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RNA-binding proteins (RBPs) regulate totipotency, plurip-
otency maintenance, and induction. The intricacies of how
they modulate these processes through their interaction with
RNAs remain to be elucidated. Here we employed Targets of
RBPs Identified By Editing (TRIBE) with single-cell resolution
(scTRIBE) to profile the mRNA targets of the key pluripotency
regulator LIN28A in mouse embryonic stem cells (ESCs), 2-cell
embryo-like cells (2CLCs), and somatic cell reprogramming.
LIN28A is known to act by controlling the maturation of the
let-7 microRNA, but, in addition, it binds to multiple mRNAs
and influences their stability and translation efficiency. How-
ever, the mRNA targets of LIN28A in 2CLCs and reprogram-
ming are unclear. Through quantitative single-cell analysis of
the scTRIBE dataset, we observed a marked increase in the
binding of LIN28A to mRNAs of ribosome biogenesis factors
and a selected group of totipotency factors in 2CLCs within
ESC cultures. Our results suggest that LIN28A extends the
half-life of at least some of these mRNAs, providing new in-
sights into its role in the totipotent state. We also uncovered
the distinct trajectory-specific LIN28A-mRNA networks in
reprogramming, helping explain how LIN28A facilitates the
mesenchymal-to-epithelial transition and pluripotency acqui-
sition. Our study not only clarifies the multifunctional role of
LIN28A in these processes but also highlights the importance
of decoding RNA-protein interactions at the single-cell level.

Mammalian pluripotency is the ability of a cell to develop
into any cell type composing the body. It is a transient property
of the epiblast of the developing blastocyst and can be sus-
tained in culture in the form of embryonic stem cells (ESCs) or
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induced by the reprogramming of somatic cells to induced
pluripotent stem cells (iPSCs) (1). Interestingly, mouse ESC
cultures are inherently metastable, containing a small pro-
portion of cells (0.5–1%) that resemble the totipotent 2-cell
(2C) stage in embryogenesis; these cells are termed 2C-like
cells (2CLCs) (2). Understanding the molecular mechanisms
governing the maintenance and induction of pluripotency and
the emergence of totipotent-like cells in vitro is of fundamental
relevance for developmental biology and regenerative
medicine.

RNA-binding proteins (RBPs) constitute approximately 10%
to 15% of the total proteome in the cell and have long been
recognized as key regulators of cell fate decisions including
pluripotency regulation and reprogramming (3, 4). RBPs are
broadly involved in multiple aspects of RNA metabolism
including splicing, stability, and translation, but also exert their
roles through non-classical (RNA metabolism-independent)
mechanisms (5). Among the RBPs involved in pluripotency
and reprogramming, LIN28A stands out as a pivotal player (6).
A major mechanistic role of LIN28A is the inhibition of let-7
microRNA (miRNA) maturation, but in addition, it regulates
the stability and translation efficiency of thousands of mRNAs
(7). However, the landscape of LIN28A mRNA targets in ESCs
and the multiple stages of reprogramming are poorly under-
stood, hindering a comprehensive understanding of its func-
tions. Interestingly, LIN28A has also been proposed to act as a
barrier for generating 2CLCs from pluripotent stem cells
(ESCs or iPSCs) (8). On the one hand, the interaction of
LIN28A with small nucleolar RNAs (snoRNAs), ribosomal
RNAs (rRNAs), nucleolar factors (e.g., NCL), ribosome
biogenesis factors (e.g., GNL2 and NOP14) and ribosomal
subunits (e.g., RPL5 and RPS6) regulates nucleolar structure
and promotes rRNA biogenesis to suppress the totipotent
state. On the other hand, the LIN28A-NCL-TRIM28 complex
represses transcription of the totipotent transcription factor
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LIN28A mRNA targets at single-cell resolution
Dux and binds to rDNA loci to promote rRNA transcription.
Whether other mechanisms, specifically potential mRNA tar-
gets of LIN28A in 2CLCs, are involved is unclear.

Methods to identify RNA targets of RBPs include two main
approaches (9). Classical approaches such as crosslinking and
immunoprecipitation involve the purification of RBP-RNA
complexes for sequencing (CLIP-sequencing, CLIP-seq) (10).
This strategy requires a large amount of starting material due
to limited cross-linking efficiency and problems with antibody
recognition efficiency. Previous studies have used this method
to identify the transcriptome-wide RNA targets of LIN28A in
mouse ESCs (11). Besides the above-mentioned problems, a
caveat of this work is that ESC cultures are heterogeneous,
overlooking for example the small population of 2CLCs (12).
The same principle applies to somatic cell reprogramming,
where only a fraction of the starting cells reaches pluripotency
through a multi-step process with different intermediate cell
states (13). The second approach fuses RNA editing enzymes
with RBPs and includes for example TRIBE (Targets of RBPs
Identified By Editing) and STAMP (Surveying Targets by
APOBEC-Mediated Profiling) (14, 15). This strategy edits the
RNA of RBP-bound regions, which can be identified through
sequencing. By bypassing less efficient steps, this methodology
enables the detection of RBP targets in a small number of cells
and even at the single-cell level (14–16).

