 
(Figure 5A). Kaplan-Meier analysis showed that patients with higher CupScore experienced worse OS probability 
(Figure 5B), with an AUC value of 0.70 for the 5-year survival ROC curve (Figure 5C).

Exploring the correlation between the CupScore and various clinical features of patients with HGG revealed differences 
across CRGs-classified clusters (C1 or C2), OS duration (>1 or ≤1 year), and censor status (alive or deceased) (Table S2). 
Spearman correlation analysis during the model construction process revealed a negative correlation between CDKN2A 
expression and the CupScore, while GLS and DLD exhibited a positive correlation with the CupScore (Figure 5D). The forest 
plot highlighted FDX1 as a protective factor for patient OS, while LIPT1 emerged as a high-risk factor (Figure 5E). Notably, 
patients in C1 demonstrated a significantly higher CupScore compared to those in C2 (Figure 5F). Moreover, a higher 
CupScore was associated with lower expression of immune checkpoints, including CD276, CD274, CD47, and PVR 
(Figure 5G). Further analyses indicated that the CupScore was positively correlated with TIDE, tumor purity and exclusion 
score, whereas it exhibited a negative association with immune, ESTIMATE, dysfunction, and TIS scores (Figure 5H). These 
findings suggested that cuproptosis actively contributed to TME remodeling, promoting tumor immune tolerance and, was 
thus consequently associated with a poorer OS in patients with HGG. The Sankey diagram provides a visual representation 
showing that the majority of patients with a higher a CupScore ultimately succumbed to the tumor (Figure 5I). We compared 
the CupScore between patients who received the standard Stupp protocol care and those who did not, and found no difference 
(Figure 5J). Patients who received concurrent chemoradiotherapy with low CupScore showed significantly better OS 
(Figure 5K), suggesting that CupScore may predict a better response to the standard of care per the Stupp protocol.

Drug Sensitivity Screening in Distinct Subtypes for Chemotherapy Guidance
Next, potential therapeutic agents tailored to CRGs-classified clusters were investigated. Initially, the CGGA prediction model 
on GDSC HGG cancer cells was employed (Figure S6A), comparing the AUC of the drug responses between clusters. 
Notably, the AUCs of temsirolimus, brivanib, alisertib, and ACY-1215 were significantly lower in C1 (Figure S6B–E).

Subsequently, the CTRP2.0 and PRISM databases were leveraged to identify therapeutic agents for patients with 
HGG with a high CupScore. Removing duplicates, a total of 1,774 chemical agents were considered (Figure 6A). 
Spearman correlation analysis between the CupScore and AUC values identified candidate drugs with negative correla-
tion coefficients using the CTRP2.0 and PRISM datasets (Spearman’s r <-0.10 for CTRP or −0.30 for PRISM). This 
approach led to the identification of eight CTRP-derived drugs (brefeldin A, PI-103, BMS-754807, alisertib, SB-743921, 
ML210, cucurbitacin I, and navitoclax) and ten PRISM-derived drugs (GZD824, propranolol, PI-828, ICI-162846, 
idasanutlin, niridazole, PI3K-IN-2, masitinib, BMS-986020, temsirolimus) as candidate agents for patients with HGG 
with a higher CupScore, exhibiting lower estimated AUC values (Figure 6B and C).

To refine the selection among the 18 agents, an in-depth analysis following a methodology outlined in a previous study was 
performed.37 Initially, the 300 DEGs with the most significant fold changes (150 up-regulated and 150 down-regulated genes) 
were submitted to the Connectivity Map (CMap) database (https://clue.io/query). This analysis identified PI-103 with a CMap 
score <-95, signifying its significant efficacy in treating HGG (Figure 6D). Additionally, the fold changes of PI-103 target 
genes (MTOR, PIK3CA, PIK3CB, PIK3CD, PIK3CG, and PRKDC) in tumors compared to normal sites (Table S3). Finally, 
by searching the published literature on NCBI, experimental evidence and the clinical trial status of PI-103 for the treatment of 
HGG were found, confirming its potential for increasing GBM cell apoptosis by inhibiting DNA repair.38 This comprehensive 
analysis highlighted PI-103 as the most promising therapeutic option for patients with HGG with a higher CupScore.

