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A B S T R A C T

Circular extrachromosomal DNA (ecDNA) plays a crucial role in the onset, progression, and evolution of many 
types of cancers, with dysregulated gene expression driven by ecDNA as a key mechanism. Although database 
resources for ecDNA are now available, a sophisticated web application dedicated to ecDNA gene analysis re
mains absent. Therefore, we developed ecDNA gene analyzer (ECGA). ECGA catalogues 23,274 unique ecDNA 
genes of 27 cancers across 27 tissues. ECGA also offers five specialized analysis tools: (1) ‘Venn analysis’ looks for 
overlaps between a given gene list and ecDNA genes; (2) ‘Enrichment analysis’ performs over-representation 
analysis and gene set enrichment analysis of input gene list within predefined ecDNA gene sets; (3) ‘Target 
discovery’ identifies upregulated ecDNA genes as targets by comparing with reference expression in normal 
samples; (4) ‘DE analysis’ finds differentially expressed ecDNA genes; (5) ‘Signature discovery’ discerns ecDNA 
gene signatures capable of classifying samples into phenotypic groups, and it is accompanied by ‘Signature 
validation’ for model test on unseen data. In summary, ECGA emerges as an indispensable platform in cancer 
genetics, bridging gaps in basic research, medical reporting, and pharmaceutical development, and propelling 
ecDNA research forward. ECGA is freely available at https://www.zhounan.org/ecga/.

1. Introduction

Extrachromosomal DNA (ecDNA) is a type of circular DNA element 
that encompasses the full spectrum of large, gene-containing extra
chromosomal particles of DNA, including both double minute and single 
body forms and forms lacking a centromere or a telomere [1]. The first 
description of ecDNA dates back to 1965 when double minutes were 
observed in neuroblastoma cell lines [2]. An increasing number of re
ports have demonstrated that ecDNAs are prevalent in cancer genomes 

and have emerged as a crucial oncogenic driver [3–6].
Numerous alterations in DNA sequence underlie the development of 

every neoplasm, and hence a central aim of cancer research has been to 
identify the mutated genes that are causally implicated in oncogenesis 
[7]. As one of the most common molecular alterations in cancer, onco
gene amplification plays a central role in tumorigenesis by providing 
cancer cells with selective growth advantages through overexpression of 
oncogenes and functional elements [8,9]. Among many of the genomic 
events that enable to lead up to the very high level of gene expression, 
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gene-carrying ecDNA is a potent and frequent mechanism by which 
genes are amplified and that such ecDNA can foment increased intra
tumoural genetic heterogeneity, owing to its circular structure and the 
lack of centromeres [10,11].

The concept that genes can reside on ecDNA is not new. As early in 
the 1980s, Kohl and colleagues demonstrated that sequences resembling 
MYCN could be mapped to double minutes in the IMR-32 neuroblastoma 
cell line [12]. Recent re-evaluation of ecDNA in large-scale DNA 
sequencing data revealed that oncogene amplification on ecDNA is a 
frequent event in cancer and promotes tumor heterogeneity [13]. After 
analyzing 117 cancer genomes and 2572 metaphase cells, Turner and 
colleagues discovered that ecDNAs exist in nearly half of human cancers 
and that oncogenes on ecDNAs are amplified most commonly [11]. Wu 
and colleagues found that ecDNA promotes accessible chromatin and 
that oncogenes encoded on ecDNA are among the most highly expressed 
genes in the transcriptome in tumors [6]. By analyzing whole-genome 
sequencing data of 3212 cancer patients, Kim and colleagues found 
that the most common recurrent oncogene amplifications arose on 
ecDNA and that patients whose cancers carried ecDNA had significantly 
shorter survival than patients whose cancers were not driven by 
ecDNA-based oncogene amplification [14].