Here, we used TRIBE coupled to single-cell RNA
sequencing (scRNA-seq) (hereafter referred to as scTRIBE) to
explore the cell type-specific mRNA targets of LIN28A in the
mouse pluripotent-to-totipotent transition within ESCs and
somatic cell reprogramming. We discovered that LIN28A in-
teracts with the mRNAs of multiple ribosome biogenesis fac-
tors, which is associated with their increased mRNA stability in
2CLCs, and with the mRNA of 2C-stage-embryo enriched
factors such as the Zscan4 family of transcription factors
(Zscan4a, Zscan4d). Additionally, we identified distinct
LIN28A-mRNA networks that emerge in the different multiple
trajectories arising during the reprogramming of mouse em-
bryonic fibroblasts (MEFs) to iPSCs. The results suggest that
LIN28A promotes specific cell identities in each of the pro-
ductive or non-productive reprogramming trajectory
branches, including the mesenchymal-to-epithelial transition
(MET) (17). Our study sheds new light on LIN28A’s role in
post-transcriptional regulation in the context of pluripotency
and totipotency regulation in vitro, underscoring the relevance
of understanding RNA-protein interactions in biological pro-
cesses at the single-cell level.
Results

Identification of LIN28A mRNA targets in mouse ESCs at
single-cell resolution

TRIBE involves fusing an RBP of interest to the catalytic
domain of adenosine deaminase ADAR (ADARcd) and deliv-
ering this construct into target cells (18). This fusion protein
allows the selective conversion of adenosines into inosines
near the RNA region targeted by the specific RBP. The
resulting modifications can be recognized as adenosine-to-
2 J. Biol. Chem. (2024) 300(11) 107824
guanine (A-to-G) edits during RNA-sequencing (RNA-seq).
We engineered a fusion of LIN28A with ADARcd (LIN28A-
ADARcd) and expressed it in E14 mouse ESCs for 24 h using a
doxycycline-inducible construct. As expected, bulk RNA-seq
showed a significant increase in the number and frequency
of A-to-G mutation sites, without affecting the overall gene
expression, when compared to cells expressing only ADARcd
cells or wild-type (WT) (Fig. S1, A–D). This demonstrated that
the induced A-to-G mutations are LIN28A-dependent, and
the TRIBE system has no other obvious effects on mouse ESC
function or characteristics.

To identify the LIN28A targets at single-cell resolution, we
applied scTRIBE to mouse E14 ESCs using the DNBelab C4
platform (Fig. 1A) (19). The dataset consisted of two sample
types: LIN28A-ADARcd serving as the experimental group
and ADARcd as the control group. The aggregated data
included 11,121 cells, with an average of 65,578 reads per cell,
a median gene count of 3756 per cell, and a median of 14,437
unique molecular identifiers (UMIs) per cell (Fig. S1E). Like in
standard single-cell transcriptomic analysis, we observed that
calibrating transcript editing levels using UMIs substantially
reduces the coefficient of variation of LIN28A-ADARcd-
induced mutations between cells (Fig. 1B). This indicated
that UMIs offer a more precise metric than read counts for
assessing RNA binding activity using scTRIBE. Therefore, all
subsequent analyses in our study were conducted with UMIs.
Next, we used a negative binomial distribution model to define
edits specifically introduced by LIN28A-ADARcd (20). In total,
we identified 11,631 edited sites across 4694 genes that
exhibited a significantly higher editing frequency than the
control (Fig. 1C and Table S1). We observed consistency in
the abundance of transcript editing levels across replicates of
the LIN28A-ADARcd samples, demonstrating good repro-
ducibility (Fig. S1F).

To assess if the scTRIBE edits corresponded to LIN28A
target RNAs, we conducted a comparative analysis between
LIN28A-ADARcd edited transcripts and LIN28A CLIP-seq
data from mouse ESCs (11). We observed that the RNA pro-
files from scTRIBE are similar to those from CLIP-seq. How-
ever, the scTRIBE result contained a higher proportion of
protein-coding transcripts and decreased presence of non-
coding RNAs (e.g., snoRNA and rRNA), which is consistent
with the nature of droplet-based scRNA-seq techniques that
prefer sequencing 30 ends of polyadenylated transcripts
(Fig. 1D) (21). Besides, the genome-wide distribution of the
edited sites in scTRIBE mirrored that of bulk TRIBE and CLIP-
seq data, being predominantly localized within the coding
sequence (CDS) and 30 untranslated region (UTR) (Fig. 1E).
These distributions are different from that of total reads and
consistent with the known binding pattern of LIN28A (Fig. S1,
G and H). Next, we measured the distance of the edited sites to
the CLIP peaks, observing an enrichment of the scTRIBE edits
within ± 250 bp of the LIN28A CLIP peaks (Fig. 1F). The
tracks for the ribosomal factor Rps15 are shown as an example
(Fig. 1G). Moreover, de novo motif analysis of the edited sites
revealed a significant presence of the canonical LIN28A
binding motif (GGAGA-like sequence) in both the bulk and
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scTRIBE samples (Fig. 1H). This motif was also detected when
downsizing from randomly sampled hundreds of cells to a
single cell in the scTRIBE (Fig. 1I). Notably, 62.02% (2911) of
the edited transcripts overlapped with CLIP-seq targets
(Fig. 1J). Among the remaining 1783 non-overlapping tran-
scripts, 933 (52.33%) contained GGAGA-like motifs located
within ± 50 bp of the edited sites. The distinct targets identi-
fied by scTRIBE and CLIP-seq might arise from the variations
of the cell lines (E14 versus A3-1 mouse ESCs), culture con-
ditions (2i/LIF versus serum/LIF), or sequencing methods
(bulk RNA-seq versus single-cell 30 end RNA-seq) across the
two studies.

