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Although three-dimensional (3D) genome architecture is crucial for gene 
regulation, its role in disease remains elusive. We traced the evolution 
and malignant transformation of colorectal cancer (CRC) by generating 
high-resolution chromatin conformation maps of 33 colon samples 
spanning different stages of early neoplastic growth in persons with familial 
adenomatous polyposis (FAP). Our analysis revealed a substantial progressive 
loss of genome-wide cis-regulatory connectivity at early malignancy 
stages, correlating with nonlinear gene regulation effects. Genes with high 
promoter–enhancer (P–E) connectivity in unaffected mucosa were not linked 
to elevated baseline expression but tended to be upregulated in advanced 
stages. Inhibiting highly connected promoters preferentially represses 
gene expression in CRC cells compared to normal colonic epithelial cells. 
Our results suggest a two-phase model whereby neoplastic transformation 
reduces P–E connectivity from a redundant state to a rate-limiting one 
for transcriptional levels, highlighting the intricate interplay between 3D 
genome architecture and gene regulation during early CRC progression.

The technological advent of three-dimensional (3D) chromosome 
organization mapping has revealed important insights into genome 
folding1–3. Multilayered structures maintained by molecular contacts, 
insulators and aggregative domains together compact the 2-m DNA 
into nonrandom spatial configurations in the nucleus2,4. However, the 
functional implications of such spatial organization on fundamental 
biological processes remain largely elusive.

A key discovery in genome topology is the formation of topologi-
cally associating domains (TADs)5,6, high-order structures that partition 

the genome into contiguous regions through a proposed loop extru-
sion mechanism7,8. While genetic mutations affecting TAD structures 
have been linked to oncogenic gene dysregulations in specific cases9–11, 
the exact role of TAD organization in transcription regulation remains 
an open question. Recent studies have shown a surprisingly moderate 
transcriptional response to the manipulation of boundary elements 
such as CTCF and cohesin components12,13. Furthermore, computa-
tional approaches have suggested a lack of coexpression between genes 
residing in the same TAD14,15. These findings imply that gene regulation 
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Extended Data Fig. 2)7,8. Previous studies have correlated these struc-
tures with interaction hotspots identified by high-depth 4C assays, 
enriched at regulatory elements18,33,34. To annotate the interacting 
regions, we mapped open chromatin regions in 23 matched samples 
using an assay for transposase-accessible chromatin with sequencing 
(ATAC-seq)35 (Fig. 1b) and annotated the regulatory elements using the 
Ensembl regulatory build36. Notably, both micro-C and mHi-C but not 
in situ Hi-C revealed enriched interactions at promoters and enhancers 
(Extended Data Fig. 3a). This enrichment was specific to long-range 
contacts, which persisted after normalizing against short-range or total 
read coverage (Fig. 1d and Extended Data Fig. 3b), indicating that the 
observed stripe signals are not artifacts of differential contact map-
pability because of the high accessibility of these regions.

Using the HICCUPs algorithm37, we identified 279,480 loop inter-
actions, including 91,706 promoter–promoter (P–P) or P–E contacts 
(Extended Data Fig. 3c). Compared to chromatin conformation pro-
files obtained from intact micro-C and in situ Hi-C, mHi-C identified 
approximately 10-fold and 100-fold more P–E and P–P interactions, 
but only 1.5-fold and 8.5-fold more loops between CTCF-binding sites, 
respectively (Fig. 1e). This suggests that mHi-C specifically improves 
the detectability of contacts among active regulatory elements. Mean-
while, using a peak calling algorithm based on MACS2 (refs. 18,38), we 
identified 254,642 stripes in all samples (Methods). Of the 279,480 
loops, 266,419 (95%) overlapped with stripes (Extended Data Fig. 3d), 
indicating that the majority of loop contacts are formed along with 
stripe extension.

At 100-bp resolution, we observed a pronounced difference 
between P–E and CTCF–CTCF interactions. Whereas contacts between 
promoters and enhancers are formed at open chromatin regions, CTCF 
interactions do not strictly overlap with CTCF-binding sites. Instead, 
they spread widely within a multikilobase flank region (Fig. 1f). These 
patterns are consistent with occupancy of the cohesin components at 
the open chromatin of active regulatory elements, as opposed to being 
retained at a broader region around CTCF sites (Extended Data Fig. 3e). 
Furthermore, we found that the loop signals of P–E interactions were 
comparable with the sum of the anchors’ stripe strengths, whereas 
the loop strengths of CTCF interactions significantly exceeded their 
architectural stripe strengths (Fig. 2a and Extended Data Fig. 4a). This 
difference suggests that, unlike CTCF boundaries, which can maintain 
stable loop structures39, P–E interactions are dynamically maintained 
while the intervening anchors interact frequently with each other’s 
neighborhoods.

Promoter stripes shape gene-specific P–E connectivity
We observed that P–E interactions are asymmetrically contributed 
by the relatively stronger stripe-forming activity of the promoters 
and weaker activity of the enhancers (Figs. 1f and 2a). This asymmetry 
underscores the dominant role of promoters in shaping the P–E con-
nectivity. To validate this hypothesis, we conducted a case study of the 
MYC upstream locus, which is a known risk hotspot for multiple cancer 
types40 that resides near five coding genes (POU51B, CCAT2, CASC8, 
CASC11 and MYC) and multiple enhancers. Our results demonstrated 
that MYC, which exhibited the highest stripe strength, consistently 
interacted with all enhancers with the highest frequency among all 
five genes, despite other genes being located closer to these enhancers 
(Fig. 2b). Remarkably, the enhancers tended to bypass CASC11, a gene 
located only 1 kb upstream of MYC with substantial promoter CTCF 
binding, and instead favored robust interactions with the MYC pro-
moter, which showed lower CTCF affinity. We extended our examination 
to additional loci and consistently found that gene-specific promoter 
stripe activities led to distinctive interaction profiles for genes sharing 
the same enhancer context (Extended Data Fig. 4b).

To further investigate the relationship between P–E connectiv-
ity and promoter or enhancer activity, we profiled the landscapes 
of methylome and transcriptome from the matching FAP and CRC 

is often not particularly constrained by large submegabase folding 
domains but rather depends on a finer layer of regulatory architecture 
at the sub-TAD level.

Recent advancements in chromatin conformation capture tech-
nologies, using micrococcal nuclease16,17 or a combination of restriction 
enzymes18,19, have improved mapping resolution and enhanced the 
detection of sub-TAD structures. These methodologies have uncovered 
prevalent distal interaction activities, including architectural stripes 
and insulation activities associated with active cis-regulatory elements 
(CREs). However, the functional implications of these structures remain 
largely uncharacterized. Moreover, studies of transcriptional kinetics 
based on imaging20,21 and multiomics sequencing22,23 have revealed dis-
joined changes between the spatial proximity of regulatory elements 
and transcriptional activation events. These observations highlight the 
intricate role of physical connectivity in gene regulation.

Colorectal cancer (CRC) represents a major global health burden 
and is the second leading cause of cancer death in the United States24. 
Over 80% of colorectal carcinomas are initiated by loss-of-function 
mutations of adenomatous polyposis coli (APC), a key component in 
the cytosolic complex that targets β-catenin for destruction and sup-
presses Wnt signaling25,26. Persons with familial adenomatous polyposis 
(FAP) carry germline APC mutations and develop tens to thousands of 
precancerous polyps at different stages and sizes, as well as occasional 
adenocarcinomas; these polyps are believed to represent early stages of 
CRC27,28. Thus, the study of polyps at different stages of development in 
persons with FAP provides a valuable model for studying the cascades 
of epimutations and gene dysregulations during early oncogenesis.

In the context of the Human Tumor Atlas Network (HTAN)29, we 
profiled genome-wide chromatin conformation at up to 100-bp resolu-
tion in 33 colon samples from persons with FAP and CRC representing 
different stages of CRC progression. By integrating these data with 
transcriptome and epigenome profiling, we investigated the relation-
ship between fine-gauge chromatin structures organized by active 
regulatory elements and gene dysregulation associated with polyp 
malignancy. Our analysis revealed a progressive loss of cis-regulatory 
connectivity from mucosa to polyps to adenocarcinoma, correspond-
ing with dysregulated gene expression in a nonlinear fashion. The initial 
connectivity levels before oncogenic progression may be a key factor 
in this process. We propose that the remodeling of the promoter–
enhancer (P–E) connectome is not only indicative of alterations of gene 
expression but also reflects shifts in the transcriptional response to 
epigenetic alterations in polyps and adenocarcinoma. Our rich dataset 
provides a valuable resource for unraveling the chromatin architectural 
basis of early CRC development.

Results
Fine mapping of regulatory element interactions using mHi-C
To examine the chromatin architecture associated with regulatory 
elements in clinical tissue samples, we developed multidigested Hi-C 
(mHi-C), a protocol derived from in situ Hi-C30 that uses five 4-bp-cutter 
restriction enzymes and moderated detergent conditions to achieve 
ultrafine mapping (mean fragment size = 52 bp) of the distal chromatin 
interactions18,31 (Fig. 1a, Extended Data Fig. 1a and Methods). We gener-
ated mHi-C data for 33 frozen colon tissue samples at different stages 
of neogenesis (Fig. 1b and Supplementary Table 1), comprising seven 
non-neoplastic mucosa, 19 dysplastic polyps and one adenocarcinoma 
from four persons with FAP, as well as six additional adenocarcinoma 
samples from non-FAP individuals who developed sporadic CRC. A total 
of 1.59 billion unique intrachromosomal long-range (≥1 kb) interaction 
contacts were mapped (Extended Data Fig. 1b,c).