To support ecDNA research, a few web resources have been created. 
Our previous work eccDNAdb is the first database for ecDNAs in cancer 
[15]. TeCD provides extrachromosomal circular DNA (eccDNA) found in 
animal, plants, and fungi [16]. EccBase provides eccDNAs from healthy 

and tumor samples in human and mouse [17]. The eccDNA Atlas data
base provides eccDNAs for health and diseases across multiple specie 
[18]. CircleBase contains human eccDNAs which are gleaned from 
published papers [19]. These database resources specifically focus on 
ecDNA, not the cargo genes (referred to here as ‘ecDNA gene’), let alone 
featured analysis, which is not proportional to the importance of ecDNA 
gene in cancer.

Currently there is no tools providing a freely available user-friendly 
web tool to explore and analyze ecDNA genes in cancer. To bridge the 
gap, we created ECGA, for easy exploration of a comprehensive list of 
ecDNA genes in cancer and specialized analyses. The ecDNA genes in 
ECGA were identified from 27 cancers across 27 tissues. Five dedicated 
tools were created to cover a wide range of analysis requests which are 
common in daily oncology research work. ECGA does not require 
registration or login for access, and it is freely available for research use 
from multiple devices, screen sizes and browsers.

2. Methods and materials

ECGA consists of two parts: (1) an ecDNA gene resource which 
contains a comprehensive catalogue of ecDNA genes identified in cancer 
genomes by analyzing whole genome sequencing data, and (2) a suite of 
tools dedicated to ecDNA gene analysis. The overall workflow is shown 
in Fig. 1. The description of parameters across tools is presented in 
Supplementary Table 1.

Fig. 1. Schematic presentation of the workflow of ECGA. The WGS data of cancers were downloaded from public repositories. The data analysis pipeline was then 
performed to analyze and detect ecDNA. Intersections between genes and ecDNAs were analyzed to identify ecDNA genes, which subsequently formed the ecDNA 
gene resource. Finally, a collection of tools dedicated to ecDNA gene analyses were created. This diagram was created with icons from draw.io.
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2.1. Whole genome sequencing data collection

To generate a catalogue of ecDNA genes for cancers as comprehen
sive as possible, a wide range of cancers of different genetic backgrounds 
should be examined. Considering both the data availability and sample 
variety, whole genome sequencing (WGS) data derived from a large 
population of tissues and cell lines of different cancers is an ideal start 
point. Therefore, WGS data from Pan-Cancer Analysis of Whole Ge
nomes (PCAWG), The Cancer Genome Atlas (TCGA), Cancer Cell Line 
Encyclopedia (CCLE), and NCBI’s Bioproject PRJNA338012 were used 
[11,20,21].

The naming for phenotypic attributes of samples can vary between 
data sets. When inconsistence appears, tissue names were standardized 
as the primary tissue name (e.g., lung), and diseases were named by the 
tissue name followed by the word cancer (e.g., lung cancer).

2.2. ecDNA gene identification

Since the methodological advancement in ecDNA analysis, here we 
used a similar but slightly different strategy of our previous work to 
discover ecDNA in cancer genomes [15]. Sequencing reads were aligned 
to the human reference genome GRCh38 using the bwa mem method 
[22]. Aligned reads were sorted and indexed using samtools [23]. A 
pooled reference of per-bin copy number estimates from normal samples 
was created, and then copy number variation (CNV) in tumor was 
inferred using CNVkit [24]. CNVs were filtered and merged into seed 
intervals via PrepareAA. Afterwards, amplicons were identified by 
AmpliconArchitect (AA) [25]. To detect ecDNA positive amplicons, AA 
outputs were subsequently analyzed by AmpliconClassifer to obtain 
ecDNAs and their genomic coordinates [26]. Default settings were 
applied to the software except where noted.