These analyses demonstrate that scTRIBE recovers the
mRNA targets of LIN28A within mouse ESCs at single-cell
resolution.

LIN28A has a unique mRNA-binding pattern in 2CLCs

The mechanisms underlying 2CLC generation within mouse
ESCs are not well understood (22). Although LIN28A controls
this transition by repressing Dux, regulating the nucleolar
structure, and promoting rRNA biosynthesis (8), it is unclear
whether other mechanisms, specifically potential mRNA tar-
gets in 2CLCs, are involved. Because the 2CLC population
within ESCs is, under normal conditions, small, this cannot be
investigated with standard (bulk) CLIP-seq from cultured
mouse ESCs. While it is possible to purify a sufficient number
of 2CLCs, the process is lengthy and may affect the tran-
scriptome. To study this at the single-cell level, we analyzed
our scTRIBE experiments in mouse ESCs. We first combined
the scRNA-seq datasets of LIN28A-ADARcd and ADARcd
samples. Following Louvain clustering and Uniform Manifold
Approximation and Projection (UMAP) visualization, we
successfully categorized the cells into three distinct clusters
(pluripotent ESCs, 96.1%; 2CLCs, 1.0%; intermediate
pluripotent-2CLCs, or intermediate, 2.9%) using specific
marker genes (Fig. 2, A–C). The observed proportions are
consistent with those reported in the previous study (23). As
expected, UMAP visualization of the editome (the collection of
edited UMIs from each cell) revealed that cells expressing
LIN28A-ADARcd could be distinguished from those
expressing ADARcd (Fig. 2D). We also observed that a small
subset of LIN28A-ADARcd cells had fewer edited UMIs,
which could be due to insufficient fusion protein expression.
To overcome this, we used Louvain clustering by editome and
refined our datasets by excluding cells assigned to the cluster
the first quartile), median (between the first and third quartiles), and high (abo
test. C, dot plot showing the editing frequency in LIN28A-ADARcd and ADARcd
edited UMIs by the total UMIs per edited site. Only significantly edited sites
Wilcoxon test. D and E, stacked bar plot showing the proportion of transcrip
identified by bulk TRIBE, scTRIBE, and CLIP-seq (11). snoRNA, small nucleolar R
region; CDS, coding sequence. F, histogram and fitted curve plot showing the
within a ± 500 bp window flanking the CLIP peaks (11). G, integrative genom
pseudobulk, and single-cell level, all located within the LIN28A CLIP peaks (11).
surrounding significantly edited sites of bulk and scTRIBE, or CLIP peaks (11).
50 bp region surrounding significantly edited sites from randomly sampled ce
trials. Adjusted p values (adj p) were generated using a binomial test and Ben
targets identified by CLIP-seq (11) and scTRIBE (top left). Pie charts showing the
with CLIP-seq data and contain a GGAGA-like motifs within a ± 50 bp region
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exhibiting fewer edited UMIs (Fig. 2E). The remaining cells
from the LIN28A-ADARcd group were classified as the posi-
tive population (6212 cells) and were selected for further
analysis. Within this positive population, 2CLCs were observed
to form a distinct cluster based on the editome (Fig. 2F),
despite having a similar edited UMI levels compared to the
other two cell states (Fig. 2G). This indicated that LIN28A-
bound RNA targets in 2CLCs are substantially different from
those observed in pluripotent cells and intermediate cells.

