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Microstructural asymmetry in the
human cortex

Bin Wan 1,2,3,4 , Amin Saberi 1,4,5, Casey Paquola4, H. Lina Schaare 1,4,
Meike D. Hettwer 1,4,5,6, Jessica Royer7, Alexandra John 1,4,
Lena Dorfschmidt 8,9, Şeyma Bayrak1,3,4, Richard A. I. Bethlehem10,
Simon B. Eickhoff4,5, Boris C. Bernhardt 7 & Sofie L. Valk 1,4,5

The human cerebral cortex shows hemispheric asymmetry, yet the micro-
structural basis of this asymmetry remains incompletely understood. Here, we
probe layer-specific microstructural asymmetry using one post-mortem male
brain. Overall, anterior and posterior regions show leftward and rightward
asymmetry respectively, but this pattern varies across cortical layers. A similar
anterior-posterior pattern is observed using in vivo Human Connectome
Project (N = 1101) T1w/T2w microstructural data, with average cortical asym-
metry showing the strongest similarity with post-mortem-based asymmetry of
layer III. Moreover, microstructural asymmetry is found to be heritable, varies
as a function of age and sex, and corresponds to intrinsic functional asym-
metry. We also observe a differential association of language and markers of
mental health withmicrostructural asymmetry patterns at the individual level,
illustrating a functional divergence between inferior-superior and anterior-
posterior microstructural axes, possibly anchored in development. Last, we
could show concordant evidence with alternative in vivo microstructural
measures: magnetization transfer (N = 286) and quantitative T1 (N = 50).
Together, our study highlights microstructural asymmetry in the human cor-
tex and its functional and behavioral relevance.

Hemispheric specialization is a crucial aspect of brain organization
that supports human cognitive functions, including language and
attention1–6. Previous research has shown neuroanatomical differences
between the left and right hemispheres at the macroscale7–13. Specifi-
cally, cortical thickness exhibits an asymmetrical pattern that extends
from anterior (leftward asymmetry) to posterior (rightward asym-
metry) regions10,14. These structural differences between the left and

right hemispheres of the brain may have underlying genetic compo-
nents, as suggested by Sha et al12. While macrostructural asymmetry
has beenwidely studied, underlyingmicro andmesostructuremarkers
such as cytoarchitecture and myeloarchitecture of cortical regions
have largely been examined in regional isolation.

The neocortex is composed of six layers that contain neurons of
varying size and density. These layers, arranged from the pial to gray-
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white matter boundary, consist of layer I, which is rich in apical den-
drites and axon terminals, layers II and III, rich in pyramidal cells, layer
IV, with densely packed neurons, layer V, containing small (5a) or large
(5b) pyramidal neurons, and layer VI, featuring corticothalamic pyr-
amidal cells15–17. It is important to note that laminar and cytoarchitec-
tonic features, which are crucial in qualitative studies, vary across the
cortex. For instance, while sensory regions exhibit a well-laminated
structure and high cell density, association areas, including language
networks, display a reduced cell density and less distinct laminar
structure15,18–20. There are a few studies focusing on microstructural
asymmetry in language regions7,21–24 and amygdala25. For example,
microstructural intensity in language areas (BA areas 44 and 45) is
higher in the left hemisphere7 and left-right differences in amygdala
subnuclear volumes measured by cytoarchitectural mapping23.
Although evidence of asymmetry in cortical cytoarchitecture is lim-
ited, understanding this phenomenon could be crucial for advancing
our knowledge of brain function.

Although post-mortem data can provide new insights of cortical
microstructure and its potential asymmetry at the microscale, it can-
not be linked directly to individual differences and potential functional
relevance. Recent advancements in quantitative magnetic resonance
imaging (MRI) have made it possible to obtain detailed region-wise
in vivo microstructure information based on imaging markers such as
T1w/T2w8,26, quantitative T1 (qT1) relaxometry27–30, and magnetization
transfer (MT)31–33. In vivoquantitativeMRI captures the higher intensity
in sensory areas and lower intensity in transmodal dys- and agranular
cortical regions20,34. This differentiation between sensory and trans-
modal regions is also present in intrinsic functional organization35,
suggesting a common principle of brain organization for micro-
structure and function34. Such a principle would be in line with the
structural model, posing that regions with similar microstructure may
be functionally connected16. Indeed, various studies have demon-
strated asymmetry along this sensory-transmodal-axis for intrinsic
function6,36–39.

Motivated by previous work showing cortex-wide patterns of
asymmetry in macrostructural markers such as cortical thickness and
surface area10,12,14, and regional reports of asymmetry in cortical
microstructure7,21–25, we aimed to study microstructural asymmetry
across the whole cortex. Specifically, we probed the microstructural
basis of cortical asymmetry using amultiscale approach based on high-
resolution histology and imaging data. Given that studies on macro-
scale structural asymmetry have reported leftward asymmetry in
frontal regions and rightward asymmetry in occipital regions, we
wished to study what the underlying microstructural correlates of
thesemacrostructural patternswould be. First, we studied the BigBrain,
which is an ultra-high-resolution whole-brain post-mortem histological
atlas of a 65-year-old male. It allowed the quantification of asymmetry
in cortical cytoarchitecture at the level of individual layers15,40–42. Sec-
ond, we studied in vivo microstructural asymmetry to evaluate inter-
individual variation. For in vivo microstructural maps we used the T1w/
T2w ratio from 1101 individual images from the Human Connectome
Project (HCP) from young adults26,43. We furthermore aimed to probe
its functional relevance,motivated by the StructuralModel, stating that
microstructural similarity relates to connectivity16, and previous work
on the functional markers of asymmetry6,13,14. Structural brain asym-
metry is linked to behavioral differences such as variability in language
skills44–46 and mental health47 such as autism48,49, attention-deficit/
hyperactivity disorder50, schizophrenia51, and substance dependence52.
Finally, based on the healthy HCP sample, we investigated the asso-
ciations betweenmicrostructural asymmetry and individual differences
in language skills, as well as its potential relevance to mental health
traits, including depression, anxiety, somatic, avoidant, ADHD, and
antisocial phenotypes. Given that different imaging sequences have
been proposed tomeasuremicrostructure in vivo, asmentioned above,
we leveraged these measures to verify our results, including qT1

relaxometry from a dataset (N = 50) for microstructure-informed con-
nectomics (MICs) in young adults28 and MT maps from a longitudinal
cohort of adolescents and young adults (N = 286) acquired as part of
the Neuroscience In Psychiatry Network (NSPN).