To identify ecDNA genes, human gene annotation data in the GEN
CODE database (v44 for GRCh38 and v46 for GRCh37) was downloaded 
[27]. The bedtools utilities were used to map reference gene features 
from GENCODE onto the genomic intervals of ecDNAs to find overlaps 
between the gene and ecDNA. For a gene having intersections with 
ecDNA, it was selected as an ecDNA gene, and the overlapping ratio was 
calculated by the number of base pairs of intersection divided by the 
gene length. To estimate the merit of a gene being an ecDNA gene, the 
ratio of overlap per gene–ecDNA pair was defined as ecDNA gene score 
and the total number of ecDNAs the gene overlaps was defined as ecDNA 
hits.

Regarding to the four collected data sets, we only analyzed the 
PRJNA338012 WGS data. Others have been analyzed by Kim and col
leagues, and the results in ready-to-use format have been shared through 
AmpliconRepository (https://dev.ampliconrepository.org/) [25,28]. 
We downloaded CCLE results in June 2023 and PCAWG and TCGA re
sults in October 2024, respectively. With these downloaded data, we 
extracted ecDNA genes and then calculated ecDNA gene scores and 
ecDNA hits ourselves. Of note, both parts of ecDNA genes were identi
fied using compatible software and pipelines, so we merged them into a 
uniformly formatted data set and then used it as the ECGA’s ecDNA gene 
resource and subsequently developed a series of analysis tools.

2.3. External resource integration

To explore ecDNA gene expression profiles in multi-omics data 
derived from a variety of biological contexts, resources from Gen
eRanger and UCSC Xena browser were incorporated [29,30]. For the 
estimation of tumor survival on ecDNA gene, data from FerrDb were 
integrated [31].

2.4. Analysis tool development

There are five dedicated tools for ecDNA gene analysis. ‘Venn anal
ysis’ was developed using the venn2 and venn2_unweighted Python 

packages. ‘Enrichment analysis’ was developed using gseapy and it can 
be used for enrichment based on over-representation analysis (ORA) and 
gene set enrichment analysis (GSEA) [32]. ‘Target discovery’ was 
developed with the computation service provided by TargetRanger [29]. 
‘DE analysis’ was developed using limma and DESeq2 [33,34]. ‘Signa
ture discovery’ and its optional auxiliary ‘Signature validation’ tools 
were developed using the PyCaret python library (https://pycaret.git 
book.io/docs/).

2.5. Website development and deployment

The ECGA website was developed using cutting-edge client-side 
techniques, such as HTML5, CSS3 and JavaScript. The jQuery (https://jq 
uery.com/) library was used to assist JavaScript coding. Bootstrap 
(https://getbootstrap.com/) was used to streamline the user interface 
and experience for diverse devices, browsers, and screen sizes. 
DataTables (https://datatables.net/) was used to create interactive data 
tables on the web page. Interactive diagrams on the web page were 
created using plotly (https://plotly.com/). On the server side, Python 
(https://python.org/) and the Django (https://www.djangoproject.co 
m/) framework were used to build web applications, data were stored 
in text files or SQLite (https://www.sqlite.org/) whichever is appro
priate, analysis scripts were written in Python and R (https://www.r-pro 
ject.org/), and client-server communications were supported by the 
Django REST framework (https://www.django-rest-framework.org/) 
and django-cors-headers (https://pypi.org/project/django-cors-headers 
/). Finally, the ECGA website was deployed using an Apache2 server in 
Ubuntu 16.04 on the Amazon Web Services (AWS) cloud.

2.6. Data for application cases

The results section will describe the tools and their uses. We will 
showcase how these tools can be used to re-analyze specific experi
mental data from published studies, focusing on cases where such re- 
analysis offers valuable insights. The data sets for application cases 
were prepared as follows: 

(1) OV-TCGA-GTEx: Gene expression (log2-transformed normalized 
count) and phenotype of ovarian cancer of the UCSC Xena’s 
TCGA TARGET GTEx cohort [30]. TARGET and non-OV samples 
were removed. TCGA samples were labeled as tumor, whilst 
GTEx samples were labeled as normal. The data for downstream 
analysis includes 515 samples and 58,581 genes.