LIN28A interacts with ribosome biogenesis and totipotency
factor mRNAs in 2CLCs

Next, we aimed to understand the differences in the
scTRIBE editome between the three observed cell identities
and what this could functionally mean for the 2CLCs. We
performed differential editing analysis and identified 142
differentially bound transcripts (DBTs) (fold-change > 1.2
with p value < 0.01) among the three cell states (Fig. 3A and
Table S2). 2CLCs contained the vast majority (100 out of 142)
of the LIN28A-highly bound DBTs, with the intensity of
binding defined as the ratio between editing level and
expression level. These DBTs included transcripts belonging to
genes highly expressed in the 2C-embryo and 2CLCs, such as
the Zscan4 family (Zscan4a and Zscan4d), Tmem92, and
Nelfa. Additionally, we noticed that 54 of the LIN28A-highly
bound DBTs in 2CLCs were not differentially expressed in
2CLCs compared to the other two cell states (Fig. 3B). These
expression-independent DBTs could be related to protein and
RNA modifications, and others (24, 25). Notably, genes such as
Rpl10, Fus, and Ncl, which are intricately linked to nucleolus
function (26–28), were included in this group (Fig. 3C). A
smaller number of DBTs were found in the pluripotent (4 out
of 142) and intermediate states (38 out of 142), respectively
(Fig. 3A). Gene Ontology (GO) enrichment analysis of
LIN28A-highly bound DBTs in 2CLCs confirmed the enrich-
ment of factors involved in mRNA processing, cytoplasmic
translation, and ribosome biogenesis (Fig. 3D). We also
confirmed through gene set enrichment analysis (GSEA) that
LIN28A-interacting ribosome biogenesis transcripts tend to
have higher editing levels in 2CLCs compared to the plurip-
otent state (Fig. 3E). This observation was immediately inter-
esting given the previous observations that LIN28A interacts
with rRNAs, nucleolar factors, and ribosomal subunits in the
2C-embryo and 2CLCs, and that ribosomal proteins are key
regulators of the 2C-embryo stage transcriptome (8, 29).
ve the third quartile). p values were generated using a two-sided Wilcoxon
control from scTRIBE results. Editing frequency was obtained by dividing the
in LIN28A-ADARcd are plotted. p values were generated using a two-sided
t types (D) and genomic region types (E) of the edited sites/CLIP peaks as
NA; rRNA, ribosomal RNA; lncRNA, long non-coding RNA; UTR, untranslated
cumulative editing frequency distribution of LIN28A-ADARcd and ADARcd
e viewer browser tracks showing the edited sites at the Rps15 loci in bulk,
H, illustration of the top 1 enriched motif searched from the ± 50 bp region
I, histogram showing the enrichment of the GGAGA-like motif using the ±
lls. Data are the mean ± standard deviation (s.d.) of n = 10 computational
jamini-Hochberg correction. J, Venn diagram showing the overlap between
proportion of transcripts that do not overlap (top right) or overlap (bottom)
surrounding the edited sites.
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LIN28A mRNA targets at single-cell resolution
Given the classical role of LIN28A in inhibiting let-7miRNA
maturation, we also compared genes differentially bound by
LIN28A in all three cell states with previously reported let-7
miRNA targets (Fig. 3F) (30). Remarkably, there was only a
10% gene overlap, suggesting that the identified DBTs in
pluripotent cells and 2CLCs are largely independent of the let-
7 pathway and are likely directly regulated by LIN28A in a
post-transcriptional manner. LIN28A is characterized by two
distinct RNA-binding domains: a cold shock domain (CSD)
and a pair of zinc finger-like CCHC domains. While both types
of domains are crucial for inhibiting the maturation of let-7
miRNA (31), the CSD domain is additionally related to the
post-transcriptional processing of target mRNAs (32). We thus
asked whether the observed DBTs in 2CLCs are predomi-
nantly recognized by the CSD domain. For this, we extracted
the edited sites in these DBTs and performed de novo motif
analysis (Fig. 3G). This showed enrichment of the UGAU-like
motif, which is preferentially bound by the CSD domain (31),
as the top 1 enriched motif. For instance, transcripts con-
taining the UGAU-like sequence in Rpl7a and Ncl exhibited
higher editing frequency in 2CLCs compared to pluripotent
cells (Fig. 3H). Of note, previous studies have indicated that
the CSD domain of LIN28A facilitates the expression of its
target genes via enhancing mRNA stability (32). To address
whether a similar regulation happens in 2CLCs, we analyzed a
previously reported single-cell dataset of RNA stability in
2CLCs (23). Supporting our idea, we corroborated that
LIN28A-highly bound transcripts have significantly longer
half-lives compared to other transcripts in 2CLCs (Fig. 3I).
Moreover, these transcripts also showed longer half-lives in
2CLCs than in the other two cell states (Fig. 3J). Besides, by
analyzing an mRNA translation dataset of mouse developing
embryos (33), these transcripts also exhibited higher trans-
lation efficiency in mouse 2C-embryo than in other preim-
plantation embryo stages (Fig. 3K).

These findings suggest that LIN28A contributes to making a
subset of highly bound genes in 2CLCs more stable and/or
more translated, potentially through the regulatory role of the
CSD domain. Further experiments will be necessary to dissect
the different regulators that act coordinately with the CSD
domain to stabilize LIN28A mRNA targets.
Dynamic LIN28A-mRNA interactions during somatic cell
reprogramming

LIN28A was one of the original exogenous factors enabling
human somatic cell reprogramming into iPSCs (34). LIN28A
also promotes somatic cell reprogramming in mice (35). It is
J. Biol. Chem. (2024) 300(11) 107824 5
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LIN28A mRNA targets at single-cell resolution
known that LIN28A plays a crucial role in metabolic remod-
eling and proliferation during this process (36, 37), but the
underlying mechanisms are unclear. To explore this, we first
analyzed the expression of endogenous Lin28a during the
6 J. Biol. Chem. (2024) 300(11) 107824
reprogramming of MEFs into iPSCs under the highly efficient
iCD1 culture medium (38). The use of this medium was
important to reduce variability and shorten the duration of the
reprogramming process. Reverse transcription-quantitative
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PCR (RT-qPCR) showed that Lin28a increased with reprog-
ramming reaching a peak in the later stages (Fig. S2A).
Moreover, knocking it down impaired cell proliferation, a
major feature of reprogramming (36), and reduced reprog-
ramming efficiency (Fig. S2, B–D).

Next, we applied scTRIBE to investigate the dynamic in-
teractions between LIN28A and its target mRNAs in iCD1-
mediated reprogramming (Fig. 4A). Given that Lin28a
expression becomes higher in the mid-late stages, we induced
LIN28A-ADARcd expression with doxycycline on day 5 (D5)
and day 7 (D7), followed by cell collection for scRNA-seq 24 h
later. LIN28A-ADARcd expression was confirmed by western
blotting (Fig. S2E). After quality control, the generated data
encompassed a total of 16,337 cells, with an average of 23,438
reads per cell, a median gene count of 3814 per cell, and a
median of 10,426 UMIs per cell (Fig. S2F). To study the role of
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reprogrammed cells displayed lower levels of editing, which is
likely due to the silencing of viral vectors after completing
reprogramming (40). Notably, epithelial-like, keratinocyte-like,
and neuronal-like cells formed distinct clusters in the editome-
based UMAP analysis (Fig. 4F). Among the defined cell types,
we observed 152 DBTs (fold-change > 1.2 with p
value < 0.01), 79 of which were gene expression-dependent
while 73 were not (Fig. 4G).