Similar to micro-C16,17,32, mHi-C robustly revealed fine-gauge 
structures at subkilobase resolution (200 bp–1 kb). This included 
dot interactions, indicative of looping of two fixed anchors, and 
architectural stripes, indicative of dynamic looping between a fixed 
anchor and the sliding intervening neighboring regions (Fig. 1c and  
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Fig. 1 | mHi-C reveals interactions associated with active CREs. a, Schematic 
representation of the mHi-C workflow. b, Summary of colon tissue samples 
analyzed by multiomics assays. Bar colors represent different donors. Each row 
corresponds to a unique donor with sporadic CRC. The number of biospecimens 
examined by each assay: n = 33 for mHi-C, n = 24 for RNA-seq, n = 23 for ATAC-seq 
and n = 21 for EM-seq. c, Comparison of contact matrices generated from mHi-C 
(combined colon tissues) with in situ Hi-C (HCT116) and intact micro-C (HCT116) 
at various resolutions. Blue arrows highlight interaction dots formed between 

the KLF6 promoter and adjacent enhancers. Orange arrows show structural 
loops at TAD boundaries. d, Venn diagrams illustrating the overlap of interaction 
loops identified by the three methods. e, Average fold enrichment (FE) of 
distal interactions at TSSs, active enhancers and CTCF-binding sites in mucosa 
samples. Red intervals indicate the nucleosome-free region (NFR) and the +1 
nucleosome regions upstream and downstream of the TSS, respectively. f, APA  
of loops between promoters and active enhancers (n = 9,174) and between  
CTCFs (n = 30,208).
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samples (Fig. 1b). We quantified the connectivity of all coding genes 
with their neighboring enhancers within a 200-kb distance. We then 
correlated this connectivity with the accessibility of the enhancers, the 
methylation and stripe activity of the gene promoters, assessed by the 
fold enrichment of the overlapping architectural stripes, in unaffected 
mucosa (Fig. 2c). The connectivity exhibited a strong correlation with 
stripe strength (ρ = 0.69), demethylation (ρ = 0.68) and accessibil-
ity (ρ = 0.63) of the gene promoter. By contrast, its correlation with 

enhancer accessibility was much lower (ρ = 0.37) (Fig. 2d). Consistently, 
clustering analysis revealed distinct groups of genes associated with 
high connectivity but low-to-moderate enhancer accessibility and vice 
versa, indicating a discrepancy between the availability of enhancers 
and their connectivity with promoters (Extended Data Fig. 4c). Motif 
analysis uncovered a strong enrichment of transcription factors (TFs) 
with G+C-rich motifs on highly interactive promoters, distinguish-
ing them from promoters associated with high accessibility or rich 
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Fig. 2 | Correlation between promoter stripe formation and P–E connectivity. 
a, Comparison of mean loop strengths with the logarithmic sum of mean 
stripe strengths at the anchors for loops formed between different regulatory 
elements. Error bars represent confidence intervals. Statistical significance 
was assessed using the Wilcoxon signed-rank test. b, Contact heat map 
(combined colon tissues) of the MYC upstream cancer risk locus. Top right, 
contact frequencies of resident genes with the five putative enhancers 
exhibiting the highest distal interaction activity. Bottom right, a detailed view 
of contact distribution between enhancer E1 and the MYC and CASC11 genes. 

c, Schematic representation of the integration of conformational, epigenetic 
and transcriptional features for downstream analysis. d, Spearman correlation 
matrix of average feature strengths in mucosa samples for all examined coding 
genes (n = 14,692). e, Hierarchical clustering of genes exhibiting top 10% intensity 
for any of the six examined features, based on the degree of motif enrichment 
(adjusted −log10(P value)) on their promoters. f, ROC analysis for predicting 
actively expressed genes (TPM > 0.5, n = 10,663) using various structural and 
epigenetic features. Numbers indicate the AUC scores. g, Spearman correlation 
of the expression levels of actively expressed genes with the examined features.
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neighboring enhancer contexts (Fig. 2e). Collectively, these results 
suggest that the degree of P–E connectivity of genes is predominantly 
correlated with the stripe activity on their promoters, corroborating 
our observations in the case studies.

Upon observing a substantial divergence between the promoter’s 
connectivity and the availability of distal regulatory elements, we 
investigated which factor was more relevant to transcription. We 
discovered that the overall correlation of connectivity with gene 
expression surpassed that of enhancer accessibility (Fig. 2d). How-
ever, this high correlation predominantly stemmed from the asso-
ciation of transcriptionally inactive genes (transcripts per million 
(TPM) < 0.5) with low connectivity (Extended Data Fig. 4d). As such, 
high connectivity serves as a robust indicator of an ‘on’ state for 
promoters, similar to their accessibility, demethylation and stripe 
strength (Fig. 2f). Conversely, the expression level of active genes 
(TPM > 0.5) was poorly correlated with the connectivity (ρ = 0.10) but 
rather explained by the enhancer accessibility (ρ = 0.24) (Fig. 2g). This 
implies that regulation of quantitative expression was dependent on 
the activity of enhancer context for genes with connectivity passing 
beyond the ‘on’ threshold.

Impaired P–E connectivity indicates promoter instability
During the development of CRC malignancy, we observed that more 
than 80% of identified stripes and loops in polyps and over 90% in can-
cer showed reduced signals (Fig. 3a and Extended Data Fig. 5a). Among 
the annotated CREs, gene coding transcription start sites (TSSs) exhib-
ited an exceptionally high loss rate of stripe strength (Extended Data 
Fig. 5b). Consistently, the global P–E connectivity was progressively lost 
in advanced stages, suggesting reduced P–E communications associ-
ated with stripe loss (Fig. 3b,c). To test whether these alterations are 
because of increased chromosomal rearrangements along with stage 
progression, we applied EagleC41 to the mHi-C results, identifying 1–17 
structural variants (SVs) in each sample (Extended Data Fig. 5c). The 
sparsity of the SVs and a comparable number of average events between 
the mucosa (2.5) and polyp (2.5) stages suggests that they are unlikely 
a primary driving factor for the genome-wide loss of interactions.

To investigate whether the loss of P–E connectivity was because 
of changes in the activity of the regulatory elements, we aligned the 
results with the chromatin accessibility and methylation profiles. In 
both polyps and adenocarcinoma, alterations in connectivity were 
poorly correlated with the accessibility changes of both gene promot-
ers and neighboring enhancers (ρ ≤ 0.13) (Extended Data Fig. 5d). We 
also observed a mild progressive loss of accessibility on the promoters 
but not on the enhancers (Fig. 3c). However, the degree of accessibil-
ity loss (−12.3%) was marginal compared to the substantial losses of 
P–E connectivity (−39.3%) and promoter stripe strength (−41.8%), 
suggesting underlying factors that specifically contributed to the 
impairment of distal interaction. On the other hand, hypermeth-
ylated and hypomethylated promoters were associated with high 
and low connectivity losses, respectively (Fig. 3d), consistent with 
the well-characterized repressive function of DNA methylation42. 
However, for the majority (>80%) of the promoters that were neither 
hypomethylated nor hypermethylated, we found that demethylated 
promoters were also associated with a higher rate of connectivity loss 
compared to methylated ones (Fig. 3d and Extended Data Fig. 5e). 
Furthermore, demethylated promoters that are hypermethylated in 
the advanced stages are implicated by their significantly lower initial 
connectivity in the mucosa samples (Extended Data Fig. 5f). These 
results together indicate a common factor driving both the global 
connectivity loss of promoters and the selective hypermethylation 
of low-connectivity ones rather than hypermethylation as a driving 
force of the connectivity loss.

Recent studies of clusters of enhancers, also known as superen-
hancers, suggested that the high valency and number of components 
in enhancer clusters increased their cooperativity through phase 

separation43,44. Inspired by this observation, we examined whether 
the stability of the P–E networks was affected by the valency of the 
networks. Interestingly, we found that a high valency of interacting 
promoters but not enhancers was associated with a lower rate of con-
nectivity loss from mucosa to adenocarcinoma (Fig. 3e, f). This suggests 
that cooperative P–P interaction networks are associated with elevated 
stability during neogenic progression.

Initial P–E connectome primes subsequent gene  
dysregulation
To elucidate the implications of P–E connectivity on transcriptional 
outcomes, we analyzed 2,872 genes that exhibited progressive upregu-
lation or downregulation in polyps and adenocarcinomas (Extended 
Data Fig. 6a,b). We discovered that both upregulated and downregu-
lated genes displayed a similar degree of connectivity loss compared 
to the genome average (Extended Data Fig. 6c). Consistently, genes 
associated with increased or decreased connectivity loss did not cor-
relate with upregulation or downregulation (Extended Data Fig. 6d), 
indicating that the direct impact of P–E connectivity changes on dif-
ferential gene expression was insignificant. Importantly, however, 
the first principal component of both the transcriptome and the P–E 
connectome revealed a consistent trajectory of stage progression, 
suggesting that the remodeling of the two ‘omes’ during CRC develop-
ment was closely related, despite their low linear correlation at each 
individual genes (Extended Data Fig. 6e).