(2) OV-2009: Gene expression (microarray) and phenotype of 
ovarian cancer of the UCSC Xena’s Ovarian Cancer (Ete
madmoghadam 2009) cohort [35]. Non-ovary samples were 
removed. Samples without grade or stage information were also 
removed. As this data set lacks tumor-normal pairs, samples of 
grade 1 and type LMP (low-malignant potential) were labeled as 
normal, and others were labeled as tumor. The data for down
stream analysis includes 237 samples and 20,373 genes.

2.7. Annotation of ecDNA oncogene

Oncogenes were downloaded from two databases on 22 October, 
2024: (1) COSMIC (v100) Cancer Gene Census and (2) ONGene [36,37]. 
The COSMIC collection includes 581 oncogenes, and the ONGene 
collection includes 803 oncogenes. We merged the two collections into a 
single collection, and the final data set for use in this study includes 1180 
unique oncogenes. Finally, ecDNA genes that are also oncogenes were 
annotated as ecDNA oncogenes.
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3. Results

3.1. ecDNA gene in cancer

The ecDNA gene resource contains 58,800 records in total, which 
include duplicates because the same ecDNA gene can be identified from 
different ecDNAs of the same or different samples. Including duplicates 
may introduce bias into ecDNA gene counts due to intratumor hetero
geneity and varying sample sizes. It is intuitive that the bias primarily 
affects quantitative comparisons of ecDNA genes between samples or 

cancers. Researchers should exercise caution when conducting such 
analysis. However, for qualitative analyses, such as identifying the ex
istence of ecDNA genes, the impact of this bias is minimal. Removing 
duplicates by gene symbol yielded 23,274 unique ecDNA genes, while 
using gene identifier (i.e., Ensembl gene ID) resulted in 24,128 unique 
ecDNA genes. Of note, the results presented below in this section are 
based on ecDNA genes after the removal of duplicates by gene symbol.

The majority of the identified ecDNA genes have a high score very 
close to 1 (Fig. 2A), indicating that full-length genes are contained on 
ecDNA. As can be seen in Fig. 2B, the number of identified ecDNA genes 

Fig. 2. Statistics of ecDNA genes in cancer. (A) The distribution of ecDNA gene scores, averaged for duplicated genes. (B) The number of unique ecDNA genes 
identified in data sets PCAWG, TCGA, CCLE and PRJNA338012. (C) The number of unique ecDNA genes across ecDNA hits. (D) The distribution of unique ecDNA 
genes across gene types defined by GENCODE (genes of undefined type are not shown). (E) The distribution of unique ecDNA genes across cancers. (F) The dis
tribution of unique ecDNA genes across tissues of origin.
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varies across data sets, with the PCAWG data yielding the highest 
number and the PRJNA338012 data the lowest (Fig. 2B); cancer tissues 
yielded the most ecDNA genes, while PDX (patient-derived xenografts) 
samples yielded the fewest. Nearly 47 % of ecDNA genes are carried on 
at least two ecDNAs (i.e., ecDNA hits > 1), with 12,406 ecDNA genes 
residing only on one ecDNA (Fig. 2C). The identified ecDNA genes 
belong to a variety of types, with protein coding gene, lncRNA, and 
processed pseudogene as the three most abundant types (Fig. 2D). The 
largest number of ecDNA genes are from breast cancer, followed by 
bone/soft tissue cancer, bronchus and lung cancer, ovary cancer, and 
skin cancer which have > 3000 ecDNA genes (Fig. 2E). Reasonably, 
similar trend is observed in the distribution of ecDNA genes across tis
sues of origin (Fig. 2F).

