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Abstract

Objective To develop a domain-specific large language model (LLM) for LI-RADS v2018 categorization of hepatic
observations based on free-text descriptions extracted from MRI reports.

Material and methods This retrospective study included 291 small liver observations, divided into training (n= 141),
validation (n= 30), and test (n= 120) datasets. Of these, 120 were fictitious, and 171 were extracted from 175 MRI
reports from a single institution. The algorithm’s performance was compared to two independent radiologists and one
hepatologist in a human replacement scenario, and considering two combined strategies (double reading with
arbitration and triage). Agreement on LI-RADS category and dichotomic malignancy (LR-4, LR-5, and LR-M) were
estimated using linear-weighted κ statistics and Cohen’s κ, respectively. Sensitivity and specificity for LR-5 were
calculated. The consensus agreement of three other radiologists served as the ground truth.

Results The model showed moderate agreement against the ground truth for both LI-RADS categorization (κ= 0.54
[95% CI: 0.42–0.65]) and the dichotomized approach (κ= 0.58 [95% CI: 0.42–0.73]). Sensitivity and specificity for LR-5
were 0.76 (95% CI: 0.69–0.86) and 0.96 (95% CI: 0.91–1.00), respectively. When the chatbot was used as a triage tool,
performance improved for LI-RADS categorization (κ= 0.86/0.87 for the two independent radiologists and κ= 0.76 for
the hepatologist), dichotomized malignancy (κ= 0.94/0.91 and κ= 0.87) and LR-5 identification (1.00/0.98 and
0.85 sensitivity, 0.96/0.92 and 0.92 specificity), with no statistical significance compared to the human readers’
individual performance. Through this strategy, the workload decreased by 45%.

Conclusion LI-RADS v2018 categorization from unlabelled MRI reports is feasible using our LLM, and it enhances the
efficiency of data curation.

Critical relevance statement Our proof-of-concept study provides novel insights into the potential applications of
LLMs, offering a real-world example of how these tools could be integrated into a local workflow to optimize data
curation for research purposes.

Key Points
● Automatic LI-RADS categorization from free-text reports would be beneficial to workflow and data mining.
● LiverAI, a GPT-4-based model, supported various strategies improving data curation efficiency by up to 60%.
● LLMs can integrate into workflows, significantly reducing radiologists’ workload.
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Graphical Abstract

Large language models can be utilized on a large scale to extract structured information from free-text radiology
reports. Our proof-of-concept study provides a real-world example of how these tools could be integrated into a
local workflow to enhance the efficiency of the data curation process for research purposes.
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Introduction
Structured reporting has been thought to be the key to
improving clinical and radiological workflow [1, 2]. Spe-
cifically, in the field of liver cancer, the liver imaging
reporting and data system (LI-RADS) was developed over
a decade ago as a standardized system to assist in
reporting, managing, and data collection on liver obser-
vations in patients at risk of hepatocellular carcinoma
(HCC) [3]. The LI-RADS provides an algorithmic fra-
mework where liver observations are categorized based on
combined major and optional ancillary features, indicat-
ing the likelihood of HCC or malignancy, and guiding
subsequent imaging workup [4]. Beyond its clinical
implications, LI-RADS aims to provide a standardized
framework for radiology reporting to enhance the effi-
ciency of data extraction and pooling, currently chal-
lenged by the heterogeneous terminology used in the
published literature [5]. Standardized systems like LI-
RADS, coupled with structured reporting, may streamline
data mining from imaging reports, enabling the genera-
tion of large-scale databases essential for research and
machine learning applications. Despite the growing evi-
dence of its potential benefits, the implementation of
structured reporting in clinical routine is still lacking [6],

and data extraction from free-text radiology reports
remains a time-consuming manual task.
Natural language processing (NLP) is a field of artificial