Role and Value of the CupScore in Predicting ICIs Therapy Benefits
In recent years, tumor immunotherapy has emerged as a promising strategy for eradicating malignant cancers. However, 
patients with the same cancer types still exhibit different response rates to immunotherapy, potentially due to distinct 
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Figure 5 Construction of the CupScore model using the CGGA HGG cohort. (A) Identification of high and low CupScore groups using the “ggrisk” R package with a cutoff 
value of −0.01. (B) Kaplan-Meier curve illustrating a significant difference in the survival rates between the high and low CupScore groups. (C) ROC curve displaying the 
AUC values of the CupScore model in predicting the 1, 3, and 5-year survival rates for patients with HGG. (D) Correlation between the CupScore and the expression of the 
14 CRGs determined using Spearman correlation analysis. (E) Forest plot illustrating the contributions of the 14 CRGs to the OS of patients with HGG. (F) Violin plot 
displaying the CupScore distribution in the two clusters. Data were compared using a Wilcoxon test. (G) Expression levels of immune checkpoints between the different 
CupScore groups. Data were compared using a Student’s t-test. *P<0.05, **P<0.01, ***P<0.001. (H) Heatmap demonstrating the correlation between the CupScore and the 
ESTIMATE, stromal, TIS, and immune scores. (I) Sankey diagram illustrating the correlation between clusters, CupScore, OS status, PRS type, and IDH mutation status using 
the “ggalluvial” R package. (J) CupScore between patients who received the standard of care per the Stupp protocol and those who did not. Data were compared using 
a Wilcoxon test. (K) Kaplan-Meier curve showing a significant difference in the survival between the high and low CupScore groups, both with and without concurrent 
chemoradiotherapy. 
Abbreviations: ROC, receiver operating characteristic; AUC, area under the curve; CGGA, China Glioma Genome Atlas; HGG, high-grade glioma; CRG, cuproptosis- 
related gene; OS, overall survival.
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immune cell infiltration statuses. ICIs therapy is a recognized approach to circumventing immune tolerance and 
improving immunotherapy benefits for patients.39

To further explore the relationship between the CupScore and ICIs therapy benefits, an anti-PD-L1 therapy cohort 
(IMvigor210) of urothelial carcinoma was investigated. A total of 298 patients undergoing anti-PD-L1 therapy were clustered 
into high (n=170) and low (n=128) CupScore groups, with patients in the low CupScore group exhibiting a higher survival 

Figure 6 Identification of candidate drugs for patients with HGG with a high CupScore. (A) Overview of the compounds contained in the CTRP2.0 and PRISM databases 
illustrated as a Venn diagram. (B and C) Spearman correlation analysis and comparison of drug sensitivity for eight CTRP-derived and nine PRISM-derived drugs. *P<0.05, 
**P<0.01, ***P<0.001. (D) Integration of experimental evidence, clinical status, expression of drug targets, and CMap scores for CTRP- and PRISM-derived drugs to identify 
the most promising candidates for patients with high CupScore. 
Abbreviations: CMap, Connectivity Map; HGG, high-grade glioma; CTRP, Cancer Therapeutics Response Portal.
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probability rate (Figure 7A). Notably, patients in the low CupScore group were more likely to respond to anti-PD-L1 therapy 
(Figure 7B) and achieved a higher complete response (CR)/partial response (PR) rate (Figure 7C and D).