3.2. Website overview

Links to all resources in ECGA are provided in the navigation bar 
(Fig. 3A). Five analysis tools are available under the ‘Tools’ drop-down 
menu (Fig. 3B). Of note, ‘Signature validation’ validates ecDNA gene 
signatures discovered by ‘Signature discovery’. We treat it as part of the 
‘Signature discovery’ tool and only provide the link to it when ecDNA 
gene signature analysis has completed. On the page for the ecDNA gene 
resource in cancer (Fig. 3C), ecDNA genes are shown in a table 
(Fig. 3C1), ecDNA genes can be filtered by tissue and disease name using 
the filter on the left (Fig. 3C2), and statistics of ecDNA genes are also 
available (Fig. 3C3). Clicking on a gene symbol in the ecDNA gene table 
will open its detail page (Fig. 3D), where basic description of the gene 
(Fig. 3D1), gene-carrying ecDNAs (Fig. 3D2), expression profiles 
(Fig. 3D3), and prognosis prediction of TCGA cancers (Fig. 3D4) are 
available.

3.3. DE analysis

Differential expression analysis of genes in transcriptomics data can 
be performed using the ‘DE analysis’ tool (Fig. 4A). Users can either 
upload their gene expression data or choose a TCGA data set which has 
been pre-processed by us (Fig. 4A1). When all parameters are properly 
set (Fig. 4A2–4), the analysis can be launched (Fig. 4A5). In the ‘Retrieve 
results’ panel (Fig. 4A6), history analysis can be manually fetched. In the 
‘Output’ panel, analysis progress will be logged, and results will be 
displayed (Fig. 4A7).

To demonstrate its application, we analyzed the OV-TCGA-GTEx 
data using the ‘DE analysis’ tool. It discovered 14,692 DEGs in ovary 
cancer, of which 6910 are upregulated and 7782 are downregulated 
(Fig. 4B, Supplementary Table 2). Among these DEGs, 696 are ecDNA 
genes. Hierarchical clustering based on these differentially expressed 
ecDNA genes successfully separated tumor and normal samples into 
distinct clusters (Fig. 4C).

3.4. Venn analysis

The ‘Venn analysis’ tool finds ecDNA genes in an input gene list by 
comparing it with the ecDNA gene resource of ECGA. Users can use the 
text area to enter genes or upload genes in a file (Fig. 5A1). The ecDNA 
genes to compare can be filtered using the ‘ecDNA setting’ parameters 
(Fig. 5A2). After submitting (Fig. 5A3), the results will be shown in the 
‘Output’ panel once completed (Fig. 5A4).

We use the aforementioned DEGs of OV-TCGA-GTEx from ‘DE 
analysis’ results to demonstrate its application. We extracted 6910 
upregulated DEGs, entered them into the text area, and then set the 
disease ‘Ovary cancer’. The results show that 225 DEGs are ecDNA 
genes, accounting for 6.2 % of all ecDNA genes in ovary cancer (Fig. 5B). 
Similarly, a previous study found 198 ecDNA genes out of 2188 upre
gulated DEGs in ovary cancer, making up 9.05 % of all ecDNA genes 
found in ovarian cancer cell line UACC-1598-4 by the Circle-Seq pipeline 
[38,39]. The consistence highlights critical roles of ecDNA genes in 

ovary cancer, while the subtle variance may come from technical and 
biological differences.

3.5. Target discovery

The ‘Target discovery’ tool finds ecDNA genes highly expressed in a 
specific biological condition compared to normal human samples, 
potentially serving as targets for further investigation. The input to 
‘Target discovery’ is a file that contains raw RNA-seq count data 
(Fig. 5C1). After setting parameters (Fig. 5C2–3), the analysis can be 
launched (Fig. 5C4), and the results will be shown in the output box 
when completed (Fig. 5C5). Of note, the computation service of this tool 
is offered by TargetRanger [29].

3.6. Enrichment analysis

The ‘Enrichment analysis’ tool identifies ecDNA gene sets particu
larly abundant in a group of genes more than would be expected by 
chance. A list of genes with or without ranking metrics can be entered in 
the text area or uploaded as a text file (Fig. 6A1). After setting enrich
ment method (Fig. 6A2) and ecDNA filters (Fig. 6A3), the enrichment 
analysis can be launched (Fig. 6A4) and the results will be shown in the 
output box (Fig. 6A5).