Next, we used Monocle3 (41), placing D3 cells at the
beginning of a pseudotime to identify the major trajectories
across the reprogramming process. This showed several
branch points including an intermediate branch, a failed ker-
atinocyte branch, a failed neuronal branch, and a branch
representing successful reprogramming at the endpoint of the
pseudotime (Fig. 5A). We first focused on the cells in the
keratinocyte and successful reprogramming trajectories,
identifying 342 edited transcripts (q value < 0.01) that
dynamically interacted with LIN28A (hereafter referred to as
dynamic DBTs) along the entire pseudotime. These transcripts
exhibited three major binding patterns (Fig. 5B and Table S3).
Group 1 represented transcripts with high editing levels in the
early-mid stage of the intermediate branch, comprising genes
related to chromosome segregation (Smc1a, Smc4), cell cycle
phase transition (Ccnd1, Ccnd2), and ATP metabolic process
(Pkm, Ldha). Group 2 represented transcripts with a gradually
increased editing levels towards the failed branch, including
genes related to negative regulation of peptidase activity
(Ecm1, Serpinf1) and collagen metabolic organization (Ctsl,
Ctsb). Group 3 represented transcripts with increased editing
towards the successful reprogramming branch, comprising
genes related to epithelial morphogenesis (Cdh1, Cldn3) and
cell-cell junction organization (Cldn7, Crb3), suggesting that
LIN28A may play a crucial role in the MET process.

Interestingly, LIN28A has also been shown to regulate
neuronal and axon regeneration (42, 43), so we looked into the
neuronal-like trajectory. Compared with the successful
reprogramming, we identified 143 dynamic DBTs, exhibiting
two major patterns (Fig. 5C and Table S3). Group I was more
enriched in the later phase of neuronal cell fate acquisition and
corresponded to genes related to ribosome biogenesis (Rpl19,
Rpl36a) and protein translation (Rps5, Rpl3), which to a lesser
extent were enriched in the middle phase of the successful
reprogramming trajectory. Group II contained transcripts with
high editing levels in the reprogramming trajectory and low in
the neuronal-like one. It has been reported that LIN28A
modulates neuronal regeneration by inducing the mTOR
translation activation pathway (43). We compared the LIN28A
interacting dynamically bound genes in these two major tra-
jectories with let-7 miRNA targets (30), observing only 7.93%
overlap (Fig. 5D). We thus concluded that LIN28A dynamic
DBTs in reprogramming are mainly regulated in a let-7-in-
dependent manner.

Our results demonstrate that LIN28A has a variety of
mRNA targets and functions across the somatic cell reprog-
ramming process (Fig. 5E), helping promote individual cell
identities and blocking others along the dynamic conversions.
8 J. Biol. Chem. (2024) 300(11) 107824
Discussion
We have applied scTRIBE to dissect the mRNA targets of

LIN28A in mouse ESCs, 2CLCs, and somatic cell reprogram-
ming. This method distinguishes itself from traditional tech-
niques like CLIP-seq by enabling the detection of RNA-protein
interactions at the single-cell level. Although CLIP-seq had
been previously used to profile LIN28A RNA targets in mouse
ESCs (11), it does not consider the heterogeneity of ESC cul-
tures and, hence, cannot be used for the detection of rare
populations such as 2CLCs within mouse ESCs. Likewise,
despite being a well-known regulator of somatic cell reprog-
ramming, the RNA targets of LIN28A in this multi-path
process are yet unclear, and applying CLIP-seq to bulk
mixed populations would provide limited information.

LIN28A is known to promote rRNA maturation and
maintain nucleolar integrity in the 2C-embryo and 2CLCs (8).
Interestingly, our analysis showed that transcripts highly
bound by LIN28A in 2CLCs include ribosome biogenesis
factors and a selected panel of totipotent factors such as
members of the Zscan4 family of transcription factors. These
totipotency factors are not expressed in ESCs. Considering the
role of LIN28A in promoting mRNA stability and translation
(32), it is plausible to think that in 2CLCs they are regulated by
LIN28A in this same manner. As for the ribosome biogenesis
factors targeted by LIN28A in 2CLCs, their translation is
maintained at high levels in the 2C-embryo, also suggesting
that the same occurs in 2CLCs. In fact, we also observed that
despite the mRNA levels of these factors is similar compared
to ESCs, their mRNA half-life is substantially increased. This
suggests a compensatory mechanism for counterbalancing the
more general suppression of translation mediated by repres-
sing rRNA transcription and the partial dismantling of
nucleolar structure executed by LIN28A in the totipotent state
(8). Such a mechanism could facilitate that the expression of
totipotency-related factors is selectively maintained despite the
overall translation efficiency being reduced. Further experi-
mentation will be necessary to understand the cause-effect
relationship between these observations.