Upon investigating the potential nonlinear relationship between 
P–E connectivity and gene expression, we identified a correlation 
between differential gene expression and the levels of their connec-
tivity relative to the genome average, as well as to their transcription 
levels (Fig. 4a). While upregulated and downregulated genes were 
associated with high and low connectivity, respectively, the connec-
tivity levels were established in unaffected mucosa samples rather 
than gained or lost in advance stages. As the stage progressed, the 
gene expression shifted toward higher correlation with the levels of 
P–E connectivity (Fig. 4b and Extended Data Fig. 7a). Interestingly, a 
similar trend was also observed between gene expression and other 
indicators of promoter activity, such as accessibility, stripe activity and 
demethylation, but not with the accessibility of neighboring enhancers 
(Fig. 4b). Collectively, these observations suggest a scenario in which 
impaired P–E connectivity in polyps and adenocarcinomas correlated 
with an increased dependence of transcription dosage control to the 
promoter activity.

A two-phase model predicts dysregulation conserved in 
cancers
The association of cancer dysregulation with the P–E connectome 
before cancer development can be explained by a two-phase model. In 
unaffected mucosa, high P–E connectivity displays functional redun-
dancy, which does not drive high gene expression but rather increases 
the stability of the P–E networks (stabilization phase). With the loss of 
connectivity during development of malignancy, the impaired con-
nectivity of the promoters becomes a rate-limiting factor (activation 
phase), thereby establishing an increased linear correlation with gene 
expression (Fig. 4c).

A major inference from the two-phase model is that P–E connec-
tivity in baseline conditions primes differential gene expression upon 
global connectivity loss, highlighting its predictive power for cancer 
gene dysregulation. To test this hypothesis, we developed an ‘initial’ 
machine learning model using connectivity and other omics landscapes 
in mucosa to predict gene expression changes in advanced stages 
(Fig. 4d). The predicted fold changes exhibited moderate but highly 
significant correlation for the test gene set in both polyps (r = 0.50) 
and adenocarcinoma (r = 0.44) (Fig. 4e and Extended Data Fig. 7b). 
The initial model performed comparably to a ‘differential’ model, 
which was trained using the fold change of the epigenetic landscapes 
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Fig. 3 | Loss of distal connectivity in polyps and adenocarcinoma. a, APA of 
all stripe (top) and loop (bottom) anchors, with FE of signals indicated below 
the panels. b, Mean P–E connectivity for coding genes in mucosa, polyp and 
adenocarcinoma samples. The sample sizes of each stage: n = 7 for mucosa, n = 19 
for polyp and n = 7 for adenocarcinoma. The P values for stage comparisons 
were determined by the Mann–Whitney U-test. Mucosa versus polyp, 
P = 1.72 × 10−3; polyp versus adenocarcinoma, P = 8.00 × 10−5. c, Average log2 fold 
changes of structural and epigenetic features in polyps and adenocarcinoma, 
with confidence intervals represented by shaded areas. d, Changes in 
connectivity between mucosa and adenocarcinoma for genes categorized 

by hypermethylation, hypomethylation or no change (NC, <5% difference) in 
methylation status. Groups with demethylated (<25%) and methylated (>40%) 
promoters are compared. The number of promoters in each category: n = 138 for 
hypermethylated, n = 648 for hypomethylated, n = 7,643 for NC-demethylated 
and n = 4,879 for NC-methylated. e, Comparison of contact heat maps for 
a representative locus in mucosa and adenocarcinoma samples, with log2 
connectivity changes for gene promoters indicated below. f, Comparison of 
connectivity changes for genes (n = 9,901) interacting with varying numbers of 
promoters and other CREs, including Spearman correlation coefficients and  
P values from the Mann–Whitney U-test.
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during malignancy progression, suggesting that the baseline levels and 
alterations of the epigenetic landscapes explained a comparable por-
tion of cancer gene dysregulation (Fig. 4f and Extended Data Fig. 7c).

Interestingly, when the baseline of the initial model was changed 
from mucosa to polyp, which molecularly more closely resembles 
adenocarcinoma, the prediction accuracy significantly worsened 
(Extended Data Fig. 7d–f). This suggests that the predictive informa-
tion in the epigenetic landscape diminishes as oncogenic progres-
sion advances. We identified P–E connectivity as the most critical 
predictive feature in the initial model by sequentially removing each 
feature, reinforcing its pivotal role in the two-phase model (Extended 
Data Fig. 7g). The analysis of feature importance revealed distinct 
predictive factors by the initial and differential models. While the 
initial model suggested that upregulation was predicted by high 
P–E connectivity and low enhancer accessibility in unaffected 
mucosa, the differential model suggested that it was associated with 
their loss and gain, respectively, in advanced stages (Fig. 4g and  
Extended Data Fig. 7h,i).

Recent studies on cancer dysregulation have inferred that onco-
genic mutations converge on dysregulation of key transcriptional 
regulators, such as MYC45 and E2F (ref. 46), which drive cell proliferation 
and survival. To test whether the two-phase model is a potential addic-
tion mechanism adopted by cancers to gain proliferative advantages, 
we applied the initial model to predict gene dysregulation in other 
cancer types from The Cancer Genome Atlas (TCGA) database47,48. 
We found that the model had generic predictability for significantly 
dysregulated genes (10/28, area under the curve (AUC) > 0.6; Extended 
Data Fig. 8) and the directionality of their differential expression (18/28, 
accuracy > 60%; Fig. 4h). The prediction accuracy further increased 
toward nearly 100% for genes showing consistent upregulation or 
downregulation among different cancer types (Fig. 4i). The genes with 
accurately predicted upregulation were highly enriched in cell cycle 
and DNA maintenance pathways (Fig. 4j). These results suggest that a 
substantial portion of conserved cancer gene dysregulation may be 
explained by the transition of P–E connectivity to the activation phase, 
including the upregulation of key transcriptional addiction pathways, 
such as cell proliferation.

Two-phase model predicts gene-specific intervention 
sensitivity
In the two-phase model, genes with high P–E connectivity are associated 
with high stability and are, thus, more transcriptionally resilient to con-
nectivity loss. This model predicts specific transcriptional outcomes 
driven by connectivity interventions. First, the genome-wide pertur-
bation of the P–E connectome will result in gene-specific expression 
changes, where low-connectivity genes will be selectively prone to 
downregulation. Second, high-connectivity genes will be sensitized 
to perturbations in polyps and cancer because of their shift toward 
the activation phase along with global connectivity losses (Fig. 5a).

To validate these predictions, we first examined the transcrip-
tomic response of colon samples to JQ1 treatment (Fig. 5b). JQ1 is a 

specific and potent inhibitor of bromodomain and extraterminal 
domain (BET) family members49–52, such as bromodomain-containing 
protein 4 (BRD4), which has a crucial role in recruiting the mediator 
complex that bridges P–E interactions53,54. In primary and colon can-
cer cell lines, as well as in organoids derived from mucosa and polyp 
tissues, genes upregulated or downregulated by JQ1 treatment were 
consistently associated with high and low initial P–E connectivity, 
respectively (Fig. 5c). Furthermore, correlations of transcription 
levels with P–E connectivity and other indicators of promoter activ-
ity, but not with the enhancer context, were increased with JQ1 treat-
ment (Fig. 5d and Extended Data Fig. 9a). These results resembled 
the events during malignancy progression (Fig. 4a,b), suggesting 
that gene expression alterations induced by JQ1 could be explained 
by the two-phase model.

By comparing the P–E connectivity distribution of downregu-
lated genes in normal versus polyp and cancer samples, we found 
a significant increase in the fraction of high-connectivity genes in 
disease samples (Extended Data Fig. 9b). This result matched the 
malignancy-specific sensitivity of highly connected genes to per-
turbations predicted by the two-phase model. Interestingly, genes 
that were selectively downregulated in polyps and cancer cells were 
enriched in cell cycle and DNA damage repair pathways (Extended 
Data Fig. 9c). These pathways responded to JQ1 with a significantly 
higher fold decrease in disease samples (Fig. 5e), suggesting that, while 
cell proliferation genes are commonly upregulated during oncogen-
esis (Fig. 4J), their susceptibility to transcriptional perturbations also 
increases with impaired P–E connectivity.

To test whether the cancer-specific perturbation sensitivity can 
be targeted with a gene-specific strategy, we applied clustered regu-
larly interspaced short palindromic repeats (CRISPR) interference 
(CRISPRi)55 to target the promoters of five proliferation genes (E2f3a, 
MYC, CCNE1, MCM4 and CDC25A), which were highly connected and 
correctly predicted to be upregulated in both polyps and adenocarci-
noma (Extended Data Fig. 6a and Supplementary Table 2). Comparing 
transcriptional responses in primary colon epithelial cells (HPCEC) 
and colon cancer cells (HT29), we found that each of the genes were 
consistently repressed with a larger effect size in the cancer cell line 
(Fig. 5f). In contrast, for the three reference genes (B2M, TBP and UBC), 
neither or only one of the two guide RNAs (gRNAs) targeting each gene 
showed increased repression fold changes in cancer. These results were 
reproduced by delivering dCas9–gRNA ribonucleoprotein complexes 
through electroporation, replacing the lentiviral-delivered Cas9–KRAB 
(Krüppel-associated box) cassette (Extended Data Fig. 10a). By contrast, 
gene repression and deletion using the exon-targeting Cas9–dCas9 
resulted in similar degrees of downregulation between normal and can-
cer cell lines (Extended Data Fig. 10b,c), suggesting that the observed 
difference in repression efficiency was specific to the promoters and 
not confounded by the delivery efficiency of the system between cell 
lines. Taken together, consistent with the two-phase model predic-
tion, proliferation genes in cancer showed increased susceptibility to 
promoter inhibition.