Results
Differentiable patterns of microstructural asymmetry as a
function of cortical depth in a ultra-high resolution post-mortem
sample (Fig. 1)
We first mapped the cortical cytoarchitecture asymmetry using ultra-
high resolution post-mortem data based on the BigBrain15,53. The sliced
sections (20 µm) of the BigBrain were cell-body stained, scanned and
reconstructed in 3D, resulting in an ultra-high resolution atlas
(100 µm3) (Fig. 1a). Using the cortical cell-staining intensity of BigBrain
as a feature, a six-layer cortical segmentation (60 surfaces) was
obtained of the whole cerebral cortex via a convolutional neural net-
work algorithm42. Multimodal54 and Cole-Anticevic (CA) parcellation55

were utilized to downsample the maps into 360 regions and 12 net-
works. The CA networks consisted of primary visual (Vis1), secondary
visual (Vis2), somatomotor (SMN), cingulo-opercular (CON), dorsal
attention (DAN), language (LAN), frontoparietal (FPN), auditory net-
work (AUD), default mode (DMN), posterior multimodal (PMN), ven-
tral multimodal (VMN), and orbito-affective (OAN). To prevent
measurement bias, the mean intensity for layer profiles was regressed
out separately for the left and right hemispheres (Fig. 1b).

Figure 1c and Supplementary Fig. S1 show the mean residual
intensity maps. The left-right asymmetry index (AI) was calculated by
subtracting the right hemisphere from the left hemisphere. The overall
mean map (averaged across layers) showed left-right AI from the
anterior to posterior direction (Fig. 1d), indicating that the left hemi-
sphere showed higher cell staining intensity in anterior regions but
lower intensity in posterior regions, compared to the right hemi-
sphere. The rightward anchor (most rightward region) was located at
theAUDand the leftward anchorwas located at the LANat the network
level. The LAN also exhibited strong leftward asymmetry in superficial
layers, but became rightward asymmetric from layer III onwards,with a
peak in layers IV andVI (Fig. 1e). Regarding the entire cortex, superficial
layers showed anterior-posterior asymmetry and deep layers showed
inferior-superior asymmetry (Supplementary Fig. S1). To summarize
the more left- or right-ward asymmetry along six layers (60 surfaces),
we calculated the skewness of AI (Fig. 1f). Skewness overall indicates
the difference in intensity as a function of cortical depth. A higher
skewness indicates that deep surfaces have a higher intensity relative
to superficial surfaces, whereas a lower skewness indicates a less steep
difference between upper and lower layers. A high left-right asym-
metry of skewness indicates that the intensity distribution is more
skewed on the left relatively deeper surfaces. Skewness of left-right
asymmetry tells us the distributionof asymmetry across the layerswith
a high skewness score, indicating that left-right asymmetry shifts on
the deeper cortical layers. Skewness differentiation was observed
between more leftward asymmetry in somatomotor and more right-
ward asymmetry in auditory networks.

Translation to microstructure-sensitive in vivo MRI (Fig. 2)
After establishing asymmetry in cytoarchitecture using a post-mortem
sample, we aimed to extend the work by using in vivo proxies to cap-
ture microstructural differentiation in the cortex. Specifically, we
extracted intensity data from HCP T1w/T2w maps (n = 1101) and sum-
marized them using a multimodal parcellation and the CA network
atlas. T1w/T2w intensity ranges were homogenized by z-scoring inten-
sity values, vertex-wise, independently for each hemisphere (Fig. 2a).

In this in-vivo sample, we observed a populational asymmetry
(using Cohen’s d) pattern from anterior to posterior (Fig. 2b). At the
network level, the rightward effect anchors were located at Vis2
(Cohen’s d = −2.57, PFDR < 0.001) and DAN (Cohen’s d = −2.19,
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PFDR < 0.001); the leftward effect anchors were situated at FPN
(Cohen’s d = 2.53, PFDR < 0.001) and LAN (Cohen’s d = 2.13,
PFDR < 0.001). For networks’ effect sizes of the left-right asymmetry see
Source Data. Additionally, we observed a similarity in spatial patterns
between post-mortem cytoarchitectural (BigBrain) and in-vivo micro-
structure (HCP) asymmetry (r =0.482, Pvariogram =0.007, Fig. 2c). Upon
further analysis of each layer, we found that in particular layer III
exhibited a strong similarity between the two asymmetry maps
(r =0.513, Pvariogram < 0.001). Overall, significant correlations were
situated in layer I-IV, but not in layer V and VI.

Following this, and building on the twin-pedigree design of the
HCP sample, we calculated the heritability (h2) of asymmetry (Fig. 2d).

The three most heritable networks were: Vis2 (h2 = 0.51, SE = 0.05,
PFDR < 0.001), DAN (h2 = 0.43, SE = 0.05, PFDR < 0.001), and FPN
(h2 = 0.39, SE = 0.06, PFDR < 0.001), see Source Data. The spatial cor-
relation between absolute AI score and heritability maps was Pearson
r =0.469 with Pvariogram = 0.001, indicating that regions that are more
asymmetric are also more heritable.

Last, to probe potential markers of individual variation, we stu-
died the effects of sex, based on a self-reported question of assigned
sex at birth, and age on microstructural asymmetry (Fig. 2e). Both the
sex and age t-maps revealed an anterior to posterior direction and
were correlated with the mean in vivo AI map (rsex = 0.961,
Pvariogram < 0.001; rage = 0.690, Pvariogram <0.001). These findings
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Fig. 1 | Microstructural asymmetry in BigBrain using cytoarchitecture (N = 1).
a BigBrain 3D histological reconstruction15,53 and six-layer estimates42. Source:
https://bigbrainproject.org/maps-and-models.html. b Intracortical staining inten-
sity profiles. Red and blue lines indicate the left and right hemispheres, respec-
tively. cMean intensity maps across 6 layers. dMean asymmetry across layers. Red
and blue indicate asymmetry index (AI) left > right and right > left. e Layer-wise AI

for Bigbrain: six-layer parcel-wise AI brain maps and network-wise heatmap.
f Skewness map across asymmetry along 60 points of intracortical depth. Atlas-
defined networks include primary visual (Vis1), secondary visual (Vis2), somato-
motor (SMN), cingulo-opercular (CON), dorsal attention (DAN), language (LAN),
frontoparietal (FPN), auditory network (AUD), default mode (DMN), posterior
multimodal (PMN), ventral multimodal (VMN), orbito-affective (OAN).
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suggest thatmicrostructural intensity ismore asymmetric inmales and
younger individuals, in this relatively young sample. Details for com-
parisons in functional networks are shown in Fig. 2f and g. For con-
venient visualization, we divided age into two groups (i.e., >28 years
and <29 years) but t-values were reported based on continuous age.
There were 11 out of 12 networks statistically significant after FDR
correction for sex comparisons, excluding only DMN (t = −0.422,
PFDR = 0.673). There were 4 out of 12 networks statistically significant
for age comparisons, including Vis2 (t = −2.797, PFDR = 0.031), DAN
(t = −2.589, PFDR = 0.039), FPN (t = 4.826, PFDR < 0.001), and LAN
(t = 2.456, PFDR = 0.042).