In somatic cell reprogramming, we observed that LIN28A
interacts with mRNAs associated with metabolic processes and
cell cycle remodeling in the early phase of reprogramming
before cells branch into the productive and unproductive
reprogramming phases. This is consistent with previous ob-
servations describing a role for LIN28A in these processes
during reprogramming (36, 37). LIN28A also binds to tran-
scripts related to epithelial morphogenesis in the middle phase
of reprogramming, indicating a facilitating effect on the MET
(17). Besides, we have demonstrated that LIN28A interacts
with transcripts related to cytosolic translation in neuronal
fate. In this regard, it is known that LIN28A modulates axon
regeneration in neurons by inducing the mTOR translation
activation pathway (43). Notably, these mRNA targets are in-
dependent of let-7, a miRNA with pleiotropic functions that is
a well-characterized target of LIN28A (44), as demonstrated by
performing overlap analysis. These findings support a model in
which LIN28A reinforces different cell fates by directly
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Figure 5. LIN28A-mRNA binding dynamics across the different trajectories of somatic cell reprogramming. A, UMAP plot showing the reprogram-
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order (left). q values were generated using a likelihood ratio test. Bar plots showing the enriched GO biological process terms and representative transcripts
(right). Adjusted p values were generated using a hypergeometric test and Benjamini-Hochberg correction. Neg., negative; Pos., positive. C, heatmap
showing the editing levels of 143 dynamic DBTs (cataloged in two groups) between neuronal and successful reprogramming trajectories in a pseudotime
order (left). Bar plots showing the enriched GO biological process terms and representative transcripts (right). Adjusted p values were generated using
hypergeometric test and Benjamini-Hochberg correction. D, venn diagram showing the overlap between dynamic DBTs identified in all cell fate branches
and let-7 target genes. E, schematic model showing the dynamic LIN28A-mRNA interactions in different cell fate branches during somatic cell
reprogramming.

LIN28A mRNA targets at single-cell resolution
promoting the expression of key cell-specific factors and/or
regulating the translational machinery.

Our work has certain limitations. For example, owing to the
inherent constraints of droplet-based scRNA-seq, which pri-
marily targets 30 end sequences (45), there is a reduction in the
proportion of 50 UTR- and CDS-edited sites in the scTRIBE
results. Using full-length RNA coverage methods such as
Smart-seq and VASA-seq may help solve this issue (46, 47).
Moreover, the current version of scTRIBE relies on exoge-
nously expressed fusion proteins. Developing methods based
on endogenous proteins could provide more accurate insights
into RBP-RNA interactions. Nevertheless, our dataset is a
J. Biol. Chem. (2024) 300(11) 107824 9
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useful resource for understanding how LIN28A regulates cell
fate transitions including the pluripotent-to-totipotent and
somatic cell reprogramming transitions. In the future, we
envisage that the application of refined scTRIBE approaches
based on further advanced technologies such as long-read
sequencing will help create comprehensive maps of protein-
RNA interactions with isoform resolution in a variety of cell
contexts and situations, greatly enhancing our understanding
of those processes (48).

Experimental procedures

Plasmid and virus preparation

LIN28A-ADARcd construct was engineered by fusing the
mouse Lin28a coding sequence with the mouse Adar2 cata-
lytic domain containing a hyperactive mutant E488Q (here-
after referred to as ADARcd). ADARcd and LIN28A-ADARcd
constructs used for mouse ESCs were subcloned into a
doxycycline-inducible piggyBac vector with a FLAG tag. The
LIN28A-ADARcd construct used for reprogramming experi-
ments was subcloned into a doxycycline-inducible pW lenti-
viral vector. pMXs vectors, which independently express the
Oct4, Sox2, and Klf4 (OSK), were purchased from Addgene.
shRNA oligonucleotides targeting Lin28a were subcloned into
pLKO.1 lentiviral vector. Detailed sequences of these con-
structs are provided in Table S4.

To obtain the lentiviruses and retroviruses used in reprog-
ramming experiments, HEK293T cells at 70 to 80% confluence
were transduced with the pW vector carrying LIN28A-
ADARcd or the pLKO.1 vector carrying shRNA oligos, along
with packaging vectors psPAX2 and pMD2G using poly-
ethyleneimine (PEI; Polysciences) for 8 h. Plat-E cells at 70 to
80% confluence were transduced with retroviral vectors con-
taining OSK, or rtTA using PEI for 8 h 48 h later after
transduction, the viruses were harvested and filtered through a
0.45 mm filter (Millipore).

Cell culture

OG2 MEFs carry multiple copies of the Oct4-GFP trans-
genic reporter. HEK293T, Plat-E cells and OG2 MEFs were
maintained in Dulbecco’s modified Eagle’s medium (DMEM)/
high glucose (Corning) supplemented with 10% fetal bovine
serum (FBS; NATOCOR), GlutaMAX (Gibco), nonessential
amino acids (NEAA; BasalMedia), and penicillin/streptomycin
(P/S; HyClone). E14gt2a (E14) ESCs were cultured in 2i/LIF
medium containing DMEM/F12 (HyClone) and Neurobasal
(Gibco) mixed 1:1, supplemented with N2 (Gibco), B27
(Gibco), GlutaMAX, NEAA, sodium pyruvate, b-mercaptoe-
thanol, P/S, leukemia inhibitory factor (1000 U/ml), 3 mM
CHIR99021 (StemRD) and 1 mM PD0325901 (StemRD). Cells
were grown in 5% CO2 at 37 �C and the medium was changed
daily. All cells tested negative for mycoplasma.