Fig. 4 | Predictable cancer gene dysregulation by initial P–E connectivity. 
a, Mean relative fold changes of features for genes upregulated (n = 1,089) or 
downregulated (n = 944) in both polyps and adenocarcinoma, compared to 
the genome average at each stage, with confidence intervals shown as shaded 
areas. b, Spearman correlations between transcription levels of active genes 
(TPM > 0.5) and their structural and epigenetic features at different stages of 
progression. c, Schematics for the two-phase model. In normal conditions, 
most genes are in the saturated stabilization phase, where increased levels of 
P–E connectivity stabilize the networks but do not contribute to higher gene 
expression. In polyp and cancer conditions, genes shift to the activation phase 
because of global losses of the connectivity, where expression levels are rate-
limited by the connectivity levels. Alterations of gene expression during stage 
progression are, therefore, determined by their initial distance to the activation 

phase at normal condition. d, Diagram illustrating the construction of initial and 
differential prediction models. e,f, Predictive accuracy of the initial model for 
gene expression changes (r = 0.50, P < 2 × 10−16) in polyps (e) and the differential 
model (r = 0.50, P < 2 × 10−16) (f) for a test set of genes (n = 2,800). g, The 
importance of features and the average direction of association of structural and 
epigenetic features in the predictive models. h, Accuracy of the initial mucosa–
polyp model in predicting the direction of significant expression changes in 28 
cancer types from TCGA database. i, Prediction accuracy for genes (n = 13,239) 
grouped by their directionality scores. Whiskers indicate 1.5× the interquartile 
range. j, Pathway ontology analysis for genes with altered expression in any TCGA 
cancer type versus those with accurately predicted directional changes by the 
initial model. Zero values indicate no significant enrichment (FDR > 0.1).
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Discussion
In this study, we provided a comprehensive and integrative analysis of 
P–E connectivity in conjunction with the transcriptional and epigenetic 
state of regulatory elements during the early stages of CRC develop-
ment. Our high-resolution chromatin conformation data, facilitated 
by multirestriction digestion, revealed a large number (>250,000) of 

dot interactions and architectural stripes associated with active regu-
latory elements, such as promoters and enhancers. This represents a 
pivotal departure from previous descriptions of chromatin architec-
ture that primarily focused on CTCF loop structures and large domain 
regions30,56–58. Our findings indicate that most P–E loops coexisted with 
stripe formation, suggesting that these interactions are highly dynamic, 
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occurring as either anchor sliding over the intervening chromatin. 
This challenges the traditional view of stable P–E loops and aligns with 
the recent proposal of the ‘hub’ model59,60, which describes the close 
vicinity but not tight looping of cis-regulatory hubs. Importantly, our 
study shows that P–E connectivity has an important inference to gene 
expression dysregulation in cancer, underscoring its fundamental role 
in gene regulation.

Our results elucidate the distinct roles of P–E connectivity and 
enhancer activity in CRC progression. During the transformation of 
polyps and adenocarcinomas, we observed that upregulation of gene 
expression was often correlated with increased activity of the neigh-
boring enhancer contexts (Fig. 4a,g). Conversely, P–E connectivity 
diminished for most genes, irrespective of their expression changes 
(Extended Data Fig. 6c). This intriguing dichotomy underscores the 
existence of specific regulatory mechanisms governing connectiv-
ity that are integral to gene expression and CRC development. The 
attenuation of P–E connectivity is primarily linked to the reduction 
in stripe activity on gene promoters (Fig. 3c). However, the precise 
mechanisms driving the disproportionately high loss rate of connectiv-
ity of promoters among CREs remain elusive (Extended Data Fig. 5b). 
Recent investigations have spotlighted the role of chromatin-binding 
factors such as polymerase (Pol) II, the Mediator complex and YY1 in 
sustaining P–E interactions53,61,62. Additionally, it has been posited that 
the cohesin complex retention on promoters is modulated by general 
transcription activities2,63. This suggests that a myriad of transcrip-
tional regulators could influence P–E connectivity, thus potentially 
leading to therapeutic targets.

We observed an intricate and nonlinear relationship between P–E 
connectivity and transcription. The similar degree of connectivity loss 
was associated with both upregulation and downregulation and our 
analysis revealed that this gene-to-gene variation was correlated with 
their connectivity levels established in the unaffected mucosa before 
cancer development. We propose that this nonlinear relationship is a 
result of a transition in the connectome–transcriptome relationship 
during CRC development. In the unaffected FAP mucosa, transcription 
levels are not rate-limited by high P–E connectivity. This redundancy is 
consistent with previous observations of low correlation between P–E 
interaction and gene expression12,13,22,23. However, our results indicate 
that the scenario is altered in polyps and cancers, where the loss of 
connectivity becomes a limiting factor for transcriptional regulation 
and, thus, correlates with gene expression. Thus, the cis-regulatory 
connectivity has a pivotal role in gene dysregulation associated with 
cancer progression.

On the basis of the two-phase model, we reasoned that genes with 
high and low P–E connectivity at baseline condition would be primed 
for upregulation and downregulation, respectively, upon global con-
nectivity loss or perturbation. This insight was corroborated by the 
correlation between transcriptional alterations caused by BRD4 inhi-
bition through JQ1 treatment and the initial P–E connectivity levels in 
unaffected mucosa. Notably, while previous research has reported 
a comparable number of upregulated and downregulated genes in 
response to JQ1 treatment, the mechanistic underpinnings of wide-
spread gene upregulation following the inhibition of BRD4, a general 
transcriptional activator, remained elusive64,65. Our study provides a 
possible explanation, suggesting that the upregulation of genes can be 
attributed to their promoters’ tolerance to BRD4 inhibition compared 
to the rest of the genome.

Notably, we identified early established high P–E connectivity in 
unaffected mucosa tissue as a hallmark of gene upregulation during 
oncogenic progression. Our pan-cancer analysis suggests that this 
hallmark is important in multiple cancer types and this finding was 
particularly pronounced in key transcriptional regulators of prolifera-
tion, such as E2F and MYC (Extended Data Fig. 7a). Previous studies 
have often described the upregulation of MYC and E2F as an outcome 
of genetic mutations or alterations in their upstream regulators45,66–68. 

However, our results suggest an alternative perspective, where the 
global remodeling of regulatory connectivity has a fundamental role 
in their frequent upregulation in cancers.

Interestingly, our findings suggesting that P–E connectome 
remodeling serves as a positive driver in oncogenesis are in contrast 
with a recent topological study of colon cancer, which proposed a 
tumor-suppressive effect of large-scale architectural reorganization56. 
This apparent discrepancy likely reflects the distinct influences of mac-
roscopic chromatin structures in previous studies and the microscopic 
P–E interactions in cancer progression identified in our study. While 
compartmental remodeling within repressive domains coincided with 
their hypomethylation and gene repression, we observed a concurrent 
loss of fine-scale connectivity among active regulatory elements, shift-
ing the global transcriptional balance.

One limitation of our study is its reliance on colorectal tissues 
from a relatively small cohort of persons with FAP. Previous studies 
have shown that even seemingly unaffected intestinal mucosa in per-
sons with FAP displays deregulated proliferation compared to tissues 
from genetically normal individuals69–71. Whether this predisposition 
toward tumorigenic transformation is associated with chromosomal 
conformational remodeling similar to the changes we observed in 
subsequent stages of progression remains to be explored. Additionally, 
while our two-phase model was robust across several cancer types, it 
did not effectively predict gene dysregulation for certain cancers such 
as kidney carcinoma and myeloid leukemia (Fig. 4h). This discrepancy 
may indicate cell-type-specific variations in P–E connectivity, under-
scoring the need for comparative studies involving these cancers and 
their respective healthy controls. Future research should expand to 
more diverse cohorts and cancer origins to fully assess the complex 
relationship between regulatory connectivity and gene dysregulation 
proposed by our two-phase model.

In summary, our study offers valuable insights into the complex 
interplay between 3D genome architecture and gene regulation dur-
ing the early stages of CRC progression. We provide a unique resource 
of fine-gauge regulatory architecture that has not been extensively 
explored in previous cancer chromatin conformation mapping studies. 
By comprehensively tracing the dynamic changes in P–E connectivity 
and their impact on gene expression during early CRC development, we 
identified potential paths for therapeutic interventions. For example, 
by restoring normal P–E connectivity, it may be possible to interfere 
with the gene dysregulation events during CRC progression. Further 
dissection of mechanisms underlying altered cis-regulatory connectiv-
ity during disease development could identify transcriptional regula-
tors that trigger cancer-specific suppressions of oncogenes, opening 
up avenues for treatment.

Methods
Description of donors
This study was approved by the Stanford Institutional Review Board 
under protocol no. 47044. Four persons with FAP (one male and three 
female) were involved in this study (Supplementary Table 1). FAP tis-
sues were collected at the time of partial or full colectomies from 
participants. Immediately following colectomy, participant-matched 
non-neoplastic colorectal mucosa, adenomatous polyps and ade-
nocarcinomas were snap-frozen and preserved in liquid nitrogen. 
One FAP adenocarcinoma (A001-C-007) was embedded in an opti-
mal cutting temperature (OCT) compound before being stored 
at −80 °C. Sporadic CRCs from six donors were obtained from the 
Stanford Tissue Bank. Tissues were examined for histopathology to 
confirm their disease states. Informed consent was obtained from  
all participants.

Organoid culture
Tissue samples were collected from participants and processed 
for organoid generation according to the protocol detailed in 
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Pleguezuelos-Manzano et al.72. Briefly, samples were collected on ice in 
a collection medium (advanced DMEM/F12 supplemented with 10 mM 
HEPES, 1× Glutamax and 1% penicillin–streptomycin). Tissue samples 
were washed in collection medium, minced and digested for 30 min 
at 37 °C in 5 mg ml−1 collagenase type II (Sigma-Aldrich). Samples were 
then filtered using a 100-μm strainer, washed five times in collection 
medium and plated in Geltrex (ThermoFisher).