Microstructural asymmetry is linkedwith asymmetry in intrinsic
function (Fig. 3)
After establishingmicrostructural asymmetry in both post-mortem and
in vivo markers, we investigated its functional association. To achieve
this, we utilized resting state functional connectivity (FC) in the same
sample (i.e., HCP), as in previous research6.

To investigate the relationship between microstructure and func-
tion asymmetry at the group level, we divided the mean micro-
structural asymmetry map into 10 bins (see Fig. 3a-i). We then
calculated the average functional connectivity (FC) within each bin (see
Fig. 3a-ii) and determined the functional connectivity asymmetry by
subtracting the right hemisphere (RH) from the left hemisphere (LH)
and dividing by the sum of RH and LH. Our analysis focused on intra-
hemispheric (i.e., LH_LH and RH_RH) connectivity. Functional con-
nectivity was observed to be stronger between regions that exhibited
similar patterns of asymmetry, compared to thosewith varying degrees
of asymmetry (Fig. 3a-iii). This relationship was quantitatively assessed
by calculating region-wise microstructure-function correlation
between T1w/T2w AI map and FC AI profile (Fig. 3b-i). We found cou-
pling was strongest in central and superior temporal areas and weakest
in prefrontal and parietal areas, both at the group level and individual
level (r =0.664, Pvariogram <0.001). As demonstrated in themapofmean
and standard deviation, this coupling exhibited significant individual
variability, particularly in areas of overall strong coupling (Fig. 3b-ii).

Fig. 2 | Microstructural asymmetry in HumanConnectome Project (HCP) using
T1w/T2w images (N = 1101). a T1w/T2w intensity values for left and right hemi-
spheres (Z-scored separately). Deeper purple indicates higher intensity. b The
mean asymmetry index (AI) and related Cohen’s dmaps calculated across subjects.
Red/brown and blue/green indicate left- and right-ward asymmetry direction at
populational level. AI was also summarized into functional networks withmean and
standard error in the barplot. Cohen’s d map was thresholded at PFDR <0.05 (two-
sided). c Spatial correlation between mean HCP AI and BigBrain AI maps. A vario-
gram permutation test was used to account for the spatial autocorrelation. Bold
correlation with layer asymmetry indicates significance after variogram permuta-
tion at P <0.05 level (two-sided). d Heritability map and network barplot (bar is
standard error) estimated by individual variation of AI. The heritability map was
thresholded at PFDR < 0.05 for multiple comparisons correction. Right panel is the

spatial correlation betweenmean AI and heritability maps. e T-maps of sex and age
effects in the model of AI = 1 + sex + age. Purple red indicates higher leftward
asymmetry in females and in older people, respectively. Right panel is the spatial
correlation between mean AI and t-value maps. Round and triangle dots represent
sex and age. The t-maps were thresholded at PFDR < 0.05 for multiple comparisons
correction. f and g plot the detailed sex and age effects in functional networks (AI
mean and standard error). Dashed lines indicate t-value for sex and age, respec-
tively. * indicates statistical significance after multiple comparisons (PFDR <0.05).
The colors of dots and bars in all plots reflect atlas-defined functional networks
including primary visual (Vis1), secondary visual (Vis2), somatomotor (SMN),
cingulo-opercular (CON), dorsal attention (DAN), language (LAN), frontoparietal
(FPN), auditory network (AUD), defaultmode (DMN), posterior multimodal (PMN),
ventral multimodal (VMN), orbito-affective (OAN).
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Finally, to study how asymmetry in microstructure-function cou-
pling varied between regions, we calculated the individual co-variation
betweenmicrostructural and FC asymmetry per parcel across subjects
(Fig. 3c-i). Then we extracted the top 10% of the co-variation to cal-
culate the affinity matrix using a normalized angle. Finally, using
principal component analysis (PCA), we decomposed the affinity
matrix by rows and columns. Row PCs summarized microstructural
similarity in functional profiles and columnPCs summarized functional
similarity inmicrostructure (Fig. 3c-ii). For themicrostructural PCs, the
first two components accounted for 26.6% and 17.4% of the total var-
iance, respectively. PC1 displayed a dissimilarity axis from the dorso-
lateral prefrontal to the precentral gyrus, while PC2 displayed a
dissimilarity axis from the temporoparietal junction to the lateral

prefrontal areas. Regarding the functional PCs, the first two compo-
nents accounted for 48.4% and 25.8% of the total variance, respec-
tively. PC1 differentiated prefrontal from visual regions, and PC2
differentiated sensory from association regions (Fig. 3c-iii).

Microstructural asymmetry relates to individual variability in
language skills and mental health (Fig. 4)
Our last aim was to investigate the behavioral relevance of micro-
structural asymmetry. Language scores were obtained through read-
ing and picture vocabulary tests. Mental health scores were assessed
using the Adult Self-Report and DSM-Oriented Scale, which included
depression, anxiety, somatic, avoidant, ADHD, and antisocial pro-
blems. Therefore, two variables for language, six variables for mental

Fig. 3 | Microstructure-function relationship in asymmetry usingHCP T1w/T2w
and resting state functional images (N = 1004). a–i 10 bins (18 parcels per bin)
categorized from Fig. 2b mean AI map (T1w/T2w). a–ii. Group-level resting
state functional connectivity (FC) matrix averaged by bins. a-iii. FC asym-
metry calculated by (LH - RH)/(LH + RH) sorted by bins. Purple-red and green
indicate left- and right-ward asymmetry. Scatters are colored by functional
networks. b Region-wise microstructure-function coupling was calculated by
Pearson correlation coefficient between 180 parcels of T1w/T2w and FC AI
per column. Left panel shows coupling between mean maps at the group
level (i) and the right panel shows mean and standard deviation of coupling
(ii). c Individual covariation between microstructure and function. Matrix in

(i) represents the Pearson r between parcel T1w/T2w AI and FC AI across
subjects. Then, the parcel-wise affinity matrix was computed and principal
component analysis (PCA) was employed to decompose the matrix to detect
the inter-region similarity axes (ii). Upper and lower panels are micro-
structural and functional decomposition (iii). The first two eigenvectors and
eigenvalues (PC loadings) are plotted with similar colors in ‘viridis’ indicating
similar profiles between regions. Atlas-defined networks include primary
visual (Vis1), secondary visual (Vis2), somatomotor (SMN), cingulo-opercular
(CON), dorsal attention (DAN), language (LAN), frontoparietal (FPN), audi-
tory network (AUD), default mode (DMN), posterior multimodal (PMN),
ventral multimodal (VMN), orbito-affective (OAN).
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health, and 180 brain variables (regional microstructural asym-
metry) were included. To achieve this, we conducted a canonical
correlation analysis (CCA), which is a multivariate approach to esti-
mate latent dimensions for multiple independent and dependent
variables via correlation.