Application of TRIBE to mouse ESCs

To establish a stable TRIBE system, E14 mouse ESCs were
plated at 80,000 cells per well in a 6-well plate and transfected
with piggyBac vector containing ADARcd/LIN28A-ADARcd
10 J. Biol. Chem. (2024) 300(11) 107824
and the transposase vector pBase using Lipofectamine 3000
(Invitrogen) following the manufacturer’s instruction. 48 h
after transduction, the mouse ESCs were selected using 1 mg/
ml puromycin (InvivoGen) for 4 days. The generated cell lines
expressing ADARcd and LIN28A-ADARcd were induced with
1 mg/ml doxycycline (DOX) for 24 h. Subsequently, these cells
were harvested for either bulk or scRNA-seq.

Application of TRIBE to somatic cell reprogramming

Somatic cell reprogramming was performed as previously
described (39). Briefly, OG2 MEFs at passage two were seeded
at a density of 20,000 cells per well in 12-well plates and then
infected with the virus after 12 h. OG2 MEFs were first
infected with OSK retroviruses for 24 h and then infected with
inducible LIN28A-ADARcd lentivirus for 6 h, and finally
infected with OSK and rtTA retroviruses for 12 h. After
infection, the cells were cultured in iCD1 medium and we
designated this time point as day 0 (38). Next, cells were
induced with 1 mg/ml DOX in iCD1 medium for 24 h on D5
and D7. The collected cells were thus marked as D6 and D8
and harvested for scRNA-seq. For LIN28A knockdown ex-
periments, shRNA lentiviruses were diluted at 1:30 with fresh
medium, and 1 round of 8 h of infection was performed be-
tween the retrovirus infections. Oct4-GFP positive colonies
were scanned by Sapphire Biomolecular Imager (Azure Bio-
systems) on D8 and counted using the Analyze Particles
function in ImageJ (v.1.50i).

Western blotting

Cells were lysed and subjected to SDS-PAGE gel for sep-
aration and transferred onto a PVDF membrane (Millipore).
The membrane was subsequently blocked and incubated with
corresponding primary and secondary antibodies. The signal
was generated with ECL (Advansta) and visualized with a
FUSION SOLO 4M System (Vilber Lourmat). Primary anti-
bodies used in this paper are as follows: anti-FLAG (Sigma-
Aldrich F7425), anti-LIN28A (Abcam ab46020), anti-Histone
H3 (Abcam ab1791), and anti-ACTIN (Sigma-Aldrich
A2066).

RNA isolation, RT-qPCR, and bulk RNA-seq library preparation

Total RNA samples were extracted with TRIzol (MRC). RT-
qPCR was performed using SYBR Green (Roche) with a Roche
LightCycler 96 instrument. Primer sequences are provided in
the Table S4. RNA-seq libraries were constructed using the
ribosomal RNA deletion method and then sequenced on the
DIPSEQ T1 platform, generating �30 million 100 bp paired-
end reads per sample.

scRNA-seq library construction

scRNA-seq library preparation was performed using the
DNBelab C Series Single-Cell Library Prep Kit (MGI) ac-
cording to the manufacturer’s instructions. Briefly, single-cell
suspensions were used for droplet generation, emulsion
breakage, mRNA-captured bead collection, reverse transcrip-
tion, second-strand synthesis, cDNA amplification, and
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purification to generate barcoded libraries. The sequencing
libraries were assessed using an Agilent Bioanalyzer and
sequenced on the DIPSEQ T1 platform.
RNA editome analysis in bulk-level TRIBE

Raw data were first trimmed of adapters and filtered out
low-quality reads using fastp (v.0.20.1). Cleaned reads were
then aligned to the mm10 reference genome using HISAT2
(v.2.2.1). Next, the aligned reads in SAM format were con-
verted to BAM format, with the removal of reads having a
mapping quality score < 10, followed by the depletion of PCR
duplicates using sambamba (v.0.8.8). Finally, the number of
aligned reads mapped to GENCODE annotations (v.M24)
were counted using Subread featureCounts (v.2.0.2). The
processed BAM files were subjected to mutation calling
using bcftools (v1.10.2) with mm10 reference genome,
the identified mutations in the dbSNP database
(GCA_000001635.6_current_ids.vcf.gz) were removed. Next,
we analyzed the mutations from annotated mRNA transcripts
using the in-house workflow TRIBE (http://github.com/
shiquan/scTRIBE). Briefly, we mapped the mutation sites
onto the transcripts and conducted strand-specific calibration,
which included A-to-G mutations on the sense strand and T-
to-C mutations on the antisense strand. We then used beta-
binomial distribution to model the RNA editing frequencies
as previously described (20). Significantly edited sites were
determined by (1) false discovery rate (FDR) < 0.01, (2) editing
frequency between 0.05 and 0.95 in each replicate, (3) number
of edited reads > 2 in each replicate, and (4) coverage of edited
sites > 10 in each replicate.
CLIP-seq analysis

The CLIP-seq dataset (11) was processed following the
trimming, aligning, quality-checking, and PCR duplicates
removing procedure as in the ‘RNA editome analysis in bulk-
level TRIBE’ described earlier. Next, we used CLIPer (v.2.1.2,
https://github.com/YeoLab/clipper) to call the significantly
enriched peaks, the peaks with p value < 0.01 and the number
of reads within the peaks > 6 in each replicate were kept for
further analysis. Finally, the peaks were annotated against
GENCODE annotations (v.M24).
Motif analysis