Again, we use the aforementioned DEGs of OV-TCGA-GTEx from ‘DE 
analysis’ results to demonstrate its application. All DEGs and corre
sponding log2-transformed fold change values were used as input. The 
ORA-based enrichment analysis shows that gene sets related to ecDNA 
genes in ovary cancer are significantly enriched (Fig. 6B and C). GSEA- 
based enrichment analysis was performed as well, and the results 
display that the two ecDNA gene sets in ovary cancer are significantly 
enriched as well (Fig. 6D and E).

3.7. Signature discovery and validation

The ‘Signature discovery’ tool discerns ecDNA gene signatures that 
can be used for diagnosis, prognosis, and drug response predictions. The 
outlook of this tool is the same as that of ‘DE analysis’ (Fig. 4A).

For the application case, we used it to find an ecDNA gene signature 
capable of classifying samples into tumor and normal groups. We 
applied it on the OV-2009 data set and discovered a signature composed 
by four ecDNA genes (CDKN1A, BLM, FOXL2, and ALDH1A1). The best 
trained model is logistic regression that achieves an AUC and accuracy 
of 0.89 and 0.92, respectively (Fig. 7A), and the confusion matrix shows 
that most positives are correctly predicted as positive (Fig. 7B).

For further validation of the discovered ecDNA gene signature and 
the trained model on unseen data, the auxiliary ‘Signature validation’ 
tool was created (Fig. 7C). We designed it as an optional tool, so it is not 
accessible from the navigation bar. The ‘Signature validation’ tool is 
restricted to be implemented from ‘Signature discovery’ and becomes 
available following the completion of signature discovery. After 
uploading validation data (Fig. 7C1) and setting parameters 
(Fig. 7C2–3), the validation request can be submitted (Fig. 7C4). When 
the analysis finishes, results will be shown in the output box (Fig. 7C5).

Next, we applied ‘Signature validation’ on the OV-TCGA-GTEx data 
to validate the ecDNA gene signature and the trained model discovered 
in the OV-2009 data set. The ROC evaluation shows an AUC of nearly 1 
and an accuracy of 0.95 (Fig. 7D), and the confusion matrix shows high 
levels of true positives as well (Fig. 7E).

4. Discussion

The ecDNA gene resource in ECGA provides a panorama of ecDNA 
genes in cancer. With annotation data and expression profiles integrated 
from external sources, it is a practical and useful start point for experi
mental oncologists to form novel hypotheses. Xena browser and Gen
eRanger are two popular places that provide uniform and standardized 
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Fig. 3. Website overview. (A) Screenshot of the navigation bar. (B) Links to analysis tools under the ‘Tools’ dropdown menu. (C) Screenshot of the ecDNA gene 
resource page that shows the table (1), filter (2), and statistics (3) of ecDNA genes. (D) Screenshot of an ecDNA gene detail page that shows gene description (1), 
carrying ecDNAs (2), expression profiles (3), and cancer prognosis prediction (4).
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Fig. 4. Screenshots and application of the ‘DE analysis’ tool. (A) The tool’s web page showing the data input panel (1), input processing parameters panel (2), 
differential expression setting panel (3), ecDNA setting panel (4), analysis controller panel (5), result retrieval panel (6), and output panel (7). (B) Differentially 
expressed ecDNA genes in OV-TCGA-GTEx. (C) Hierarchical clustering of OV-TCGA-GTEx samples by differentially expressed ecDNA genes. Input data description: 
58,581 genes × 515 samples. Processing time: 132 s. Non-default parameters: Set ‘Value type’ to ‘RNA-seq (other)’ and ‘Disease’ to ‘Ovary cancer’.