We calculated the first latent dimension for language and mental
health separately. Statistically significant correlations were found
between the first latent dimensions of microstructural asymmetry and
behavioral markers (rlanguage = 0.489, P < 0.001; rmental health = 0.446,
P <0.001, Fig. 4a). Picture vocabulary and antisocial problem scores
had the strongest loadings on the respective brain-behavior latent
components (Fig. 4b). Moreover, we observed a behavioral marker
divergence of spatial patterns in brain loadings between language and
mental health. Whereas the former showed a differentiation between
superior and inferior areas, mental health was linked to differentiation
between anterior and posterior portions in asymmetry, with stronger
leftward asymmetry in frontal regions associated with reducedmental
health (higher scores) (Fig. 4c). The anterior-posterior layer-AI maps
were similar to mental health brain loadings (rHCP = 0.415,
Pvariogram = 0.024; rlayer_III = 0.315, Pvariogram =0.020, Supplementary
Fig. S2) but the more inferior-superior layer-AI map was similar to
language brain loadings (rlayer_V = 0.210, Pvariogram = 0.061, Supple-
mentary Fig. S3). This may suggest a reduced leftward asymmetry in
the frontal lobe and an increased rightward asymmetry in the occipital
lobe for individuals with higher mental health scores.

To test the robustness of the findings, we conducted the pseudo-
randomized resampling, 100 times, withdrawing 10%-90% of the data

based on the twin label (Fig. 4d). We show the average result (50% of
data withdrawn) in the main figure and the remaining in Supplemen-
tary Fig. S4a and b. We found that the first latent brain and behavioral
dimensions remained robust (rlanguage = 0.631 ± 0.018, rmental

health = 0.637 ±0.017). The correlation betweenmean AI map and brain
loadings were rlanguage = 0.173 ± 0.114 and rmental health = 0.351 ± 0.190.

Concordant validation
To replicate our findings using independent samples, we conducted
in vivo analyses on two external datasets with varying imaging mea-
surements for cortical microstructure. These datasets include MICs in
young adults (qT1 relaxometry, N = 50) and the NSPN in adolescents
and young adults (MT, baseline N = 286).

Regarding MICs qT1 relaxometry data, the sample demographics
resembledHCPdata (female: 46%, age centered on25-35 years old). An
anterior-posterior asymmetry pattern was again observed (Supple-
mentary Fig. S5a-e) with a significant correlation betweenMICs and the
HCPAImap (r =0.548,Pvariogram = 0.004).The spatial patternof the sex
effect was also replicated (rsex = 0.731, Pvariogram <0.001) whereas the
age effect was not (rage = 0.224, Pvariogram =0.062).We usedMT images
using multi-parametric mapping56 from NSPN to address potential
transmitfield issues associatedwith T1w/T2w. The sample consisted of
individuals aged 14 to 25 years (mean ± SD: 19.1 ± 2.9) with a balanced
sex ratio (female: 51%). Again we observed the anterior-posterior
asymmetry pattern and found a significant correlation (r =0.369,
Pvariogram = 0.047) between HCP and NSPN (Supplementary Fig. S6a-e).
In addition, the spatial pattern of age and sex effects could also be

a b c Language loadings

0.5-0.5

Mental health loadings

0.5-0.5

89

6350

153

Antisocial problem
 score

Picture vocabulary score

d
 i. Brain-behavior relationship  ii. Brain loadings similarity to HCP mean AI map

Fig. 4 | Canonical correlation analysis (CCA) between microstructural asym-
metry featuresand language/mentalhealth inHCP. aCorrelation between latent
dimensions of the brain and phenotype. Orange and green indicate mental health
and language, where the latent dimensions explain antisocial behavior and picture
vocabulary scores most. b Phenotypic loadings of the first latent dimension for
language and mental health. c Brain loadings of the first latent dimension for

language andmental health.dResampling data to test the performanceof CCA.We
withdrew data from 10% to 90% by pseudo-randomization using twin classes and
resampled 100 times. Mean and standard error bars were shown in the charts. Data
withdrawal of 50% was selected to show the distribution across the 100 samples
and other percentages see Supplementary Fig. S4. PicVocab: picture vocabulary;
ADHD: attention deficit/hyperactivity disorder.
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replicated in this younger sample (r sex = 0.358, Pvariogram <0.001; r
age = 0.323, Pvariogram <0.001). Together, these analyses suggest that
microstructural asymmetry is consistent across different micro-
structural measures and histology.

To further test the robustness of our findings, we also used a raw
intensity score to calculate the asymmetry index by (LH - RH)/(LH +
RH). Overall findings were consistent but showed a subtle difference
(all spatial Pearson r > 0.9) in the medial frontal cortex for asymmetry,
sex and age t-maps (Supplementary Fig. S7). In addition, we tested for
potential association between handedness and microstructural asym-
metry. We found no parcels that survived statistical thresholds.

Discussion
Asymmetry in structural and functional brain organization is impli-
cated in key human cognitive functions, including language, and is
associated with neuropsychiatric conditions1–7. In this study, we used a
multiscale approach to investigatemicrostructural asymmetry at ultra-
high resolution and applied our model to in vivo data to examine
individual variability and functional relevance. A consistent pattern of
left-right asymmetry of microstructure, along the anterior to posterior
regions, was observed in an ultra-high-resolution post-mortem human
brain and three in vivo samples. Using an ultra-high resolution post-
mortem model, we found that the asymmetry pattern differed across
layers, with superficial layers showing an anterior-posterior pattern
and deep layers showing an inferior-superior pattern. Furthermore,
utilizing an in vivo model of microstructure, we demonstrated that
microstructural asymmetry varies with age and self-reported sex and is
heritable, using a twin model. Finally, we established the functional
relevance of these findings by linking microstructural asymmetry to
asymmetry in intrinsic functional connectivity profiles as well as
behavioral markers that detail individual variations in language skills
and mental health traits. This can be viewed as a proxy of neu-
ropsychiatric risk within the healthy population. Language skills vary
along an inferior-superior axis, whilemental health traits vary along an
anterior-posterior axis, suggesting that mental health may be asso-
ciated with superficial laminar functions but language may coordinate
with deep laminar functions, a divergence possibly anchored in neu-
rodevelopmental trajectories of both patterns. Together, our findings
illustrate consistent cortical brain asymmetry in cytoarchitecture and
microstructure and its functional correlates.