Organoids were cultured in a complete medium (advanced 
DMEM/F12 supplemented with 10 mM HEPES, 1× Glutamax, 1% peni-
cillin–streptomycin, 1× B27 without vitamin A, 10 mM nicotinamide, 
1.25 mM N-acetylcysteine, 500 nM A83-01 (Tocris), 10 μM SB202190 
(Sigma-Aldrich), 100 ng μl−1 Noggin (R&D Systems), 1 μg ml−1 human 
recombinant R-spondin (Stemcell), 0.3 nM Wnt-FC (Immunopre-
cise), 50 ng ml−1 EGF (Shenandoah Biotechnology), 2.5 μM CHIR 
99021 (Tocris) and 100 μg ml−1 Normocin (InvivoGen). Further-
more, 10 μM Y-27632 was added to the medium for the first 3 days  
after seeding.

For drug experiments, organoids were trypsinized and plated 
at 30,000 cells per well in 24-well plates. After 5–7 days, organoids 
were incubated in a complete medium containing 500 nM JQ1 for 24 h. 
Organoids were then isolated in Cell Recovery Solution (Corning) on 
ice for 1 h, washed with PBS and centrifuged to retrieve cell pellets. Cell 
pellets were then processed for RNA extraction.

Cell lines
HT29 (American Type Culture Collection (ATCC) HTB-38) and HCT116 
(ATCC CCL-247) human CRC cell lines were obtained from the ATCC. 
Cells were maintained in DMEM/F12 (ThermoFisher, 11320033) with 
10% FBS and 1% penicillin–streptomycin. Primary human colonic epi-
thelial cells (Cell Biologics, H-6047) were maintained in epithelial cell 
growth medium (Cell Biologics, H6621) as suggested by the vendor. 
The identity of all cell lines was authenticated by respective vendors. 
All cell lines tested negative for Mycoplasma and experiments were 
performed before reaching ten population doublings.

For drug experiments, cells were seeded in six-well plates with 
50% confluence. After 1 day, cells were grown in a complete medium 
containing 500 nM JQ1 for 24 h. Cell pellets were then trypsinized for 
collection and processed for RNA extraction.

CRISPR and CRISPRi assays
For stable expression of dCas9–KRAB, pHR-SFFV-KRAB-dCas9- 
P2A-mCherry (Addgene, 60954) was transfected into HEK293T cells 
using the Lenti-X packaging single shots (Takara Bio, 631275), following 
the manufacturer’s protocol. Assembled viral particles were isolated 
after 72 h of incubation and collected by filtering the culture media 
through a 0.45-μm filter. Viral titers were determined using the Lenti-X 
GoStix Plus (Takara Bio, 631280). Viral infections were conducted 
with a multiplicity of infection of 10, where 2.0 × 105–1.0 × 106 cells 
were incubated in full culture medium containing the viral particles 
and 8 μg ml−1 polybrene for 48 h. Positive cells were selected on the 
basis of a high expression of mCherry by fluorescence-activated cell 
sorting (FACSAria II, BD Bioscience). Cells with stable cassette expres-
sion were selected by a second sorting performed 2–3 weeks after  
the initial.

For delivery of gRNA or Cas9/dCas9–gRNA complex, the synthe-
sized crRNA:tracrRNA duplex (Integrated DNA Technologies (IDT)) 
was transfected into 1.0 × 105–2.0 × 105 cells using the 4D nucleofector 
X unit (Lonza) with or without preincubation with equal molar Cas9/
dCas9 protein (IDT, 1081058 and 1081066). We followed the protocol 
provided by IDT for the Lonza nucleofector system. Nucleofection 
of the cells used the following kits and programs: HPCEC, P3/CM137; 
HT29, SF/FF137. After nucleofection, cells were seeded in 96-well plates 
and collected for downstream analysis after 48 h. To obtain statistical 
robustness, each experiment was repeated with 2–4 trials with two 
replicates in each trial.

mHi-C
mHi-C was performed as a derivative of Tri-HiC, a high-resolution modi-
fied Hi-C protocol18,31, with minor modifications. Initially, 5–10 mg of 
snap-frozen tissue was placed into a tissueTUBE-TT05 (Covaris, 520071) 
and cryopulverized using the Covaris CP02 cryoPREP automated dry 
pulverizer, following the manufacturer’s procedure. The pulverized 
tissue was then subjected to freeze substitution73 by submerging it in 
1 ml of −80 °C 0.01% formaldehyde (ThermoFisher, 28906), 97% ethanol 
and 2% water. Following this, samples were incubated on dry ice for 3 h 
at a rotor spinning speed of approximately 100 r.p.m. They were then 
placed in a CoolCell Container (Corning) and transferred to a −20 °C 
freezer for overnight incubation. On day 2, the container was moved to 
a 4 °C cold room and spun on a rotor at approximately 100 r.p.m. for 1 h 
to bring the sample temperature above the freezing point.

Subsequently, the tissue samples were separated from the etha-
nol solution by centrifuging at 300g for 5 min in a 4 °C microcentri-
fuge. Crosslinking was carried out by incubating the samples with 1 ml 
of 1% TBS-formaldehyde for 10 min at room temperature. The solution 
was then quenched by adding 80 μl of 2.5 M glycine and incubated 
for an additional 5 min. The samples were centrifuged, washed once 
with 1 ml of TBS (pH 7.5) and resuspended in 250 μl of Hi-C lysis buffer 
(10 mM Tris-HCl pH 8.0, 10 mM NaCl and 0.2% Igepal CA630) with 
an additional 50 μl of proteinase inhibitor cocktail (Sigma, P8340). 
Nuclear extraction was performed on ice by squeezing the samples 
15–20 times with 1.5-ml disposable pellet pestles (Fisher Scientific, 
12-141-368).

The crude suspension was then centrifuged at 1,500g for 5 min 
at 4 °C, resuspended in 800 μl of Hi-C lysis buffer and passed through 
a 100-μm strainer (Sysmex). After another centrifugation, the puri-
fied nuclei were resuspended in 170 μl of 10 mM Tris-HCl containing 
0.5% Triton X-100 (Sigma, 93443). This was followed by incubation at 
room temperature with rotation for 15 min. Then, 10 μl of 1% SDS, 20 μl 
of Cutsmart buffer (New England Biolabs (NEB)), 3 μl each of HinP1I  
(NEB, R0124S), DdeI (NEB, R0175L), CviAII (NEB, R0640L) and FspBI 
(ThermoFisher, ER1762) and 0.6 μl of MseI (NEB, R0525M) were added 
to the suspension in the indicated order. The mixture was then incu-
bated at 25 °C and 37 °C for 2 h each with rotation. To halt the restriction 
digestion, the suspension was incubated in a 62 °C heating block for 
20 min, followed by cooling down. End repair was carried out by add-
ing 30 μl of a solution containing 0.5 mM biotin-14-deoxyadenosine 
triphosphate (Active Motif, 14138), 0.5 mM biotin-14-deoxycytidine 
triphosphate (AAT Bio, 17019), 0.5 mM deoxythymidine triphosphate, 
0.5 mM deoxyguanosine triphosphate and 4 μl of Klenow DNA Pol 
(NEB, M0210L) to the mixture. This was then incubated for 1 h at 37 °C 
with rotation. For ligation, a 750-μl solution containing 1× NEB T4 DNA 
ligase buffer (NEB, B0202), 120 μg of BSA (ThermoFisher, AM2616) and 
2,000 U of T4 DNA ligase (NEB, M0202M) was added. The mixture was 
incubated at room temperature for 90 min, followed by 4 °C overnight 
and then room temperature for an additional 60 min with rotation.

Reverse crosslinking was performed by centrifuging the mixture 
at 1,500g for 5 min. The supernatant was then replaced with a mix-
ture of 300 μl of 1× T4 ligase buffer, 30 μl of 20 mg ml−1 proteinase K  
(ThermoFisher, 25530049), 30 μl of 10% SDS and 40 μl of 5 M NaCl.  
This suspension was then incubated at 66 °C for 4 h. The DNA content 
was purified by phenol–chloroform extraction and resuspended in 
20 μl of 10 mM Tris-HCl.

To generate the mHi-C sequencing library, 300 ng of purified 
DNA was tagmented with 2.5 μl of Tn5 transposase (APExBIO, K1155; 
discontinued) loaded with equimolar mosaic ends containing Illumina 
Nextera i5 and i7 extensions, according to the manufacturer’s proto-
col. The tagmentation was performed in 100 μl of buffer containing 
10% DMF, 10 mM Tris-HCl and 150 mM NaCl at 55 °C for 10 min. The 
product was then column-purified (Zymo D4014) and PCR-amplified 
for two cycles using the NEBNext master mix (NEB, M0544L) with 
Illumina Nextera primers and conditions. Biotin enrichment was then 
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performed by adding 20 μl of Dynabeads MyOne Streptavidin C1  
(ThermoFisher, 65001) and incubating at room temperature for 30 min 
with rotation. The magnetic beads were washed three times with 1× 
wash buffer (10 mM Tris-HCl pH 7.5, 1 mM NaCl and 0.5 mM EDTA) and 
once with 10 mM Tris-HCl. Final libraries were obtained by amplifying 
the beads with an additional eight cycles of PCR, followed by purifica-
tion with solid-phase reversible immobilization (Beckman, B23318) 
size selection at a 0.5×–1.1× range. The 33 samples were combined into 
two pools and sequenced using two NovaSeq (Illumina) S4 200-cycle 
flow cells.