intelligence (AI) focused on developing algorithms and
models enabling machine-learning systems to interpret
human language. With the generalization of large lan-
guage models (LLMs) through the recent release of
OpenAI’s generative pre-trained transformers (GPT),
NLP has gained significant attention among researchers
across various medical fields [7, 8]. In radiology, these
models have demonstrated suitability for a variety of
tasks, such as imaging test referrals, standardizing and
simplifying radiology reports, aiding in differential diag-
noses, and generating impressions [8–12]. Recent
exploratory studies have also shown that these LLMs can
be utilized on a large scale to extract structured and
quantitative information from narrative radiology reports
[13, 14]. While the potential applications of NLP in
oncology had been previously explored [15], prior studies
focused on customized NLP systems tailored for specific
applications and trained on human-labelled datasets [16].
In contrast, new avenue LLMs are trained on unlabelled
data and can be applied to complex tasks with minimal
task-specific information.
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This exploratory study aims to assess the performance
of LiverAI, a context-based chatbot built on GPT-4
architecture, in the LI-RADS v2018 categorization of
hepatic observations based on free-text radiological
descriptions extracted from real-life magnetic resonance
imaging (MRI) reports. To this aim, we compared the
algorithm’s performance against human readers with
different levels of experience. Additionally, we assessed its
optimal integration into the data curation process, con-
sidering both an add-on scenario and the sequential use of
the algorithm in a triage scenario.

Material and methods
The study protocol was approved by the Clinical Research
Ethics Committee from our institution (HCB/2023/0900).
Informed consent was waived due to the retrospective
character of data collection and the use of anonymized data.

Data source
We randomly selected a sample of 175 free-text MRI
reports from cirrhotic patients previously enroled in two
post-hoc studies from a prospective series [17, 18]. The
aim of these studies does not overlap with the current
study. All participants had liver cirrhosis and underwent
liver MRI after the detection of a new small focal liver
lesion (< 2 cm) during screening ultrasound (US) for
HCC. The MRI was performed using a standard protocol
with extracellular gadolinium, including all four phases,
aiming to characterize the lesions identified. Original
reports, authored between 2004 and 2015, were written in
Spanish by 15 different radiologists from our institution
and did not include any mention of LI-RADS categor-
ization. All reports were reviewed and codified by the
study coordinator (M.M.-G.) for inclusion in the study
database. The free-text descriptions of the lesions of
interest were manually extracted, and the radiologist’s
final impressions were eliminated to prevent biases in the
algorithm or human readers (i.e. consistent with HCC,
etc.). A total of 13 reports were excluded due to missing
measurements, the absence of LI-RADS features, or the
reporting of artefacts hindering proper evaluation. The
dataset included 162 reports with a total of 171 observa-
tions, comprising a wide variety of reporting styles and
lexicon.

Development of the domain-specific chatbot
The extracted observations were randomly divided into
a training set (n= 51) and a test set (n= 120). Given the
limited number of genuine descriptions, our priority was
to maximize the size of the test set to rigorously evaluate
the model’s performance. To enhance the size and
diversity of the training dataset, we developed a specia-
lized script using OpenAI’s GPT-4 API model to

generate an additional 120 fictitious examples. These
synthetic cases were carefully reviewed and corrected by
the study coordinator before their inclusion in the
development cohort, ensuring their accuracy and rele-
vance. In total, the final training set comprised 141
liver observations (51 real and 90 synthetic), with an
additional 30 descriptions designated for validation
(Fig. 1). The study coordinator annotated the training
dataset.
The LLM evaluated in this study was LiverAI, a domain-

specific chatbot sponsored by the Spanish Society of Liver
Diseases (AEEH from its acronym in Spanish). LiverAI was
developed on GPT-4 architecture between November 2023
and January 2024 using OpenAI’s application program-
ming interface (API). The development process of LiverAI
involved a series of iterative experiments and optimizations
to enhance its performance (Appendix S1). Initially, we
manually transformed the primarily graphical and tabular
LI-RADS data into AI-optimized textual descriptions [19].
Text information was sourced from the publicly available
American College of Radiology (ACR) CT/MRI LI-RADS
v2018 Core (https://www.acr.org/-/media/ACR/Files/
RADS/LI-RADS/LI-RADS-2018-Core.pdf). The model
was fine-tuned and embeddings were applied to enhance its
categorization capabilities within the LI-RADS system,
complemented by prompt engineering to further refine its
performance. Scripts, along with all relevant documenta-
tion, have been made available on GitHub under the
Apache 2.0 License (https://github.com/aeehliver/lirads).
Finally, to assess and validate this approach, we compared
the performance of LiverAI against that of publicly avail-
able generic chatbots GPT-3.5 and GPT-4 (Appendix S3
and Table S1).