In the current work we estimated asymmetry of human cortical
cytoarchitecture and uncovered an overall pattern of left- to right-
ward asymmetry in an anterior-to-posterior axis. Previous studies on
regional cytoarchitecture have indicated that the left hemisphere has a
higher neuronal density in inferior frontal cortex, i.e., Brodmann area
(BA) 457 and dorsolateral prefrontal cortex, i.e., BA 9. These have been
attributed to pyramidal neurons in layer III57. Leftward asymmetry was
also reported in anterior regional torque for Broca’s area and right-
ward asymmetry was reported in posterior regional torque for occi-
pital visuospatial area4. The anterior-posterior differentiation in
asymmetry may be related to neurodevelopmental patterning and
cortical maturation. Indeed, whereas posterior regions show early
postnatal development, anterior regions mature in adolescence, illu-
strated by variations of cyto- and myelo-architecture and
connectivity58. Though the current study did not evaluate develop-
mental patterning over time, and the subject (the BigBrain data) was
also older than 60 years, it is possible that the asymmetry observed is
still a consequence of maturational timing in combination with
experience-dependent plasticity due to the differential functional role
of the left and right hemisphere.

Moreover, we observed notable depth-wise variation with the
anterior-posterior asymmetry in upper and inferior-superior asym-
metry in deep layers. Overall, maturation patterns of microstructure
during childhood have been shown to follow a posterior-anterior
pattern59. Previous work has reported divergent maturational profiles

in intra-cortical microstructure between sensory and paralimbic areas
in adolescence60). In particular, mid-to-deep layers seem to have a
preferential development in adolescents, specifically in uni- and
hetero-modal areas spatially corresponding to attention and language
regions60. In our work, the language network shifted from leftward
(superficial layers) to rightward asymmetry (deep layers), which may
be related to the development and maturation of cortico-cortical
connections61–63. The laminar architecture of the cortex has an
important role in coordinating functional processes and connectivity
between cortical regions and subcortex and cortex64. For cortico-
cortical or cortico-subcortical pathways, cellular and synaptic archi-
tectures differ across layers such that they result in distinct compu-
tations at the target projection neurons65. Though observing
asymmetry across layers results in novel hypotheses and perspectives
on the neuroanatomical origin of functional specializations in the
cortex, indicating asymmetry not only varies spatially along the cor-
tical mantle but also as a function of its depth.

Microstructural asymmetry in the anterior-posterior direction
could also be identified using in vivo imaging, using T1w/T2w maps,
qT1 relaxometry, and MT. Previous work has suggested that the
anterior-posterior asymmetry pattern in T1w/T2w is partly generated
by the transmit field rather than the microstructure itself 8. However,
T1w/T2w images have been corrected for some of the B1+ bias (see
Methods), andusingflip anglesmap to further correct the imagemight
reduce the real signals8. In addition, we used qT1 and MT to validate
our in vivo results and observed concordance across all metrics. Yet,
qT1 and MT contrast used in the current study are likely less affected
by the transmit field, suggesting that at least a part of the effects may
go above and beyond signal noise. In addition, although all MRI mea-
surements are sensitive to myelination, they still have differences66.
Theoretically, MT and qT1 detect exchange and cross-relaxation
between lipids and water in tissue, and T1w/T2w means to correlate
based on neurobiological principles by contrast of fitting the decay
curve using least-square methods in non-myelin water pool67. Com-
pared to MT and qT1, T1w/T2w includes more non-myelin signals.
Taking advantage of the inter-individual model of in vivo data, we
probed its relevance to age and sex in the samples tested. We found
that more asymmetric regions overall show a stronger age effect.
Increased cortical symmetry with age has been previously reported in
the mid- and old-aged sample of the UK Biobank68 and young adults69.
Looking ahead, the implementation of a normative model could elu-
cidate the developmental trajectory of microstructural asymmetry
across the lifespan, facilitating the identification of individual
trajectories70. Previous work has also reported marked sex differences
in various indices of cortical structure71–74, possibly related to differ-
ential sex hormonal expression and physiologicalmarkers75. Indeed, in
the current work we observed an overall stronger asymmetry in males
relative to females. Related work reported overall higher mean
microstructure and lower skewness in males relative to females, a
difference that varied as a function of (self-reported) hormonal sta-
tus in females74. However, in the current work we could only touch
upon these neuroendocrine, physiological, and age-related factors
shaping microstructural brain asymmetry. Further work, including
hormonal data and broader age ranges may further reveal potential
causes and consequences of the observed associations between age
and self-reported sex and brain asymmetry. Of note, in the current
work, we found no association between handedness and micro-
structural asymmetry. Other work either reports little association
between handedness and cortical thickness and surface area in the
multi-center ENIGMA data10. However, handedness and polygenic risk
scores of handedness are associated with macrostructural asymmetry
in a few regions in theUKBiobank76. Future studiesmay focus onmeta-
analysis to identify whether handedness is associated with micro-
structural asymmetry with more papers published or use more fine-
grained investigations of dexterity and brain anatomy.
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We found that microstructure and intrinsic function have similar
lateralized directions within hemispheres. In the cerebral cortex, regions
with similar cytoarchitecture tend to have similar functional con-
nectivity profiles16,34. We showed that this principle may also hold for
asymmetry of microstructure and functional connections. In particular,
somatomotor and language-related areas show an increased con-
vergence between functional and microstructural asymmetry profiles.
These regions have highly specialized functions, possibly suggesting
that functional specialization may be accounted for by cortical
asymmetry1,4,77,78. Relatedly, via inter-individual co-variation,weobserved
that regions within functional networks share more similarity in micro-
structural asymmetry profiles, again underscoring the link between
microstructural asymmetry and intrinsic function. This pattern could be
interpreted as suggesting that activity-dependent plasticity in part
shapes the microstructural asymmetry observed, ultimately supporting
similar microstructural profile asymmetry in functionally connected
regions. At the same time, the inverse of the model, i.e. microstructure-
guided function, revealed clearer organizational patterns.