Across most solid tumors, three distinct immunological phenotypes prevail: Immune-desert, immune-excluded, or 
immune-inflamed, characterized by the infiltration numbers and location of CD8+ T cells in tumors.40 In the IMvigor210 
cohort, the relationship between the CupScore and immune phenotype, tumor-infiltrating immune cells (IC) level, and tumor 
cells (TC) level was explored. The box plot revealed that patients with a higher CupScore displayed an immune-desert 
phenotype (Figure 7E). Furthermore, specimens scored as IHC TC0 exhibited a higher CupScore than the other two groups 
(Figure 7F and 7G), strongly suggesting that the CupScore can predict the response to anti-PD-L1 therapy. The ROC curve 
indicated that the AUC value of the CupScore model for predicting the anti-PD-L1 response was 0.62 (Figure 7H).

Figure 7 CupScore for predicting the responsiveness of patients with HGG to ICIs therapy. (A) Kaplan-Meier survival analysis comparing the different CupScore groups in 
the IMvigor210 cohort. (B) Comparison of the CupScore between the anti-PD-L1 responder and non-responder groups. Data were compared using a Wilcoxon test. 
**P<0.01. (C and D) CR/ PR and SD/PD rates between the different CupScore groups following anti-PD-L1 therapy. (E–G) Correlation between the CupScore and immune 
phenotype, IC, and TC levels. Tumor samples were scored using IHC based on PD-L1 expression in TCs and ICs. *P<0.05. (H) ROC curve evaluating the accuracy of the 
CupScore in predicting anti-PD-L1 ICI therapy response. (I) TMB comparison between high and low CupScore groups. Data were compared using a Wilcoxon test. 
****P<0.0001. (J) Kaplan-Meier survival analysis between the high and low CupScore groups in the PRJEB23709 cohort. (K) CR/PR and SD/PD rates between the different 
CupScore groups following anti-PD-1 and anti-CTLA4 combination therapy. (L) ROC curve assessing the accuracy of the CupScore in predicting anti-PD-1 and anti-CTLA4 
combination ICIs therapy response. 
Abbreviations: HGG, high-grade glioma; ICIs, immune checkpoint inhibitors; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; IC, 
immune cell; TC, tumor cell; IHC, immunohistochemistry; ROC, receiver operating characteristic curve; TMB, tumor mutation burden.
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Interestingly, a higher CupScore was closely associated with a lower tumor mutation burden (TMB) (Figure 7I). Previous 
studies have consistently demonstrated that a higher TMB results in an improved response to ICIs therapy across various types 
of cancer,41 suggesting that the CupScore may serve as a valuable biomarker for assessing the effectiveness of ICIs therapy. 
Moreover, our model was applied to the PRJEB23709 cohort to explore the correlation between the CupScore and anti-PD-1 
and CTLA-4 combination immunotherapy benefits. Patients with melanoma following anti-PD-1 and CTLA-4 combination 
therapy were divided into high (n=5) and low (n=27) CupScore groups; patients with a higher CupScore exhibited worse OS 
rates (Figure 7J). Similarly, patients with a lower CupScore showed a higher CR/PR rate in the PRJEB23709 cohort 
(Figure 7K), and the AUC value of the model was 0.45 (Figure 7L). Together, the above results indicate that cuproptosis 
reprograms the TME, influencing the immune phenotype of HGG. The CupScore model may thus serve as a powerful metric 
for predicting the response to ICIs therapy.

CDKN2A facilitates the proliferation and migration of HGG
Significantly higher expression of CDKN2A was observed at both the mRNA level (Figure 2E and F) and protein level 
(Figure S2A) in HGG. Consequently, in vivo and in vitro experiments were performed to explore the potential biological 
function of CDKN2A in HGG. CDKN2A was confirmed to be upregulated in U87MG and U251 cells at the mRNA level 
(Figure 8A) and exhibited higher expression in higher-grade glioma (Figure 8B). The cell proliferation assay indicated 
that CDKN2A knockdown using shCDKN2A reduced the proliferation and migration of the U87MG and U251 cell lines 
(Figure 8C–J). Additionally, U87MG cells with CDKN2A expression knocked down exhibited smaller tumor volumes in 
the mouse model (Figure 8K and L). In conclusion, CDKN2A plays a significant role in HGG′ malignant phenotype 
development.

