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Abstract

Objectives Total tumor volume (TTV) is associated with overall and recurrence-free survival in patients with colorectal
cancer liver metastases (CRLM). However, the labor-intensive nature of such manual assessments has hampered the
clinical adoption of TTV as an imaging biomarker. This study aimed to develop and externally evaluate a CRLM auto-
segmentation model on CT scans, to facilitate the clinical adoption of TTV.

Methods We developed an auto-segmentation model to segment CRLM using 783 contrast-enhanced portal venous phase
CTs (CT-PVP) of 373 patients. We used a self-learning setup whereby we first trained a teacher model on 99 manually
segmented CT-PVPs from three radiologists. The teacher model was then used to segment CRLM in the remaining 663 CT-
PVPs for training the student model. We used the DICE score and the intraclass correlation coefficient (ICC) to compare the
student model’s segmentations and the TTV obtained from these segmentations to those obtained from the merged
segmentations. We evaluated the studentmodel in an external test set of 50 CT-PVPs from 35 patients from the Oslo University
Hospital and an internal test set of 21 CT-PVPs from 10 patients from the Amsterdam University Medical Centers.

Results The model reached a mean DICE score of 0.85 (IQR: 0.05) and 0.83 (IQR: 0.10) on the internal and external test sets,
respectively. The ICC between the segmented volumes from the student model and from the merged segmentations was
0.97 on both test sets.
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Conclusion The developed colorectal cancer liver metastases auto-segmentation model achieved a high DICE score and
near-perfect agreement for assessing TTV.

Critical relevance statement AI model segments colorectal liver metastases on CT with high performance on two test sets.
Accurate segmentation of colorectal liver metastases could facilitate the clinical adoption of total tumor volume as an imaging
biomarker for prognosis and treatment response monitoring.

Key Points
● Developed colorectal liver metastases segmentation model to facilitate total tumor volume assessment.
● Model achieved high performance on internal and external test sets.
● Model can improve prognostic stratification and treatment planning for colorectal liver metastases.

Keywords Colorectal neoplasms, Liver, Biomarkers, Tumor, Artificial intelligence

Graphical Abstract

AI model segments colorectal liver metastases on CT with high performance on two test
sets. Accurate segmentation of colorectal liver metastases could facilitate clinical
adoption of total tumor volume as an imaging biomarker for prognosis and treatment
response monitoring.
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Introduction
Total tumor volume (TTV) at baseline and TTV response
to systemic therapy are prognostic for overall and
recurrence-free survival in patients with colorectal cancer
liver metastases (CRLM) [1–5]. Currently, the evaluation
of response to systemic therapy of CRLM is performed
using the Response Evaluation Criteria in Solid Tumors
(RECIST1.1) [6]. However, the correlation between
RECIST1.1 and survival remains indeterminate [7]. Using
TTV might lead to more clinically relevant assessments
when evaluating the response to systemic therapy of
CRLM. Assessing TTV involves manual segmentation of

numerous CRLMs, which is a time-consuming task
requiring considerable expertise. Moreover, manual seg-
mentation is subjective, leading to inter-observer varia-
bility. Thus, despite its potential prognostic value, TTV
assessment has not been adopted in clinical practice.
Artificial intelligence (AI) CRLM segmentation models
may aid clinicians in automatically assessing TTV, facil-
itating practical application in routine patient care.
Automatic segmentation of the liver and primary liver

tumors has been extensively studied in recent years, with
various deep learning architectures such as convolutional
neural networks, UNet and UNet variants, and generative
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adversarial networks being employed to segment primary
liver tumors like hepatocellular carcinoma with promising
results [8–17]. However, this work focuses on CRLM,
which presents unique challenges compared to primary
liver tumors due to their heterogeneous appearance and
less well-defined borders. Although some work has been
done on automatic segmentation of CRLM, it is limited
compared to the body of research on primary liver
tumors. For instance, Vorontsov et al proposed a semi-
automatic segmentation method for CRLM, improving
segmentation speed compared to manual segmentations
but lacking volumetric accuracy [17]. Similarly, Wesdorp
et al introduced an automatic segmentation model for
CRLM; however, this model fell short in an external test
cohort [16]. This lack of segmentation accuracy under-
lines the imperative for developing more precise models
capable of clinical-grade CRLM segmentation to facilitate
automated TTV assessments.
To address current limitations in spatial accuracy of