Probing functional relevance of microstructural asymmetry in
terms of behavioral outcomes, we observed a pattern of inferior-
superior differentiation for language. This was mainly linked to a dif-
ferentiation of temporal lobe and sensorimotor regions, which spa-
tially mirrored the asymmetry pattern in layer V of the BigBrain. Layer
V is the main output layer of the cortex and largely relays signals to
subcortical structures64, yet also shows marked divergence of con-
nection profiles as a functionof neuron type79. On topof this, we found
that cell density is lower in the right relative to the left hemisphere for
the language network in the BigBrain. Thus, the observed patterns
possibly relate to a differentiation of cells in deeper cortical layers
(temporal and sensorimotor) linked to differential output profiles
ultimately leading to behavioral differences in language. Second, we
found a behavioral marker of mental health to be associated with
anterior-posterior differentiation in asymmetry, a pattern present in
superficial layers of the BigBrain, and in overall maturational patterns
of microstructure in the cortex59. Various studies have reported asso-
ciations between microstructure and neuropsychiatric conditions,
including depression80–82, compulsivity and impulsivity83, and
schizophrenia84–86. Through large sample size investigation, it would
be possible to study the inter-relationships among asymmetries of
cortical brain maturation and neurodevelopmental conditions,
extending current work on maturational differentiation of symmetric
microstructural patterning and links to disease progression84,87.

While our research has yielded significant insights into cortical
microstructural asymmetry, it is important to address several limita-
tions that warrant clarification. Firstly, though the BigBrain (N = 1)
offers unique insights into cortical microstructure at ultra high reso-
lution, and links to our in vivo model, the results are limited to one
subject. Further work on ultra-high resolution neuroimaging (e.g., 7 T
or 9.4 T MRI), sensitive to laminar changes, will aid in also under-
standing layer-levelmarkers of individual variation. Although T1w/T2w
images reveal a strong anterior-posterior asymmetry pattern and
concordant validation fromothermicrostructuralmeasures have been
found, it still requires more B1+ bias correction to reduce the inho-
mogeneities in HCP T1w/T2w. Furthermore, while the observedmapof
age effects in our young adult sample correlated with the mean
asymmetry map, no parcels exhibited significant age effects in the
MICs and NSPN datasets. The modest changes observed during ado-
lescencemay stem from either small effect sizes or inadequate sample
sizes to detect statistical significance. Additionally, it is crucial to
acknowledge that themental health data utilized in this study pertains
solely to healthy individuals, and caution should be exercised in
extrapolating these findings to clinical samples, where extreme con-
ditions may prevail that were not accounted for in our study.

In conclusion, our investigation employed a multiscale approach
to study microstructural asymmetry in the human cortex. We

delineated laminar-specific asymmetry in a post-mortem sample and
individual asymmetry in vivo. Our study contributes to advancing our
understanding of cortical asymmetry at themicroscale, encompassing
depth-wise and inter-regional spatial differentiation, age and sex dis-
parities, behavioral genetics based on twin-modeling, integration with
functional connectomics, and associations with behavioral markers of
language and mental health. These findings hold implications for elu-
cidating thebiologicalmechanismsunderlying cortical asymmetry and
its functional relevance in health and disease.

Methods
Datasets we used in present study are open sources and have been
approved by their local research ethics committees. The current
research complies with all relevant ethical regulations as set by The
Independent Research Ethics Committee at the Medical Faculty of the
Heinrich-Heine-University of Duesseldorf (study number
2018–317). The specifics on the MRI data and methods applied are the
similar to related works in the same samples. They are provided again
here for completeness.

Datasets & image acquisition and preprocessing
BigBrain. BigBrain is a 20 µm3 ultra-high-resolution atlas of a post-
mortem human brain from a 65-year-old male created by digital volu-
metric reconstruction of Merker-stained sections (https://ftp.
bigbrainproject.org/)15. The six layers of BigBrain’s cerebral cortex
were previously segmented using a convolutional neural network and
the surface reconstruction of the layer boundaries were available42. We
extracted layer-wise cortical profiles of the BigBrain cerebral cortex by
sampling the staining intensity of 100 µmresolutionBigBrain images at
10 equivolumetric surfaces along the depth of each layer (60 surfaces
in total). The resulting layer-wise cortical profiles reflect the variation
of neuronal size and density along the depth of the six cortical layers at
each location.

To reduce the computational demands, we downsampled the
images from BigBrain native surface space to Glasser multimodal
parcellation54, a homologous atlas with 180 parcels per hemisphere via
BigBrainWarp88. To enhance the functional annotation we employed
the cortical functional network atlas55, which includes 12 networks:
primary visual (Vis1), secondary visual (Vis2), somatomotor (SMN),
cingulo-opercular (CON), dorsal attention (DAN), language (LAN),
frontoparietal (FPN), auditory network (AUD), default mode (DMN),
posterior multimodal (PMN), ventral multimodal (VMN), and orbito-
affective (OAN).

HCP. We used T1w/T2w images from the Human Connectome Project
(HCP) S1200 release, which can be downloaded from HCP DB (http://
www.humanconnectome.org/). HCP S1200 includes 1206 individuals
(656 females) that aremade up by genetic-identified and reported 334
MZ twins, 152 DZ twins, and 720 singletons. We included individuals
for whom the scans and data had been released after passing the HCP
quality control and assurance standards89,90. Finally, for genetic ana-
lyses we included 1101 healthy subjects with a good quality T1w/T2w
image (age: 28.8 ± 3.7 years), of which 54.4% were females and 332
were MZ twins.

MRI data were acquired on the HCP’s custom 3T Siemens Skyra
equipped with a 32-channel head coil. Two T1w images with identical
parameters were acquired using a 3D-MP-RAGE sequence (0.7mm
isovoxels, matrix = 320 × 320, 256 sagittal slices; TR = 2400ms, TE =
2.14ms, TI = 1000ms, flip angle = 8; iPAT = 2). Two T2w images were
acquired using a 3D T2-SPACE sequence with identical geometry
(TR= 3200ms, TE = 565ms, variable flip angle; iPAT = 2). T1w and T2w
scans were acquired on the same day. The pipeline used to obtain the
Freesurfer-segmentation is described in detail in a previous article89.
The preprocessing steps included co-registration of T1- and T2-
weighted scans, then correcting the T1w and T2w images for B1- bias
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and some B1+ bias26,89. Preprocessed images were nonlinearly regis-
tered to MNI152 space, and segmentation and surface reconstruction
performed using FreeSurfer 5.3. T1w images were divided by aligned
T2w images to produce a single volumetric T1w/T2w image per
subject26. Cortical surfaces were aligned using MSMAll91,92 to the
hemisphere-matched conte69 template43. Notably, this contrast nulli-
fies inhomogeneities related to receiver coils and increases sensitivity
to intracortical myelin.