Real-time PCR and RNA sequencing (RNA-seq)
Total RNA was extracted from approximately 5–10 mg of frozen tis-
sues or approximately 1.0 × 105–1.0 × 106 cells from organoid or cell 
culture using the Zymo Quick-RNA Miniprep (Zymo R1054), according 
to the manufacturer’s instructions. After purification, DNA digestion 
was carried out using the DNA-free DNA removal kit (ThermoFisher, 
AM1906). For complementary DNA (cDNA) synthesis, up to 1 μg of 
total RNA was processed using the Superscript IV reverse transcrip-
tion (RT) system (ThermoFisher, 18091050), with Oligo dT provided 
in the kit serving as the primer. For RT–PCR, 50 ng of synthesized 
cDNA was mixed with 10 μl of TaqMan Fast Advanced Master Mix 
(ThermoFisher, 4444557) and 1× primers and then examined in the 
QuantStudio 6 Flex system (ThermoFisher). Relative gene expres-
sions were normalized against the internal expression of GAPDH 
using the ΔΔCt method. Sequencing libraries of mRNA were prepared 
from 200 ng–1 μg of total RNA using the NEBNext Ultra unstranded 
preparation kit (NEB, E7775S and E7490S), in accordance with the 
manufacturer’s protocol. Samples were sequenced on a NovaSeq S1 
flow cell for 50-bp paired-end sequencing, resulting in an average of 
86.3 million raw paired reads per sample.

ATAC-seq
ATAC-seq was conducted following the latest ENCODE tissue protocol 
as described previously61. Sequencing was performed on a NovaSeq S1 
flow cell using 50-bp paired-end sequencing, resulting in an average of 
53.2 million unique fragments mapped for each sample.

Enzymatic methyl sequencing (EM-seq)
EM-seq was executed as described previously74. Libraries were con-
structed using the NEBNext EM-seq kit (NEB), following the manu-
facturer’s guidance. Sequencing was carried out using the novel 
ultrahigh-throughput UG-100 (Ultima Genomics) sequencer.

mHi-C data processing
Initial processing of mHi-C data was executed using the distiller pipe-
line (https://github.com/open2c/distiller-nf) with default parameters 
configured for the SLURM cluster. Deduplicated pair files were then 
input into Juicer pre37 to generate KR-balanced .hic matrices at reso-
lutions of 200 bp, 500 bp, 1 kbp, 2 kbp, 5 kbp, 10 kbp, 20 kbp, 50 kbp, 
100 kbp, 250 kbp, 500 kbp and 1 Mbp using a quality score filter of 30. 
To generate piled-up master matrices for various stages and all sam-
ples, pair files were initially merged and sorted using pairtools (https://
github.com/open2c/pairtools).

Stripe calling was carried out as previously described18, with minor 
modifications to the parameters. We noted an enrichment of mappable 
reads at open chromatin regions, raising the possibility of false stripe 
signal detection by measuring raw read count over-representation. 
To address this, the stripe-calling algorithm normalized long-range 
contacts against read mappability at each locus, evaluated by distal 
interactivity-independent self-ligation events. Specifically, long-range 
(>1.5 kb) and short-range (<1 kb) mapped read pairs (+ or − orientation) 
were separated into two .bam files using awk and SAMtools. BEDTools 
was then used to map these reads to two binning bed tracks: a local one 
with a 2-kb window and a background one with a 50-kb window, both 

featuring a 100-bp sliding size. Assuming that the over-representation 
sourced from mappability was proportional between long-range and 
short-range contracts, the expected count number for each bin was 
calculated as (longbg/shortbg) × shortlocal. Using MACS2 ‘bdgcmp -m 
qpois’, the local long-range read count for each bin was examined for 
statistical significance of enrichment against the expected number. 
The log fold change signal (stripe strength) was then calculated with 
the same formula by inputting the actual and expected values into 
MACS2 ‘bdgcmp -m logFE’. To prevent NaN (not a number) errors, a 
pseudo-count of 1 was added.

After the determination of stripe q values, each 100-bp bin was 
counted for the number of samples demonstrating significance (false 
discovery rate (FDR) < 0.01). Bins with at least three sample hits were 
deemed significant. These bins were then merged and only windows 
with a minimum size of 500 bp were included as final stripe anchors. 
Stripe peaks overlapping with ENCODE blacklist regions were removed. 
To mitigate gender variations among participants, only autosomal 
chromosomes were included for downstream analyses.

Loop calling was performed using the HiCCUPS algorithm  
from Juicer tools37 with the following parameters: ‘-r 500,1000, 
2000,5000,10000 -f 0.1 -p 4,2,2,2,2 -i 20,10,10,6,6 -t 0.1,1.25,1.75,2 -d 
2000,2000,4000,10000,20000’. Given that library complexity signifi-
cantly affects loop calling power, the analysis was not performed for 
each individual sample. Instead, it was executed on pooled libraries of 
(1) all samples; (2) all mucosa; (3) all polyps; and (4) all adenocarcino-
mas. Postprocessed loop pixels from all profiles at various resolutions 
were subsequently merged in the order of high resolution to low reso-
lution from combined, mucosa, polyp and adenocarcinoma libraries.  
A loop with lower priority was filtered if both anchors overlapped  
with a higher-priority loop. This master loop list was then applied  
to each sample to execute individual loop quantification. Loop 
strengths were calculated by dividing read counts in the identi-
fied loops by the expected count from the donut background and 
log-transforming the results. A pseudo-count of 1 was added as nec-
essary to prevent NaN errors. For stage-specific counting, loops with 
average loop strengths greater than 1.2-fold in samples of the specified 
stage were regarded as positive.

For annotations for stripe and loop anchors, features were mapped 
against the Ensembl regulatory build36 and TSS from Gencode using 
BEDTools. If an anchor overlapped with multiple features, the primary 
annotation adhered to the following order: promoter or TSS (within 
−1.5 kb to +0.5 kb of any Gencode transcript), active enhancers (defined 
by H3K27Ac marks in the Ensembl regulatory build), CTCF-binding 
sites and open chromatin.

For aggregation analysis of loops, aggregated peak analysis 
(APA) from Juicer was conducted with the parameters ‘-r 200 -u -n 
-0 -w 500 -k KR -q 20’. The enrichment score was computed as the 
average intensity of the 10 × 10 center pixels (2 kb) against the mean 
of the 100 × 100 pixels from the bottom left. For the aggregation of 
stripes, the same function was executed with the parameters ‘-r 200 
-u -n -0 -w 250 -k KR -q 20’. Given the phenomenal distance-dependent 
interaction decay at the vicinity of stripes, interaction intensities 
at specific distances (that is, matrix diagonals) were normalized 
against the average intensity of the distance. The fold enrichment 
of the aggregated stripes was then calculated by averaging the nor-
malized values in the center ten pixels. For visualizations of loop 
and stripe APA, matrices were log-transformed before being plotted 
onto heat maps.

For SV calling, contact matrices in .mcool format were generated 
by using the distiller pipeline, using default parameters as described 
above. These matrices were analyzed using the PredictSV function in 
the EagleC package41 with the following parameters: ‘--balance-type 
ICE --output-format full --prob-cutoff-5k 0.8 --prob-cutoff-10k 0.8 
--prob-cutoff-50k 0.9999’. Identified SVs were visually confirmed on 
the Hi-C heat maps.
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ATAC-seq processing
ATAC-seq results were processed using the ENCODE-DCC ATAC-seq 
pipeline (https://github.com/ENCODE-DCC/atac-seq-pipeline) 
with default settings. To generate the integrated peak list from all 
samples, a 100-bp binning track was created and mapped with the 
pseudo-replicated peak regions from each sample using BEDTools. 
Bins with at least three hits were deemed valid and merged; intervals 
with a minimum size of 300 bp were included as final peak sites. Peak 
fold enrichments of samples were then obtained from pipeline-derived 
fold change bigWig tracks.

Analysis of P–E connectivity
To elucidate the connectivity between promoters and their neighbor-
ing regulatory context, P–E pairs were determined for all ATAC-seq 
peaks within a 200-kb distance from target promoters. Interaction 
zones were defined as being within −1.5 kb to +0.5 kb near the TSS for 
promoters and within 500 bp of ATAC-seq peaks for distal enhancers. 
Contact frequencies between promoter and each target enhancer were 
calculated using Juicer Straw37 to extract read counts at 1,000-bp reso-
lution. These raw contacts were normalized against the read mappabil-
ity of the promoter, which was defined as the KR-normalized contact 
frequency or, in the case where balanced matrix was not available, the 
ratio of short-range self-ligation contact (<1.0 kb, + or − orientation) 
reads per kilobase per million mapped reads at the TSS region versus 
that for the 50-kb neighborhood. Normalization for coverage between 
samples was achieved by dividing frequencies of each contact by the 
long-range contact (with a minimum 1.5-kb distance threshold) densi-
ties in the 5–50-kb background donut region, in the unit of contacts per 
1 × 1 kb square. The aggregated normalized contacts of the gene with 
all distal regulatory elements represented the total P–E connectivity 
of that gene.