For the de novo motif that surrounds LIN28A-ADARcd
edited sites from bulk RNA-seq and pseudo-bulk scRNA-seq
datasets, we used findMotifsGenome.pl function in Homer
(v.4.9.1) with the parameter ‘mm10r -size 100 -rna -len 7,8’. To
assess the enrichment of the GGAGA-like motif surrounding
the edited sites from randomly sampled cells and from genes
that non-overlapping with CLIP-seq, we performed findMo-
tifsGenome.pl with the parameter ‘mm10r -mknown GGAGA-
like.motif -nomotif -size 100 -norevopp’. For de novo motif
finding surrounding the edited sites on highly bound DBTs in
2CLCs, we performed findMotifsGenome.pl with the param-
eter ‘mm10 -size 200 -rna -len 7’.
scRNA-seq transcriptome analysis

Raw sequencing reads were filtered, demultiplexed, and
aligned to the mm10 reference genome using an in-house
workflow (https://github.com/MGI-tech-bioinformatics/DNB
elab_C_Series_HT_scRNA-analysis-software/). The resulting
transcriptome matrices were loaded into the Seurat package
(v.4.0.4) in R (v.4.1.0) for downstream analysis unless otherwise
specified. Cells with fewer than 2000 or more than 100,000
detected UMIs or over 10% of mitochondrial genes were
removed. Doublets were filtered using DoubletFinder (v.2.0.3).
To integrate reprogramming scRNA-seq data from Lin Guo
et al. (39) with our dataset, the FindIntegrationAnchors func-
tion was used followed by the IntegrateData with default pa-
rameters. All data were normalized and the top 2000 highly
variable genes were identified and scaled with regressing out
cell cycle genes. Principal component analysis was performed
and the first ten principal components (PCs) (mouse ESCs) or
20 PCs (reprogramming) were used for UMAP reduction.
Clusters were identified using Louvain at resolution 2. High
expression genes were identified using the FindAllMarkers
with a two-sided Wilcoxon rank-sum test (p value < 0.01) and
the logfc.threshold parameter set to 0.263 (fold-change > 1.2).
To identify major cell types, adjacent clusters with similar
marker gene expression were combined to a single cell cluster.
In reprogramming, a small cell cluster (1.76% of input cells)
was identified as ‘cells with stress and apoptosis’ based on
previously reported markers (Nupr1, Ddit3, Hspa5, Ctsd,
Cebpb, and Atf3) (13) and was excluded. For pseudotime
analysis, cells of D3 and D5 from Lin Guo et al., D6 and D8
from this study were loaded into the monocle3 package
(v.1.0.0). Cells were clustered followed by trajectory learning
without closing loop, and then ordered in a pseudotime using
D3 as the root of the trajectory.
RNA editome analysis in scTRIBE

The processed BAM files of scRNA-seq were used for mu-
tation calling as in the ‘RNA editome analysis in bulk-level
TRIBE’ described above, except that at the single-cell level,
we used the number of UMIs instead of reads at each edited
site. The single-cell editome matrices were then constructed
by aggregating UMI counts of the significantly edited sites
located in the exon of each gene and loaded into the Seurat for
downstream analysis unless otherwise specified. The cells with
fewer than two edited transcripts or 20 edited UMIs were
discarded. To quantify the binding intensity of the LIN28A,
edited UMIs of genes were divided by the total UMIs of that
cell, multiplied by 10,000, and log-transformed. The top 600
highly variable genes were scaled and subjected to principal
component analysis. The first 8 PCs were selected and used for
UMAP reduction. Clusters were identified using Louvain at
resolution 0.1. The cells assigned to the cluster that did not
contain substantial editing were defined as negative popula-
tion, and remained cells were defined as positive population
and used for further analysis. DBTs were identified using
FindAllMarkers with a two-sided Wilcoxon rank-sum test (p
value < 0.01) and the logfc.threshold parameter set to 0.263
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(fold-change > 1.2). The expression dependent-DBTs were
determined as those with higher expression of the target gene
(fold-change > 1.2 with p value < 0.01). in the corresponding
cell type. GO enrichment and GSEA analysis were performed
using enrichGO and gseGO in the clusterProfiler package
(v.4.0.5), respectively. For mouse ESCs, the average editing and
expression levels of DBTs in each cell state were calculated
using AverageExpression. Single-cell RNA stability dataset was
collected from Qiu et al. (23) to compare the RNA half-lives of
highly bound DBTs in the 2CLCs with other detected genes,
and RNA half-lives of the same DBTs across three different
cell states. mRNA translation dataset was collected from
Zhang et al. (33) to compare the translation efficiency of highly
bound DBTs in 2CLCs across different stages of mouse pre-
implantation development. For reprogramming, cell data of
different trajectories were subset and then loaded into the
monocle package (v.2.22.0). Dynamic DBTs were identified
using the differentialGeneTest with fullModelFormulaStr
parameter set to ‘�sm.ns (Pseudotime)’ and only the genes
with q value < 0.01 were selected for further analysis. Heat-
maps were plotted based on the genSmoothCurves function in
the monocle.
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