Study procedures and ground truth definition
Five independent radiologists, including the study coor-
dinator, familiar with the LI-RADS system and with
varying levels of experience in liver imaging were invited
to participate in the study: M.M.-G. (2 years), A.D.
(25 years), A.S. (5 years), B.S. (3 years), and J.R. (20 years).
Additionally, an expert hepatologist with 9 years of
experience (E.M.) was also included. Each reader inde-
pendently assigned a LI-RADS category to all liver
observations included in the test set (n= 120), based on
the narrative report descriptions and according to the
current LI-RADS v2018 definition. The same report
information was presented in a one-shot query to the
chatbot by the study coordinator, who registered the
output given by the algorithm (Fig. 2).
The ground truth for each observation was established

through a majority assessment consensus among three of
the radiologists (M.M.-G., A.D., and A.S.). The perfor-
mances of the two remaining independent radiologists
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(B.S. and J.R.) and the hepatologist (E.M.), who were not
part of the ground truth definition, were evaluated and
compared with LiverAI, using the ground truth as the

reference standard (Fig. 3). Examples of correct and
incorrect categorizations made by the chatbot are pro-
vided in the online supplement (Table S2).

Fig. 1 Flowchart of study design

Fig. 2 Chatbot interface of the domain-specific LLM (LiverAI), showing an example of a free-text liver observation description correctly categorized. Both
the chatbot interface and the report have been translated from Spanish to English for understandability reasons. LI-RADS, liver imaging reporting and
data system
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Clinical scenarios
To explore the optimal integration of the developed algo-
rithm into the data curation process, three different sce-
narios were investigated (Fig. 4). On the one hand, we
considered the algorithm as a potential replacement for
radiologists in data categorization (replacement strategy).
On the other hand, we explore the sequential performances
of the LLM algorithm and the independent readers using
two combined strategies. In the first, we evaluated the per-
formance of the combination of either Radiologist 1 (R1,
B.S.) or Radiologist 2 (R2, J.R.) with the chatbot, with the
other participant serving as an arbitrator to resolve dis-
crepancies (R1+ LiverAI#R2, or R2+ LiverAI#R1) (double
reading with arbitration strategy). In the second, the chatbot
assessed all liver observations, and the readers, including the
hepatologist (H, E.M.), proceeded to evaluate only those
observations categorized as LR-3, LR-4, and LR-M by the
algorithm (triage strategy). The primary endpoint of the
three explored approaches was the accuracy of LI-RADS
categorization. The secondary endpoint was the proportion
of LR-5 observations detected.

Statistical analysis
Agreement across LI-RADS categories was computed using
two different approaches. First, considering each LI-RADS
category separately, ordered by ascending risk of malignancy
[20]: LR-1, LR-2, LR-3, LR-4, LR-5, and LR-M. Second, using

a binary approach in which categories were dichotomized as
lower-risk of malignancy or probably/definitely malignant
(LR-1, LR-2, and LR-3 vs LR-4, LR-5, and LR-M).
The three independent readers and chatbot’s perfor-

mance in the final test set, along with the resulting cate-
gorizations from each combined strategy, were evaluated
according to the consensus ground truth. Types of dis-
agreements were depicted in confusion matrices. Agree-
ment against the ground truth across all LI-RADS
categories was assessed using weighted kappa with linear
weighting, whereas the dichotomized approach was
measured through Cohen’s kappa. Fleiss’ kappa was
computed for agreement among more than two readers.
Based on kappa coefficients, agreement was categorized as
follows: < 0.20, slight; 0.21–0.40, fair; 0.41–0.60, moder-
ate; 0.61–0.80, substantial; and > 0.80, almost perfect [21].
The sensitivity and specificity for LR-5 were also calcu-
lated. Confidence intervals (CI) were obtained using
bootstrap resampling, except for the kappa indices where
the binomial normal approximation was used. All statis-
tical analyses were computed using the R statistical soft-
ware (version 4.2.2).

Results
Patient and observation characteristics
Figure 1 shows the flowchart of reports included in the
study. A total of 291 liver observations were included: 120

Fig. 3 Workflow and performance analysis of the domain-specific LLM (LiverAI). LI-RADS, liver imaging reporting and data system; R1 and R2,
independent radiologist 1 and 2, respectively; H, hepatologist
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were fictitious, and 171 were extracted from liver MRI
reports of 154 patients. Table 1 summarizes the char-
acteristics of each dataset.
The initial test dataset comprised MRI descriptions of

120 liver observations. Based on the ground truth, 1
observation was classified as LR-1 (0.8%), 7 as LR-2
(5.8%), 33 as LR-3 (27.5%), 5 as LR-4 (4.2%), 66 as LR-5
(55%), and 5 as LR-M (4.2%). There was no report clas-
sified as observation with tumor-in-vein present (LR-
TIV). One observation was classified as “not categori-
sable” (LR-NC), and there was no consensus agreement
for two observations. These three observations were
excluded from the performance analysis in the final test
dataset (n= 117) (Fig. 1).