The accessibility of interacting regulatory element peaks, referred 
to as ‘enhancer accessibility’ in the text, was calculated as the log sum 
of the fold enrichment signals of all ATAC-seq peaks that were involved 
in calculating the P–E connectivity. This value was extracted from the 
processed ATAC fold change bigWig tracks using pyBigWig, which 
represented the overall activity of the regulatory context for each 
gene, and was used for comparisons with P–E connectivity levels. For 
promoter accessibility, the top two quantiles of mean fold change of 
the ATAC-seq signals in the defined TSS region were retrieved using 
pyBigWig and log-transformed. For downstream analyses, genes show-
ing nonpositive values for P–E connectivity, promoter accessibility or 
promoter stripe enrichment in all three stages were removed. For the 
remaining genes, missing or negative values were replaced with zero.

RNA-seq processing
RNA-seq results were processed using T. Bencomo’s pipeline (https://
github.com/tjbencomo/bulk-rnaseq), which uses Salmon for quanti-
fying transcript levels and DESeq2 for identifying differential genes 
(FDR < 0.1, fold change > 1.3). Transcription levels (TPM) of genes were 
obtained by summing the transcript-based TPM from the Salmon 
output (.rf).

DNA methylation processing
A total of 21,175,510 CpG sites with measurable methylation ratios 
were identified across all samples. The methylation degree of fea-
tures, including mHi-C hotspots, ATAC peaks and gene promoters, 
was calculated by averaging the methylation percentage for all valid 
CpG sites within the feature. Regions with average methylation < 25% 
were classified as demethylated, while those > 40% were considered 
methylated. Regions with average methylation between 25% and 40% 
were classified as intermediately methylated and excluded from the 
methyl versus demethyl analyses. For methylation changes between 
two stages, regions demonstrating a >15% difference with <0.1 FDR 
were classified as significantly hypomethylated or hypermethylated 

on the basis of the direction of change. For correlation analyses with 
other features, the degree of demethylation (100% minus methyla-
tion percentage, annotated as ‘demethylation’) was often used to 
maintain a positive correlation between methylation degree and  
regulatory activity.

Mappability analysis
The mappability of mHi-C, in situ Hi-C and intact micro-C at annotated 
regulatory regions was visualized by retrieving their read coverage 
from a .bw file that compiled only short-range self-ligation contacts, 
defined as those with an interaction distance of less than 1.5 kb and a + 
or − orientation. To compare the distal interaction signal against map-
pability, long-range interactions, defined as those with an interaction 
distance greater than 2.0 kb, were extracted and aggregated similarly. 
The fold enrichment of interaction was then calculated as the ratio of 
long-range to short-range interactions at 100-bp resolution. Note that 
this ratio is equivalent to the ‘raw’ stripe strength before normalization 
against the average enrichment of the local background.

Principal component analysis (PCA)
PCA of mHi-C and RNA-seq was performed using the Python sklearn.
decomposition.PCA package. For P–E connectivity, analysis was con-
ducted using either untransformed or scaled-by-sample matrices.

Motif enrichment analysis
For each feature (P–E connectivity, enhancer accessibility, TSS acces-
sibility, TSS stripe strength, TSS methylation and gene expression), 
sequences of promoter regions for genes with the top 10% feature 
strength in mucosa were extracted using BEDTools. Motif enrichment 
was then calculated using the AME tool in the MEME suite75 with the 
JASPAR 2022 vertebrate motif database serving as the reference. The 
−log10(P values) for significantly enriched motifs for any of the features 
were included for hierarchical clustering.

Gene ontology
Enrichment analysis of significantly upregulated or downregulated 
genes in pathways was performed and visualized using the web-based 
gene set analysis toolkit76. The method of over-representation was 
selected to test enrichments in the Kyoto Encyclopedia of Genes and 
Genomes pathway against the protein-coding genome. Analysis was 
performed using default parameters.

Machine learning
For the initial and differential models, structural and epigenetic fea-
ture values in unaffected mucosa or their fold changes in polyps or 
adenocarcinoma were compiled for each promoter. For fold-change 
calculation, a pseudo-count of 1 was added to connectivity and meth-
ylation to avoid zero values. These features were further compiled 
with the expression levels of the genes in mucosa, the binary binding 
status of all TFs in the ENCODE chromatin immunoprecipitation with 
sequencing (ChIP-seq) database at their promoters and the sum of 
the binary binding status for the TFs in their distal enhancer contexts.

The raw value and their rank transform were combined, resulting 
in a total of 1,374 features for each gene. To train the models, 2,800 
randomly selected genes were excluded as the test dataset and the 
rest were fit to the differential gene expression changes in polyps and 
adenocarcinoma using a sequential model with three intermediate 
layers and one dense output. Each layer included 2,048, 512 and 128 
neurons in order and was filtered with a 20% dropout rate. Models 
were trained for up to 50 epochs, with the final model represented by 
the iteration that showed the lowest mean squared error for the test 
dataset. The training and evaluation of the models were performed 
using the Tensorflow Keras module in Python.

For evaluation of feature importance in the models, the Shapley 
additive explanations (SHAP)77 package was used for analysis with 
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default parameters. Average feature importance was calculated as the 
absolute mean of the importance across all genes. Overall directionality 
was represented by the numerical mean of the importance.

TCGA gene expression analysis
A list of differentially expressed genes and their fold changes were 
obtained from the GEPIA database47. The prediction of differential 
expression was performed using receiver operating characteristic 
(ROC) analysis in the Python sklearn package, where predicted dif-
ferential fold changes from the initial model were used as thresholds 
for the upregulated and downregulated genes. For prediction of the 
directionality, genes were scored by their consistency of dysregulation, 
averaging their alterations (−1 for downregulation, 0 for unchanged 
and +1 for upregulation). The correlation between the directionality 
score and the prediction accuracy was then evaluated.

Statistics and reproducibility
All statistical analyses were performed using Python, R or Excel. Unless 
specified in the figure legend, statistical significance was calculated 
using the Mann–Whitney U-test or unpaired t-test, assuming a nor-
mal distribution of samples, between two experimental conditions.  
Raw P values < 0.05 or adjusted FDR values < 0.1 were considered sta-
tistically significant, as indicated in each figure legend. All statistical 
tests were two-tailed. The exact P values are reported in each figure, 
except where P was equal to 1 (not significant (NS)) or below a low-value 
threshold (2 × 10−16).

Sample sizes were predetermined to have a minimal power of 0.8 
for a 1.5-fold effect size with a coefficient of variance less than or equal 
to 0.3. The exact sample sizes are indicated in the figure legends. No 
data points or outliers were excluded from the experiment. Randomiza-
tion and blinding of samples were not possible for this study. However, 
all experiments involving case–control comparisons were performed 
in the same batch and treated identically without prior designation. In 
bar plots, values and error bars indicate the sample mean and s.e.m. 
unless specified otherwise in the figure legend. In box–whisker plots, 
the center indicates the median value and the bounds of the box are 
defined by the first and third quartiles. Whiskers are drawn within the 
1.5 interquartile range.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Raw and processed sequencing data for ATAC-seq, RNA-seq, EM-seq 
and mHi-C that support the findings of this study were deposited 
to the National Center for Biotechnology Information Gene Expres-
sion Omnibus (GEO) under accession number GSE207954, the NIH 
Database of Genotypes and Phenotypes (phs002371) and the NCI 
HTAN portal (RRID: SCR_023364) (Supplementary Table 3). The human 
cancer data panel was derived from TCGA Research Network (http://
cancergenome.nih.gov/). The dataset derived from this resource 
that supports the findings of this study is available from the GEPIA 
database (http://gepia2.cancer-pku.cn/). An unmasked hg38 genome 
(GCA_000001405.15, UCSC Genome Browser) was used as the reference 
for all analyses. The regulatory build for the sigmoid colon (version 
20210107) was obtained from Ensembl (http://www.ensembl.org) to 
facilitate regulatory annotations. Gencode v38 was used for RNA-seq 
alignment and defining the positions of TSSs. The ENCODE blacklist 
(https://github.com/Boyle-Lab/Blacklist) was used to exclude problem-
atic regions of the genome from analyses. ENCODE in situ Hi-C (ENCS-
R123UVP) and intact micro-C (ENCSR477GZK) datasets for the HCT116 
cell line were used for comparison with our mHi-C data. Roadmap 
histone ChIP-seq tracks for colonic mucosa (GSM1112779, GSM916043, 
GSM916046 and GSM916045) and ENCODE CTCF (ENCSR833FWC),  

Pol II (ENCSR322JEO), RAD21 (ENCSR956UIS) and SMC3 (ENCSR-
149SKU) ChIP-seq were used for CRE visualization. Locations of CpG 
islands were downloaded from the UCSC Genome Browser. All other 
data supporting the findings of this study are available from the cor-
responding author upon reasonable request. Source data are provided 
with this paper.