automated CRLM segmentation, we developed a self-
learning-based segmentation model for COlorectal CAn-
cer Liver metastasis Assessment (COALA) using a large
patient cohort. The COALA model leverages the teacher-
student dynamic, with a teacher model trained on a
smaller segmented dataset guiding a student model
learning from a larger unsegmented dataset. By using
averaged ground-truth segmentations consolidated from
multiple radiologists, we aim to minimize observer-
dependent variations and improve the feasibility of
employing TTV assessments in clinical practice.

Materials and methods
This study retrospectively included data from two medical
centers. The Medical Ethics Review Committee of the
Amsterdam UMC, the Regional Ethical Committee of
Norway, and the Data Protection Officer of Oslo Uni-
versity Hospital approved this study protocol. All patients
were managed per institutional practices. All patients
signed a written informed consent form permitting the
use of their data for studies.

Datasets
We utilized two datasets for this retrospective study: the
INTERNAL and EXTERNAL datasets. The INTERNAL
dataset included 783 portal venous phase CT scans (CT-
PVPs) from 373 patients registered in the CAIRO5 trial
(NCT02162563), a multicenter randomized controlled
trial conducted by the Dutch Colorectal Cancer Group
between November 2014 and January 2022 in 47 hospitals
[18]. The CAIRO5 trial evaluated the optimal systemic
induction therapy for patients with initially unresectable
liver-only CRLM. The patients were randomized between
systemic therapy combinations depending on the primary
tumor site and genetic mutation status. These treatment
regimens included doublet or triplet chemotherapy in
combination with targeted therapy.
The EXTERNAL dataset included 50 CT-PVPs from

35 patients enrolled in the Oslo-COMET trial
(NCT01516710), a single-center, randomized superiority
trial conducted at the Oslo University Hospital between
February 2012 and January 2016. The patients were ran-
domly assigned to undergo laparoscopic or open
parenchyma-sparing liver resection [19].
Both datasets consisted of CT-PVPs at baseline before

systemic therapy and at follow-up after systemic therapy.
We collected information on age, sex, systemic induction
therapies, and the number of CRLMs (Table 1). The CT
acquisition and reconstruction parameters are detailed in
Table S1 in the Supplemental Digital Content.

Data preparation
For the INTERNAL dataset, two research team members
(M.Z., N.W.) semi-automatically segmented a selection of
120 CT-PVPs from 55 patients with 1113 CRLM using the
Tumor Tracking Modality feature of IntelliSpace Portal
9.0® (Philips). Initially, IntelliSpace Portal automatically
generated a region of interest based on differences in
density. The two research team members manually
refined these outlines slice-by-slice for precise segmen-
tation. Three specialist abdominal radiologists (J.H.v.W.:
18 years’ experience, J.v.d.B.: 10 years’ experience, I.N.: 2

Table 1 Patient demographics for the INTERNAL and EXTERNAL datasets

Characteristics INTERNAL dataset

N= 373

EXTERNAL dataset

N= 35

Sex, n (%), female, male 136 (36%), 237 (64%) 19 (54%), 16 (46%)

Average age at diagnosis, years (dev) 62 (10.2) 64 (9)

Average number of CRLM at diagnosis, n (dev) 12 (15.6) 1 (1)

Average largest CRLM diameter mm (dev) 44 (32) 19.5 (11.1)

Pre-NAT scans, n (%) 373 (48%) 31 (62%)

Post-NAT scans, n (%) 410 (52%) 19 (38%)

CRLM colorectal cancer liver metastasis, n number, dev standard deviation, NAT neoadjuvant therapy