Discussion
HGG is characterized by a poor prognosis and high intertumoral and intratumoral heterogeneity, with a lack of effective 
therapies. To date, various molecular classification strategies have been proposed to develop innovative targeted therapies 
for individual subtypes, such as those based on transcriptomic profiles, DNA methylation, and somatic genomic 
alterations.42 However, existing HGG subtyping strategies have not yielded apparent benefits for patients, highlighting 
the urgent need for more effective molecular subtyping methods to tailor therapies and improve patient outcomes.

Copper is an essential micronutrient for most organisms, and imbalances in copper homeostasis are commonly 
observed in the serum or tissue of patients with cancer.43 Excess intracellular copper induces a recently defined form of 
RCD known as cuproptosis, which is caused by copper-induced lipoylated protein aggregation and loss of iron-sulfur 
cluster proteins.17 Copper overloading is the primary requirement and trigger for cuproptosis in tumor cells; however, no 
concrete evidence has implicated the definitive role of cuproptosis in HGG molecular subtyping, TME reprogramming, 
or the prediction of therapeutic benefits. Tumors, especially brain tumors, exhibit a higher demand for copper to support 
cell growth and proliferation. In the present study, upregulated expression of SLC31A1 and excess copper accumulation 
in HGG was observed using qPCR, IHC staining, and copper salt staining. Due to their higher copper-dependent 
characteristics, brain tumor cells are more vulnerable to copper overload and copper-induced toxicity, highlighting 
copper regulatory mechanisms as potential therapeutic targets for HGG treatment. The present study comprehensively 
investigated the role of CRGs in HGG subtyping and TME reprogramming. Additionally, a CRG-based scoring model, 
termed CupScore, was constructed to explore the association between the CupScore with chemotherapy and ICI therapy 
benefits in patients with HGG.

In the present study, patients were divided into two clusters (C1 and C2) based on the expression of 14 CRGs in the 
CGGA training cohort and subsequently validated in the data obtained from TCGA. PCA confirmed that the two distinct 
cuproptosis-related subtypes could be clearly distinguished by the expression of the 14 CRGs. Patients in C1 with 
a higher CupScore exhibited worse survival rates compared to those in C2. In the GO and KEGG analysis between the 
two groups, C2 showed high enrichment in phagocytosis, EBV infection, and viral carcinogenesis pathways, possibly 
resulting from lower sensitivity to cuproptosis. Meanwhile, patients in C2 exhibited suppressed metal ion transmembrane 
transporter activity and ion channel regulator activity, suggesting less copper accumulation in C2 tumors. A previous 
study documented that host copper overloading decreased influenza infection,35 which may explain why tumors in C2 
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Figure 8 CDKN2A promotes the proliferation and migration of HGG cells. (A) Upregulated expression of CDKN2A in U87MG and U251 cell lines were detected by 
qPCR. (B) CDKN2A expression is upregulated in high-grade glioma compared to low-grade glioma as observed using IHC images from HPA. (C–J) U87MG and U251 cells 
transfected with shCDKN2A exhibited reduced proliferation and migration compared with cells transfected with the shCtrl. (K–L) Comparison of the tumor size between 
the control tumors and tumors with CDKN2A knockdown. All experiments were repeated at least three times, and data were compared using a Student’s t-test. *P<0.05, 
**P<0.01. 
Abbreviations: HGG, high-grade glioma; qPCR, quantitative PCR; IHC, Immunohistochemistry; HPA, Human Protein Atlas; sh, short hairpin.
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were more susceptible to EBV infection.44 In summary, tumors in C2 with lower sensitivity to cuproptosis were more 
likely to be associated with viral infection.