Code availability
Custom code used to analyze data in this study is available from GitHub 
(https://github.com/kimagure/mHi-C_codes). All other code sup-
porting the findings of this study are available in the Methods or are 
available from the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Summary statistics of mHi-C. (a) Fragment size 
distribution of human genome (hg38) digested by the indicated restriction 
enzymes and their combination. Restriction site count: DdeI=4.95E6, 

CviAII=4.59E6, BfaI=2.66E6, MseI=5.82E6, HinP1I = 6.60E5, combined=1.91E7.  
(b) Frequency of intrachromosomal interactions by genomic distance for various 
sample types. (c) Count of unique interaction contacts identified across samples.
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Extended Data Fig. 2 | Comparison of mHi-C with in situ Hi-C and intact micro-C at diverse resolutions. Upper panel shows contact heatmaps of three genomic loci 
obtained by these methods at indicated bin resolution. Annotated genes, open chromatin regions, CTCF binding sites, as well as architectural stripes and loops called 
from mHi-C are indicated in the lower panel.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | mHi-C delineates interaction features at active 
CREs. (a) Aggregated read intensity of long- (>1.5 kb) and short-range (<1.0 kb) 
interactions before and (b) after normalizing against total coverage (All range) 
at distinct CRE categories. (c) Classification and annotation of identified stripes 
and loops in colon samples by regulatory element types. (d) Proportion of loops 

composed of two stripe anchors (S-S), between a stripe anchor and a non-stripe 
anchor (S-NS), and two non-stripe anchors (NS-NS). (e) Aggregated ChIP-seq 
signals for Pol II, SMC3, Rad21, and ATAC seq fold enrichment at various CRE 
types in colon samples, sourced from ENCODE data.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Analysis of the interplay between structural features 
and epigenetic markers. (a) Heatmaps displaying loop signal intensities as 
referred to in Fig. 2a, adjusted for the effects of stripe strengths at the loop 
anchors. (b) Contact heatmap at example loci where gene promoters lacking 
CTCF binding display gene-specific P-E interactions. (c) Hierarchical clustering 

of genes based on their rankings for various structural and epigenetic features in 
mucosa samples. Intensity of color corresponds to the strength of the features. 
(d) Comparative scatter plots illustrating the relationships between different 
structural and epigenetic features across the examined dataset.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Dynamics of P-E connectivity through colorectal 
cancer (CRC) progression. (a) Scatter plots depicting the comparative 
analysis of P-E connectivity and TSS stripe strengths across different CRC 
stages. The percentage of genes with reduced connectivity (y < x) during 
progression is indicated for each stage comparison. (b) Correlation between 
initial stripe strength in mucosa samples and the extent of stripe reduction 
in adenocarcinoma samples. Each ellipse’s center and radius represent the 
mean and standard deviation, respectively, for stripes associated with the 
specified regulatory elements. The dotted line shows the linear regression 
across the centers of the ellipses. (c) Distribution of SV counts in samples. 
Significance p values of count differences stages from Mann–Whitney U test 

are indicated. (d) Spearman correlation matrix detailing the changes (log2 fold 
change, FC) of structural and epigenetic features between polyps (M-P) and 
adenocarcinoma (M-D) relative to unaffected mucosa. (e) Average log2 fold 
change in P-E connectivity for polyps and adenocarcinoma, categorized by 
promoter methylation status: quantiles (Q1-Q4), demethylated, and methylated, 
excluding those with minimal hypo- or hyper-methylation. Confidence intervals 
are depicted as shaded areas behind each line. (f) Distribution of P-E connectivity 
in mucosa samples for gene promoters that become hypermethylated (N = 625) 
or remain unchanged (N = 7,080) in adenocarcinoma. The significance of 
differences (p = 2.51E-101) is tested using the Mann-Whitney U test.
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Extended Data Fig. 6 | Disconnection between promoter-enhancer (P-E) 
connectivity and gene expression changes throughout CRC progression.  
(a) Venn diagram illustrating the commonality of genes with significantly 
modified expression in both polyps and adenocarcinoma (AdeCa). (b) Log2 
fold changes of gene expression for genes that are consistently up- (N = 1,550) 
or down-regulated (N = 1,272) across both stages. Statistical significance of 
the difference in fold changes is assessed using the Wilcoxon signed-rank test. 
Up-regulated genes: p = 9.15E-54; down-regulated genes: p = 3.61E-128. (c) 
Comparisons of P-E connectivity changes for genes that are up- (N = 1,523/3,212) 
or down-regulated (N = 1,270/2,061) in polyps/AdeCa, relative to genes with 
no significant alteration in expression (N = 9,250/6,767). The significance of 

connectivity changes is evaluated using the Mann–Whitney U test. Between 
down-reg and unchanged, p = 0.77 and p = 0.07; between up-reg and unchanged, 
p = 0.60 and p = 0.09 in polyp and AdeCa, respectively. (d) Two-dimensional 
scatter plots and density distributions correlating the changes of top fast-loss 
(N = 1,000) and slow-loss (N = 1,000) genes in connectivity and gene expression 
between mucosa and adenocarcinoma. Genes are categorized based on the rate 
of connectivity loss: fast (blue) and slow (orange), as determined by their feature 
importance on the first principal component (PC). (e) Principal component 
analysis (PCA) comparing P-E connectivity, scaled P-E connectivity (normalized 
against the aggregate sum), and gene expression changes during the stages of 
CRC development.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Predictive modeling of gene expression changes based 
on promoter-enhancer (P-E) connectivity. (a) Distributions of ranks for P-E 
connectivity and corresponding gene expression levels of key oncogenes and 
proliferation markers across various cancer progression stages. (b) Model fit 
assessment for the predicted changes in gene expression in adenocarcinoma 
using the ‘initial’ model, which utilizes the baseline P-E connectivity. (c) Model 
fit assessment for the predicted changes in gene expression in adenocarcinoma 
using the ‘differential’ model, which considers changes in epigenetic landscapes. 
(d) Spearman correlation matrix showing the similarity of each feature 
between different stages. (e) Mean squared error (MSE) and (f) Pearson’s r co-
efficient of the ‘initial’ model for the prediction of gene expression changes in 
adenocarcinoma compared to the indicated baseline stages. Prediction scores 
obtained by models trained with mucosa and polyp datasets were compared by 
using independent t test (N = 10 random initiation states). For mean square error 

(MSE), p = 2.10E-5, p = 3.21E-11, and p = 0.33; for Pearson’s r, p = 1.39E-5, p = 4.08E-
13, and p = 2.78E-3, for mucosa-polyp, mucosa-AdeCa, and polyp-AdeCa 
prediction models, respectively. (g) Distributions of minimal mean square error 
(MSE) of ‘Initial’ model trained with equal or less than 20 epochs (N = 10 random 
initiation states) with the removal of indicated features. Significance p values of 
differential MSE caused by missing features compared to complete model (All) 
are evaluated by using independent t-test. Respectively, p = 3.69E-6, p = 0.57, 
p = 0.41, p = 0.01, and p = 0.03 for models removing P-E connectivity, P stripe 
strength, P accessibility, E accessibility, and P methylation feature. (h) The top  
20 influential features impacting gene expression predictions in adenocarcinoma, 
as determined by SHAP (SHapley Additive exPlanations) analysis for the ‘initial’ 
model. (i) The top 20 influential features for the ‘differential’ polyp model, with 
features named after transcription factors indicating their binding presence at 
the promoter (p) or enhancer (e) regions, based on the ENCODE database.
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Extended Data Fig. 8 | Assessment of predictive accuracy for gene expression changes in various cancer types. ROC curve analysis using gene expression 
predictions derived from the ‘initial’ polyp model to determine the up- and down-regulation status of genes across different cancer types represented in the  
TCGA database.
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Extended Data Fig. 9 | Transcriptomic alterations following JQ1 treatment. 
(a) Distribution of epigenetic feature ranks in unaffected mucosa for genes 
that are up- (N = 5,504) or down-regulated (N = 7,028) subsequent to JQ1 
treatment. P values indicating statistical significance between the two 
groups are calculated using the Mann–Whitney U test. Respective p values for 
comparisons of promoter accessibility, promoter methylation, and enhancer 
accessibility: p = 2.6E-32, p = 1.8E-37, p = 2.0E-4 for organoid (mucosa); p = 0.08, 
p = 6.0E-9, p = 0.01 for organoid (polyp 1); p = 5.5E-13, p = 2.3E-13, p = 0.057 
for organoid (polyp 2); p = 7.4E-41, p = 1.5E-20, p = 0.12 for HPCEC; p = 3.0E-3, 
p = 4.6E-8, p = 2.0E-22 for HT29; p = 6.5E-15, p = 9.3E-9, p = 9.5E-9 for HCT116. 

(b) Comparative density plots illustrating the differences in feature rank 
distributions for genes down-regulated in normal tissue (mucosa organoids 
or primary colon epithelial cells, N = 3,207) versus diseased states (polyp 
organoids or cancer cell lines, N = 6,007). P values for statistical significance are 
derived from the Mann-Whitney U test. Individual p values: p = 6.32E-31 for P-E 
connectivity, p = 1.04E-21 for promoter accessibility, p = 1.62E-11 for promoter 
methylation, p = 9.59E-7 for enhancer accessibility. (c) Pathway analysis based on 
ontology for genes that are up- or down-regulated in various samples following 
JQ1 treatment.
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Extended Data Fig. 10 | Gene expression changes following Cas9-mediated 
perturbations in HPCEC and HT29 cells. (a) Changes in gene expression  
after introducing dCas9-gRNA ribonucleoproteins (RNPs) targeting promoters 
in wild-type cell lines (N = 8). For E2F3, MYC, CCNE1, MCM4, CDC25A, B2M,  
TBP, UBC, p = 0.13, p = 1.9E-3, p = 3.6E-3, p = 5.8E-3, p = 1.1E-4, p = 0.02,  
p = 0.56 (N.S.), p = 1 (N.S.), respectively. (b) Changes in gene expression after 
introducing Cas9-gRNA RNPs targeting exons in wild-type cell lines (N = 4).  

For all comparisons, p = 1 after multiple testing correction. (c) Gene expression 
alterations upon gRNA delivery targeting exons in cell lines stably expressing 
dCas9-KRAB (N = 4). For all comparisons, p = 1 after multiple testing correction. 
N numbers indicate replication of measurements in cells cultured separately. 
Statistical significance of the differential response was assessed using a 
two-sample t-test followed by Bonferroni correction.
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