Agreement among human readers
The five radiologists agreed on the LI-RADS categoriza-
tion of 70.0% (84 of 120) liver observations, with sub-
stantial inter-reader agreement (κ= 0.74 [95% CI:
0.68–0.79]). For dichotomized malignancy, agreement
was almost perfect (κ= 0.87 [95% CI: 0.79–0.92]), with a
percentage agreement of 105/120 (87.5%). The hepatolo-
gist’s agreement with each radiologist was consistently
lower than the agreement among radiologists when con-
sidering all possible combinations. The inter-reader
agreement values between pairs across all LI-RADS
categories are summarized in Fig. 5.

Optimal integration of LiverAI on data mining strategy
Performance of LiverAI compared with independent readers
(replacement strategy)
According to the ground truth, 73/117 (62.4%) obser-
vations were accurately categorized by the algorithm
(Fig. 6a), with moderate agreement against the estab-
lished consensus (κ= 0.54 [95% CI: 0.42–0.65]). Sensi-
tivity and specificity for LR-5 were, respectively, 0.76
(95% CI: 0.69–0.86) and 0.96 (95% CI: 0.91–1.00).
Regarding independent readers, 101/117 (86.3%) and
105/117 (89.7%) observations were correctly categorized
by Radiologist 1 (R1) and Radiologist 2 (R2). Agreement
against the consensus was almost perfect for all LI-
RADS categories (R1: κ= 0.82 [95% CI: 0.73–0.91]; and
R2: κ= 0.86 [95% CI: 0.77–0.95]), significantly higher
than that of the model. Sensitivity and specificity for LR-
5 were, respectively, 1.00 (95% CI: 1.00–1.00) and 1.00
(95% CI: 1.00–1.00) for R1, and 0.98 (95% CI: 0.95–1.00)
and 0.94 (95% CI: 0.87–1.00) for R2. By contrast, 85/117
(72.6%) observations were correctly categorized by the
hepatologist. Agreement with the ground truth was
substantial (κ= 0.72, 95% CI: 0.62–0.81), but not sig-
nificantly better compared to the model, and sig-
nificantly lower in accuracy than that of the most
experienced radiologist (R2). Sensitivity and specificity
for LR-5 were, respectively, 0.76 (95% CI: 0.66–0.86) and
0.96 (95% CI: 0.90–1.00).

Fig. 4 The clinical scenarios evaluated to assess the optimal integration of the domain-specific LLM (LiverAI) for LI-RADS categorization of liver
observations described in free-text MRI reports. R1 and R2, independent radiologists 1 and 2, respectively. * The double reading strategy was repeated
considering both the combination of R1 and LiverAI, with posterior arbitration by R2; and the combination of R2 and LiverAI, with arbitration by R1
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For dichotomized malignancy, the algorithm correctly
categorized 97/117 (82.9%) observations (Fig. 6b), with
moderate agreement against the ground truth (κ= 0.58
[95% CI: 0.42–0.73]). Sensitivity and specificity for prob-
ably/definitely malignant observations (LR-4, LR-5, and
LR-M) were, respectively, 1.00 (95% CI: 1.00–1.00) and
0.51 (95% CI: 0.37–0.66). The agreement of the three
independent readers was significantly higher (detailed
statistics in Table 2).

Double reading with arbitration strategy
The combination of either R1 or R2 with the chatbot, with
posterior arbitration by the other human participant
(R1+ LiverAI#R2, or R2+ LiverAI#R1), resulted in an
almost perfect agreement for both strategies, with no
statistical significance when compared with each human
reader’s individual performance (R1+ LiverAI#R2: κ=
0.87 [95% CI: 0.79–0.96]; and R2+ LiverAI#R1: κ= 0.88
[95% CI: 0.80–0.96]). Accordingly, 107/117 (91.5%) and
106/117 (90.6%) observations were accurately categorized,

with a sensitivity and specificity for LR-5 of 0.98 (95% CI:
0.95–1.00) and 0.96 (95% CI: 0.91–1.00) for the first
combination, and 0.98 (95% CI: 0.95–1.00) and 0.98 (95%
CI: 0.94–1.00) for the second. Similarly, no difference in
the agreement was observed for dichotomized malignancy
(Table 2). By employing this approach, one of the readers
assessed the whole dataset, while the arbitrators decreased
their workload from 120 observations to 57 (− 52.5%)
(R2) and 48 (− 60.0%) (R1).