The intensity values were estimated between pial and white mat-
ter surfaces. Previous papers have used this data to generate the
equivolumetricprofile intensity34,93.Wedownsampled the images from
conte69 space to the multimodal atlas. In this study, we averaged the
intensity values across the equivolumetric surfaces and z-scored the
values for left and right hemispheres separately for each subject.

MICs. For replication analysis we used the quantitative T1 images of
the openly available MRI dataset for Microstructure-Informed Con-
nectomics (MICs)28, which can be downloaded from the Canadian
Open Neuroscience Platform’s data portal (https://portal.conp.ca).
The dataset comprisesmultimodal data of 50 healthy young adults (23
women; 29.54 ± 5.62 years; 47 right-handed) and was collected at the
Brain Imaging Centre of the Montreal Neurological Institute and Hos-
pital using a 3 T Siemens Magnetom Prisma-Fit and a 64-channel head
coil. For the acquisition of the qT1 relaxometry data a 3D magnetiza-
tion prepared 2 rapid acquisition gradient echoes sequence was used
(3D-MP2RAGE; 0.8mm isotropic voxels, 240 sagittal slices, TR =
5000ms, TE= 2.9ms, TI_1 = 940ms, T1_2 = 2830ms, flip angle 1 = 4°,
flip angle 2 = 5°, iPAT = 3, bandwidth = 270Hz/px, echo spacing = 7.2
ms, partial Fourier = 6/8). Two inversion images were combined for
qT1 mapping. Based on the varying T1 relaxation time in fatty tissue
compared to aqueous tissue94, we here use qT1 as an index for gray
matter myelin and hence as a proxy for microstructure. The MRI
processing tool micapipe95 was used for data preprocessing and
intensity extraction. In short, preprocessing included the background
denoising of MP2RAGE, reorientation of the T1W and MP2RAGE, N4
bias correction, and intensity rescaling of the T1W images and the non-
linear registration to MNI152 space. Further, the cortical surface
reconstruction from native T1w acquisitions was carried out using
Freesurfer 7.0. The detailed acquisition protocol and preprocessing
are described in their prior data publication28.

NSPN. The Neuroscience in Psychiatry (NSPN) cohort generally com-
prises 2245 adolescents aged 14 to 26 years (mean ± SD age: 19.1 ± 3.0
years, female: 54%). Participants were recruited in Cambridgeshire and
north London according to a sampling design that balanced sex, eth-
nicity, and participant numbers in five age strata (14-15, 16-17, 18-19, 20-
21, 22-25). Here, we included 286 individuals (mean ± SD age: 19.1 ± 2.9
years, female: 51%) for whommicrostructural neuroimaging data were
available.

Magnetization Transfer (MT) data were acquired to approximate
myelin content using a multi-parametric mapping (MPM) sequence56

on three identical 3 T Siemens MRI Scanners (Magnetom TIM Trio) in
Cambridge (2 sites) and London (1 site). A standard 32-channel radio-
frequency (RF) receive head coil and RF body coil for transmission
were used. MPM included three multi-echo 3D FLASH scans: pre-
dominant T1-weighting (repetition time (TR) = 18.7ms, flip angle =
20°), and predominant proton density (PD) and MT-weighting (TR =
23.7ms; flip angle = 6°). To achieve MT-weighting, an off-resonance
Gaussian-shaped RF pulse (4ms duration, frequency offset fromwater
resonance = 2 kHz; nominal flip angle = 220°) was applied prior to the
excitation. Several gradient echoes were recorded with alternate
readout polarity at six equidistant echodurations (TE) between 2.2 and
14.7ms for MT-weighted acquisition. The longitudinal relaxation rate
and MT signal are separated by the MT saturation parameter, creating
a semi-quantitative measurement that is resistant to relaxation times

and field inhomogeneities56,96. Other acquisition parameters include
1mm isotropic resolution, 176 sagittal partitions, field of view
(FOV) = 256×240mm, matrix = 256×240×176, non-selective RF excita-
tion, RF spoiling phase increment = 50 ̊ , parallel imaging usingGRAPPA
factor two in phase-encoding (PE) direction (AP), readout bandwidth =
425Hz/pixel, 6/8 partial Fourier in partition direction. The acquisition
time was approximately 25min. Participants wore ear protection and
were instructed to lie still.

Surface reconstruction was carried out based on T1-weighted
(T1w) images using Freesurfer 5.3.0. The resulting reconstructions
underwent visual inspection. Control points were added to improve
segmentations, but scans were excluded in cases of persistently poor
quality. The detailed description about this dataset and preprocessing
are shown in their previous work56,60,97,98.

Asymmetry Index. We calculated the asymmetry index (AI) by sub-
tracting right from left hemispheric values in the homologous regions.
As noted, we preprocessed the left and right hemispheres separately
by regressing out mean surface intensity for the BigBrain data, then
standardized the residual intensity. For HCP, MICs, and NSPN, we
obtained the mean cortical intensity map, then z-scored the map for
left and right hemispheres separately. For functional connectivity
asymmetry, we calculated AI by (LH - RH)/(LH+RH). Regarding the
asymmetry of skewness in BigBrain, the skewness formula was used:
skewness = sum((intensity surface – mean)3)/SD3, where mean and SD
are calculated across the sixty surfaces.

Effects of sex and age. We first used fixed effects estimates for the
model: AI = 1 + sex + age + sex*age. We found no significant interaction
between age and sex. We then used the non-interactionmodel: AI = 1 +
sex + age to obtain the t and P values of sex and age. False discovery
rate (FDR)was then applied formultiple comparison correction for the
sex and age t value maps. All the steps were performed in Python with
the package BrainStat99. Regions colored in the HCP figure survived
from FDR correction (q <0.05). We didn’t perform FDR correction for
NSPN and MICs datasets because too few parcels survived. In com-
parison, for the t and asymmetry maps between the different datasets
we used non-thresholded maps.

We performed the correlations between brain maps using vario-
gram permutations to test the spatial autocorrelation. The variogram
quantifies, as a function of distance d, the variance between all pairs of
points spatially separated by d. Pure white noise, for example, which
has equal variation across all spatial scales, has a flat variogram (i.e., no
distance dependence). Brain maps with very little spatial autocorrela-
tion will therefore have a variogram that is nearly flat. Strongly auto-
correlated brain maps exhibit less variation among spatially proximal
regions (at small d) than among widely separated regions, and are
therefore characterized by positive slopes in their variograms100,101. We
obtained the geodesic distance matrix of the left hemisphere from
multimodal parcellation (i.e., 180*180) and produced 1000 permuted
spatial autocorrelation-preserving surrogate brain maps whose vario-
gramswere approximatelymatched to a target brainmap’s variogram.