The present study illustrated a significant association between cuproptosis levels and TME remodeling in HGG. Firstly, 
tumors in C2 had higher immune scores with an abundance of cytotoxic cells, Th17 cells, NK CD56dim cells, and ɑDCs. 
Numerous studies have reported that the abundance of immune cells in tumor sites affected antitumor immunity and 
immunotherapy efficacy.45 Further, it was found that patients in C2 exhibited higher TIS scores, as well as higher levels of 
chemokines, interleukins, interferons, cytokines, and the MHC complex, which contributed to the recruitment of CD8+ T cells, 
DCs, NK cells, and NKT cells to kill tumor cells. It has been previously documented that patients with higher TIS scores exhibit 
prolonged OS compared to patients with lower scores and that the TIS score was an independent and accurate predictive 
biomarker for the evaluation of the clinical benefit of ICIs therapy.46 Of note, tumors in C2 expressed high levels of immune 
checkpoint proteins (CD27, CTLA-4, LAG3, PD-1, and VTCN1), which are associated with the response to ICIs therapy.

Considering the crucial role of cuproptosis in TME remodeling and the heterogeneity amongst the CRG-related 
subgroups of HGG, a scoring system, CupScore, was developed to evaluate the value of assessing cuproptosis in 
predicting the response to ICIs therapy, as well as to identify promising candidate drugs for patients with a higher 
CupScore. In the IMvigor210 cohort, patients with lower cuproptosis scores showed an immune-inflamed phenotype with 
abundant infiltration of immune cells, high expression of immune checkpoints, and a longer survival time when treated 
with anti-PD-L1 therapy. In addition, there was a positive correlation between the CupScore and TMB. A higher TMB 
resulted in a greater variety and quantity of tumor neoantigen burden, increasing the likelihood of T cell recognition and 
thus there was a clinical correlation with improved ICIs therapy outcomes.47 Furthermore, the CupScore model also 
showed remarkable value in predicting the benefits of anti-PD-1 and CTLA-4 combination therapy. The relationship 
between the CupScore and the AUC value of drugs was assessed using Spearman correlation analysis, and PI-103 was 
identified as the most promising candidate compound for the treatment of tumors with a high CupScore. Experimental 
evidence uncovered that PI-103 promoted HGG cell line apoptosis by inhibiting DNA repair and is currently being 
assessed in a clinical trial. In conclusion, the CupScore model is a promising metric for predicting the response to ICIs 
therapy and chemotherapy, highlighting a novel perspective for the clinical treatment of HGG. Furthermore, patients who 
received concurrent chemoradiotherapy with a low CupScore showed significantly better overall survival (OS), suggest-
ing that CupScore may predict the response to the standard of care according to the Stupp protocol.

In vivo and in vitro experiments were used to explore the potential biological function of CDKN2A in HGG and it 
was found that CDKN2A promoted the proliferation and migration of U87MG and U251 cells. Moreover, subcutaneous 
tumor growth assays showed that CDKN2A contributed to an increased tumor burden in a nude mouse model. Taken 
together, CDKN2A played an essential role in the formation of a malignant phenotype during the progression of HGG.

Despite the extensive and systematic analysis performed in the present study, there remain some limitations. First, as 
a relatively recently defined type of RCD, only 14 CRGs were identified for unsupervised tumor clustering. Therefore, 
more CRGs with higher accuracy are required for improved tumor subtyping and score model construction. Second, 
considering the impact of the hard-to-reconcile batch effect on subtyping, only one HGG cohort was selected from the 
CGGA dataset for further analysis. In the future, larger cohorts from several centers will be assessed for further in-depth 
analysis and verification. Finally, besides constructing signatures and identifying molecular subtypes for HGG based on 
CRG-based signature construction and molecular subtyping, approaches such as the ferroptosis-related model and multi- 
omics profiling can also be considered as potential alternatives.48,49

In conclusion, the present study delineated two distinct cuproptosis-related molecular subtypes based on the expression of 
14 CRGs in HGG, revealing divergent prognoses. CRGs play a pivotal role in tumor heterogeneity and TME remodeling in the 
HGG, and their expression is linked to the benefits of chemotherapy and ICIs therapy. The CupScore model may serve as 
a promising tool capable of characterizing molecular subtype profiles and TME landscapes, predicting responses to 
chemotherapy and immunotherapy, and assessing the long-term survival rates of patients with HGG.
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