Triage strategy
The sequential assessment by R1 and R2 of the observa-
tions categorized as LR-3, LR-4 and LR-M by the algo-
rithm led to an almost perfect agreement for both
radiologists (R1: κ= 0.86 [95% CI: 0.79–0.93]; and R2:
κ= 0.87 [95% CI: 0.79–0.94]), with no statistically sig-
nificant difference when compared with each reader’s
individual performance. Following this strategy, 102/117
(87.2%) and 104/117 (88.9%) observations were accurately
categorized for both readers, with a sensitivity and spe-
cificity for LR-5 of 1.00 (95% CI: 1.00–1.00) and 0.96 (95%
CI: 0.91–1.00) for R1, and 0.98 (95% CI: 0.95–1.00) and
0.92 (95% CI: 0.84–0.99) for R2 (Table 2). Regarding the
hepatologist, 90/117 (76.9%) observations were accurately
categorized with this strategy. Although there were no
statistically significant differences compared to the indi-
vidual performance (Table 2), this approach slightly
improved agreement with the ground truth (κ= 0.76 [95%
CI: 0.67–0.84]), and sensitivity (0.85 [95% CI: 0.78–0.92]).

Table 1 Characteristics of the liver observations included in the
test and development datasets

Characteristic Training set,

(n= 141)

Validation set,

(n= 30)

Test set,

(n= 120)

Age at diagnosis

(years), mean (range)*

61 (41–81) – 65 (43–84)

Sex*

Female 14 (29.8) – 47 (41.7)

Male 33 (70.2) 60 (58.3)

LI-RADS major features**

Size (mm), median

(IQR)

15 (11–18) 14.5 (11–17) 15 (12–18)

Nonrim APHE 79 (56.0) 13 (43.3) 99 (82.5)

Nonperipheral

“washout”

53 (37.6) 9 (30.0) 70 (58.3)

Enhancing

“capsule”

31 (22.0) 4 (13.3) 39 (32.5)

LI-RADS version 2018 categories

LR-1 19 (13.5) 5 (16.7) 1 (0.8)

LR-2 20 (14.2) 5 (16.7) 7 (5.8)

LR-3 30 (21.3) 5 (16.7) 33 (27.5)

LR-4 22 (15.6) 5 (16.7) 5 (4.2)

LR-5 34 (24.1) 5 (16.7) 66 (55.0)

LR-M 16 (11.3) 5 (16.7) 5 (4.2)

LR-NC 0 (0) 0 (0) 3 (2.5)

APHE arterial phase hyperenhancement, IQR interquartile range, LR-NC LI-RADS
not categorisable
* Data for liver observations extracted from genuine MRI reports. There were 171
observations in 154 patients
** Threshold growth is not considered, as the MRI examinations included were
performed to characterize liver observations identified through screening US,
without follow-up assessments

Fig. 5 Inter-reader agreement across LI-RADS categories among all
human readers. R, readers
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For dichotomized malignancy, no difference in the
agreement was observed, showing all readers almost
perfect agreement against the ground truth (Table 2).
With this strategy, the workload for each reader decreased
from 120 observations to 66 (− 45%).

Discussion
In this proof-of-concept study, we assess the feasibility of
employing a locally run domain-specific LLM, LiverAI, for
LI-RADS category annotation of unlabelled free-text MRI
reports of cirrhotic patients with newly detected liver
observations. Our results suggest that our model can be
used efficiently for this purpose, potentially reducing the
workload of expert radiologists when integrated into the
human workflow.
Several recent studies have explored the ability of

general-purpose LLMs to extract valuable information
from reports [13, 14, 22, 23], even specifically for HCC
imaging [16, 24]. In a recent study, Gu et al leveraged
GPT-4 for LI-RADS feature extraction and categorization
of multilingual free-text reports [25]. However, their
cohort predominantly included larger liver observations,
with 75% measuring over 21mm (median size, 30 mm
[interquartile range (IQR), 21–50mm]). This introduces
an inherent bias towards higher LI-RADS categories, as
liver observations greater than 20mm are already highly
suspicious of HCC (almost all would be virtually cate-
gorized as at least LR-4). In contrast, our study focuses
specifically on small liver observations (< 20mm), which
presents a greater challenge for LI-RADS categorization
due to the increased granularity required within this
size range.