Heritability analysis. Referring to our previous work6,93,102,103, we ana-
lyzed heritability based on the twin design of HCP. Briefly, we calcu-
lated the heritability estimates with standard errors via the Sequential
Oligogenic Linkage Analysis Routines (SOLAR, version 9.0.0). SOLAR
uses maximum likelihood variance decomposition methods to deter-
mine the relative importance of familial and environmental influences
on a phenotype bymodeling the covariance among familymembers as
a function of genetic proximity104. Heritability, i.e., narrow-sense her-
itability h2, represents the proportion of the phenotypic variance (σ2

p)
accounted for by the total additive genetic variance (σ2

g), that is
h2 =σ2

g/σ
2
p. Phenotypes exhibiting stronger covariances between

genetically more similar individuals, than between genetically less
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similar individuals, have higher heritability. In this study, we quantified
the heritability of asymmetry of functional gradients using the A + E
model as suggested by prior study, as the A + E model has a higher
accuracy of estimating heritability than the A + E +C (common envir-
onment) model in HCP105. We also included the A +C+ E model in
Supplementary Fig. S11. We added age, sex, age2, and age*sex as the
covariates to our models.

Microstructure-function asymmetric coupling. We conducted three
approaches to understand the relationship between microstructural
and functional asymmetry. We first split the mean microstructural
asymmetry map into 10 bins and plotted the FC asymmetry along the
10 bins to test whether group level FC asymmetry was stronger or
weaker in asymmetric or non-asymmetric bins. Second, we correlated
the microstructural asymmetry with the FC asymmetry spatially at the
group and individual levels. In particular, the correlation coefficient
was computed between microstructural asymmetry (in 180 regions)
and the (180*180) seed-based functional asymmetrymap resulting in a
regional coupling score. Following, a map of regional coupling
between microstructure and function (180 r values) was obtained for
all 180 functional seeds. Regarding the covariation across subjects, for
a given region, we did the following: (region x, one microstructural
asymmetry marker) and (region x, 180 functional asymmetry markers
of its connectivity), were correlated along the “region x” axis to obtain
180 r values for this region, indicating how this region’s micro-
structural asymmetry supports asymmetryof functional connection to
this region across subjects. This procedure was repeated for all 180
parcels. The 180*180 covariation matrix can be obtained with the
columns as microstructural profiles and rows as functional profiles.
Then, principal component analysis (PCA) was used to decompose the
affinity of the covariance matrix with the sparsity of top 10% scores.
These principal components reflect the organization features of
asymmetricmicrostructure-function coupling, e.g., two regions having
similar asymmetric coupling profiles get close loadings along the PCs.
These steps were done in Python with the package BrainSpace101.

Brain-behavioral association. We used canonical correlation analysis
to address the multivariate association between microstructural
asymmetry andbehavioral scores.CCA is a statisticalmethod thatfinds
linear combinations of two random variables so that the correlation
between the combined variables is maximized. In practice, CCA has
been mainly implemented as a substitute for univariate general linear
model to link different modalities, and therefore, is a major and
powerful tool in multimodal data fusion. However, the complicated
multivariate formulations and obscure capabilities remain obstacles
for CCA and its variants to being widely applied. We separately tested
brain-behavioral association for language andmental health. Language
scores were acquired by reading and picture vocabulary tests in the
NIH toolbox. Mental health scores included depression, anxiety,
somatic, avoidant, ADHD, and antisocial problems, which were asses-
sed by Adult Self-Report and DSM-Oriented Scale.

The Picture Vocabulary Test is a CAT format measure of general
vocabulary knowledge for ages 3–85 and is considered to be a strong
measure of crystallized abilities (those abilities that are more
dependent upon past learning experiences and are consistent across
the lifespan). The participant is presented with an audio recording of
a word and four photographic images on the computer screen and is
asked to select the picture that most closely matches the meaning of
the word. Higher scores indicate higher vocabulary ability. The
Reading Test is a CAT format measure of reading decoding skill and
of crystallized abilities, those abilities that are generally more
dependent upon past learning experiences and consistent across the
life span for ages 7-85. The participant is asked to read and pro-
nounce letters and words as accurately as possible. Higher scores
indicate better reading ability. Age-adjusted Scale Score: Participant

score is normed using the age-appropriate band of Toolbox Norming
Sample (bands of ages 18-29, or 30-35), where a score of 100 indi-
cates performance that was at the national average and a score of 115
or 85, indicates performance 1 SD above or below the national
average for participants’ age group. We used age-adjusted language
scores in the current study.

The Adult Self-Report is a 126-item self-report questionnaire for
adults (ages 18–59) assessing aspects of adaptive functioning and
problems. The questionnaire provides scores for the following syn-
drome scales: anxious/depressed, withdrawn, somatic complaints,
thought problems, attention problems, aggressive behavior, rule-
breaking behavior, and intrusive behavior. The questionnaire provides
scores for the following DSM-oriented scales: depressive problems,
anxiety problems, somatic problems, avoidant personality problems,
attention deficit/ hyperactivity problems (inattention and hyper-
activity/impulsivity subscales), and antisocial personality problems.
Additionally, the questionnaire asks about use of the following sub-
stances: tobacco, alcohol, and drugs. Items are rated on a 3-point scale:
0-Not True, 1-Somewhat or Sometimes True, 2-Very True or Often
True. We used DSM-oriented scale and gender and age-adjusted T-
scores as mental health scores in the current study.

We also used pseudo-randomised resampling (clustering the
same number of twins for each sample) to test the robustness of brain-
behavior association and the brain loading patterns. We started by
withdrawing 10% to 90% data and iterated these steps 100 times.
Therefore, for each percentage data withdrawal, there would be 100
CCA models and correlations to the anterior-posterior asymmetry
pattern. We showed the charts with mean and standard error bars for
each percentage data withdrawal.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The neuroimaging data we used in the current study are available
through the holders’ website, which have been mentioned in the
Methods Datasets section. Source data are provided. Source data are
provided with this paper.

Code availability
All the scripts and visualization are openly available at a GitHub
repository (https://github.com/wanb-psych/microstructural_
asymmetry). The packages are completely open for use, see doc-
umentations: BigBrainWarp (https://bigbrainwarp.readthedocs.io/
en/latest/), BrainStat (https://brainstat.readthedocs.io/en/), Brain-
Space (https://brainspace.readthedocs.io/en/latest/), SOLAR, and
Scikit-learn (https://scikit-learn.org/stable/).
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