N. Zhou et al.                                                                                                                                                                                                                                    Computational and Structural Biotechnology Journal 23 (2024) 3955–3966 

3961 



Fig. 5. Screenshots and application of the ‘Venn analysis’ and ‘Target discovery’ tools. (A) Web page of the ‘Venn analysis’ tool showing the gene input panel (1), 
ecDNA setting panel (2), analysis controller panel (3), and output panel (4). (B) Intersections between upregulated DEGs in OV-TCGA-GTEx and ECGA’s ecDNA gene 
resource. Input data description: 6910 genes. Processing time: 3 s. Non-default parameters: Set ‘Disease’ to ‘Ovary cancer’ (C) Web page of the ‘Target discovery’ tool 
showing the input panel (1), basic setting panel (2), ecDNA setting panel (3), analysis controller panel (4), and output panel (5).
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Fig. 6. Screenshots and application of the ‘Enrichment analysis’ tool. (A) The tool’s web page showing the input panel (1), enrichment setting panel (2), ecDNA 
setting panel (3), analysis controller panel (4), and output panel (5). (B–C) ORA-based enrichment analysis results of all DEGs of OV-TCGA-GTEx, with the location of 
two significantly enriched ovary cancer-related terms indicated by an orange asterisk. (D-E) GSEA-based enrichment analysis results of the two ovary cancer-related 
terms in (B) and (C). Of note, negative ranking metric values in (D) and (E) denote higher gene expression levels in tumor than in normal. Input data description: 
14,692 rows × 2 columns. Processing time: 13 s and 18 s for ORA- and GSEA-based analysis, respectively.
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Fig. 7. Screenshots and application of the ‘Signature discovery’ and ‘Signature validation’ tools. The layout of the web page of ‘Signature discovery’ is the same as 
that of ‘DE analysis’ so it is not shown here. (A-B) Model performance of the ecDNA gene signature discovered in the OV-2009 data evaluated by ROC curve (A) and 
confusion matrix (B). Signature discovery input data description: 20,373 genes × 237 samples. Signature discovery processing time: 82 s. Signature discovery non- 
default parameters: Set ‘Value type’ to ‘RNA-seq (other)’ and ‘ecDNA oncogene’ to ‘Yes’. (C) The web page of ‘Signature validation’ showing the input panel (1), input 
processing parameters panel (2), signature to validate panel (3), analysis controller panel (4), and output panel (5). (D-E) Validation of the discovered signature by 
ROC curve (D) and confusion matrix (E) in the OV-TCGA-GTEx data. Signature validation input data description: 58,581 genes × 515 samples. Signature validation 
processing time: 30 s.
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data about gene and protein expression across a variety of human cells 
and tissues from several large-scale projects, hence gene expression 
profiles from them were integrated into ECGA [29,30]. This not only 
simplifies the visualization, access, and reuse of the huge volume of data 
in public atlases, but also enriches the data content in ECGA.

Due to ecDNA’s importance in oncogene amplification, intratumoral 
heterogeneity, and patient outcomes, we have seen the emergence of 
database resources for ecDNA in recent years. They provide high-quality 
data of ecDNA and borne genes, but they do not offer convenient and 
sophisticated ecDNA gene analysis which is only available in ECGA to 
date. We must acknowledge that ecDNA data is not explicitly offered in 
ECGA. They are only accessible via ecDNA gene browsing, unlike other 
databases where ecDNA information is easy to search, browse, and 
download.

Abnormally expressed genes in disease can explain disease mecha
nisms and may serve as drug targets for therapeutic intervention [40]. 
TargetRanger enables to identify genes and/or proteins that are aber
rantly and specifically expressed only in the disease by comparing their 
reference expression levels across normal cells and tissues [29]. The 
critical role of ecDNA in cancer has been well known, and ecDNA genes 
can be hijacked and contribute to tumorigenesis. To identify highly 
expressed ecDNA genes in cancer compared to their expression in 
normal, the ‘Target discovery’ tool was created based on TargetRanger. 
Behind the scenes, abnormal expression is detected by two-tailed 
Welch’s t-test.