Another significant strength of our study is that the
analysis was not limited to a single strategy. Although the
individual performance of the human radiologists was
significantly better than that of LiverAI alone across all
LI-RADS categories (κ= 0.82–0.86 vs 0.54), the perfor-
mance of the algorithm yielded positive results regarding
specificity for LR-5 identification (0.96) and sensitivity for
malignant observations (1.00), which allowed a second
approach considering its potential adoption as a triage
tool. Thus, when the chatbot was integrated into the
human workflow, both double reading with arbitration
and triage strategy showed improved efficacy for overall
LI-RADS categorization (κ= 0.87–0.88 vs 0.86–0.87,
respectively) and dichotomized malignancy (κ= 0.92 vs
0.91–0.94, respectively), with no statistical significance
when compared with the individual performance of the
human readers. The high agreement with the ground
truth observed in the triage strategy, coupled with the
reduction in workload, makes this approach the most
efficient for integrating our LLM into the data curation
workflow. As the implementation of machine-learning
applications to clinical practice is becoming a matter of
concern for the radiological community [26], our work
provides a real-world example of how local AI solutions
could be integrated into clinical routine and constitute a
relief for radiologists’ workload [27].
Beyond inherent limitations in model development,

such as data size and quality, LiverAI’s performance may
have been hindered by other factors. Experienced radi-
ologists possess a depth of contextual understanding that
allows them to interpret subtle nuances in free-text
reports, which go beyond the tabular information

Fig. 6 Assessment by LiverAI is compared to the consensus radiologic assessment across all LI-RADS categories (a) and dichotomized malignancy (b).
RCA, radiologic consensus assessment
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considered by the LI-RADS. The lack of standardized LI-
RADS terminology in the original reports represents an
additional limitation. Since the primary recipients of this
information, such as patients, clinicians, or even NLP
tools, typically lack this level of expertise, the validity of
free-text radiological descriptions in the information flow
may be questioned. In fact, the hepatologist’s perfor-
mance, despite being an expert in liver oncology, did not
reach the level of the radiologists. Structured reporting
and standardized systems like LI-RADS provide a
homogeneous framework for radiology reporting, which
not only improves communication with referring physi-
cians [28], but also may ease automated report assess-
ment and content extraction in big data analyses [29].
Additionally, in line with other relevant studies [30], our
model was trained and tested using a single-center patient
dataset with reports in the local language. According to a
recent cross-language validation study, the agreement for
BI-RADS category assignments between humans and
LLMs varied across languages, with better results in
English compared to reports written in Italian or Dutch
[31]. This raises concerns about a “privilege bias”, as some
geographic groups—minority languages and under-
developed societies—may be excluded from receiving the
same potential benefits of this type of AI solution [32]. A
more standardized approach to structured reporting and
the generalization of standardized terminologies could
help mitigate this bias and enhance the generalizability of
NLP models across different languages and healthcare
settings.
Working with LLMs presents a major challenge in

terms of patient data protection. The adoption of
ChatGPT and other general-purpose LLMs in clinical
practice involves transmitting health information to
company servers, inevitably giving rise to privacy con-
cerns [14, 33, 34]. LiverAI is constructed on a GPT
architecture, and despite complying with local privacy-
preserving regulations, all input clinical data is trans-
mitted to OpenAI’s external server, which constitutes a
limiting factor when considering its potential general-
ization into clinical routine.
There are other various limitations to our study. First,

the limited number of radiology reports in both the
training and test datasets may have reduced the potential
performance of our LLM. Second, the chatbot’s output is
based solely on the cross-sectional information written in
the reports, which may be biased by the individual
interpretation of the author radiologist, without con-
sidering additional clinical data such as pathology results
or follow-up imaging. Third, as LI-RADS may evolve over
time, ensuring the adaptability of these models to future
updates is crucial for maintaining its relevance in clinical
practice.Ta
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In conclusion, our proof-of-concept study provides
novel insights into the potential applications of LLMs,
offering an original approach that serves as a real-world
example of how these tools could be integrated into a
local workflow to increase efficiency in a research setting.
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