Venn diagram is a straightforward and intuitive way to show all 
possible logical relations between different sets. Taken a gene list 
derived from an experiment and ecDNA genes in ECGA as two sets, 
finding ecDNA genes in a candidate gene list is likely to resolve the 
problem of set relationships. Therefore, we created the ‘Venn analysis’ 
tool to detect the existence and analyze the proportion of ecDNAs in a 
gene list being studied by the user. To minimize text overlapping in the 
Venn diagram, both area-proportional and unscaled Venn diagrams are 
provided in the output.

In high-throughput gene expression studies, differential expression 
analysis and subsequent functional enrichment analysis have been in
tegral parts in the data analysis workflow [41]. We developed the ‘DE 
analysis’ and ‘Enrichment analysis’ tools to simplify differential 
expression and pathway analyses tailored for ecDNA gene research. We 
integrated limma and DESeq2, so it is suitable for both microarray and 
RNA-seq data. The ecDNA gene resource forms a predefined collection of 
gene sets to perform enrichment analysis. Nowadays interactive plot for 
ORA-based enrichment analysis has been available in some web appli
cations like g:Profiler and Enrichr [42,43]. Our previous work pioneered 
the development of interactive visualizations for GSEA-based analyses 
[31]. Here interactive GSEA plot is available as well. The interactive 
feature will provide a better way for result exploration and 
interpretation.

Nowadays, ecDNA has been an emerging hallmark in human cancer, 
and oncogene amplification by ecDNA drives tumor evolution, drug 
resistance, and poor outcomes for patients across multiple cancers [14, 
44]. An ecDNA gene signature encompassing nine genes has been suc
cessfully used to build a prognosis model in ovary cancer, highlighting 
its clinical potential [38]. Therefore, we developed the ‘Signature dis
covery’ tool to help users construct ecDNA gene signatures and build 
and evaluate clinical predictive models. In machine learning, although 
cross validation in train set and test set based on a single data set is a 
reasonable evaluation of estimators when obtaining independent data 
from third parties is difficult, it is better to validate trained models on 
unseen data. We also developed the ‘Signature validation’ tool to assist 
optional validation of a discovered signature model on a new data set 
when it is available.

To streamline data preprocessing, data transformation, feature 
encoding, feature selection, model train, model test, and model evalu
ation, we took the advantage of automated machine learning which 
wraps all these steps into a single pipeline. This enables ‘Signature 

discovery’ to construct and evaluate candidate ecDNA signatures across 
various machine learning models. It not only exponentially speeds up 
the experiment cycle but also help users to quickly find the best ecDNA 
signature to consider in the next step in their study. During signature 
analysis, differentially expressed genes are determined and used to 
reduce the feature space. The performance of all estimators available in 
the model library (Supplementary Table 3) are evaluated using cross- 
validation, and the output delivers a scoring grid of average cross- 
validated scores.

5. Conclusion

In the present study, we developed ECGA to explore ecDNA gene in 
cancer and perform ecDNA gene analyses. Though ecDNA gene infor
mation is also available in existing databases, the dedicated ecDNA gene 
analysis tools are only available in ECGA so far. We must acknowledge 
that although we have tried our best to generate a comprehensive 
catalogue of ecDNA genes in human cancers, we are limited by the scope 
of publicly available WGS data. In the future, we consider including 
more data types (such as ATAC-seq, 4C-seq, and Circle-Seq), analysis 
algorithms, and cancer samples. To sum up, ECGA is a centralized 
resource for ecDNA genes identified in cancers in a systematic manner 
and is a web-based application suite that covers a wide range of analysis 
requirements in the research of ecDNA gene in cancer. It will aid in 
better understanding of the molecular mechanisms of malignant tumors 
and facilitate the discovery of new therapeutic targets and biomarkers, 
thereby offering new perspectives for advancing cancer research and 
clinical practice.
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