Bereska et al. Insights into Imaging          (2024) 15:279 Page 3 of 9



years’ experience) independently reviewed and adjusted
these segmentations as necessary using the IntelliSpace
Portal.
For the EXTERNAL dataset, two members of the

research team independently performed initial segmen-
tations of 50 CT-PVPs from 35 patients with 72 CRLM
using 3DSlicer (5.4.0). Three specialist abdominal radi-
ologists (G.K.:12 years’ experience, T.S.: 15 years’ experi-
ence, F.K.K.: 10 years’ experience) each subsequently
independently reviewed and, if needed, corrected all these
segmentations using 3DSlicer (5.4.0) and MedSeg (1.0).
The corrected segmentations from the three radiologists

in the INTERNAL and EXTERNAL datasets were merged
into one single segmentation through the Simultaneous
Truth and Performance Level Estimation algorithm
(STAPLE) algorithm, henceforth referred to as the
merged segmentations [20].
Including surrounding abdominal structures has been

shown to increase segmentation model performance;
therefore, next to the CRLM segmentations, we included
segmentations of twelve pertinent surrounding anatomi-
cal structures: the duodenum, pancreas, both adrenal
glands, spleen, gallbladder, both kidneys, colon, stomach,
small bowel, and liver [21]. These additional segmenta-
tions were generated automatically using the anatomical
segmentation model, TotalSegmentator, and serve as
contextual information for the model, helping it to iden-
tify relevant areas of the scan and improve CRLM seg-
mentation accuracy [22]. Figure 1 depicts an example of a
segmented CT-PVP from the INTERNAL dataset.

Model implementation
We followed a self-learning approach to train the COALA
segmentation model, which is demonstrated schemati-
cally in Fig. 2. Self-learning commences with a teacher
segmentation model trained on a small set of manually

segmented training data. This teacher segmentation
model is then used to generate segmentations for the
entire unsegmented training dataset. These teacher-
generated segmentations are subsequently used to train
a student segmentation model. The student segmentation
model, through leveraging the additional training
data, can exceed the performance of the initial teacher
segmentation model. This approach can facilitate a
reduction in manual segmentations and an increase in
the robustness and generalizability of the segmentation
model [23].
We initially trained a teacher segmentation model using

a subset of 99 CT-PVPs from the previously manually
segmented 120 CT-PVPs from the INTERNAL dataset.
Using this teacher segmentation model, we obtained
automatic segmentations of the remaining INTERNAL
dataset, comprising 663 CT scans from 318 patients. The
resulting automatic and initial 99 segmentations
were used to train the student segmentation model.
The student model served as the final COALA
segmentation model.
We selected a nnUNet network setup that included a two-

stage 3D U-Net cascade for both the student and teacher
segmentation models [24]. The cascade comprised an initial
U-Net trained on down-sampled images to generate low-
resolution segmentations, which served as an auxiliary input
for training the subsequent full-resolution U-Net. We used
5-fold cross-validation with an 80:20 training-validation split,
1000 steps per fold, and an initial learning rate of 0.05 to train
both the low-resolution and full-resolution U-Nets. All
models were trained on an NVIDIA A100 GPU, taking
roughly one day per fold.

Performance assessment
We assessed the performance of the trained COALA
model using the 50 CT-PVPs from the EXTERNAL

Fig. 1 Example of a manually segmented portal venous phase axial computed tomography scan performed by a trio of radiologists and combined
using the STAPLE algorithm. Green= CRLM, turquoise= liver, pink= spleen, dark blue= pancreas, light blue= adrenal glands, red= stomach,
yellow= colon
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dataset and a subset of the INTERNAL dataset containing
21 CT-PVPs. To evaluate the spatial accuracy of our
model’s CRLM segmentations, we compared the model’s
segmentations to the merged segmentations using DICE
scores. To evaluate our model’s TTV assessment, we
derived the TTV in voxels from the model’s and merged
segmentations. We examined the agreement between the
model’s and the merged segmentation’s TTV by calcu-
lating a two-way mixed-effect intraclass correlation coef-
ficient (ICC), categorizing the results as poor (ICC < 0.4),
fair (ICC 0.4–0.59), good (ICC 0.6–0.74), or excellent
(ICC 0.75–1.0). Finally, we used Welch’s t-test to compare
the model’s performance on pre-NAT and post-NAT
scans. A p-value less than 0.05 denoted statistical
significance.

Results
Patient characteristics
The INTERNAL dataset contained 783 CT-PVPs from
373 patients, depicting 14,152 CRLM, and the EXTERNAL
dataset contained 50 CT-PVPs from 35 patients depicting
72 CRLM. In the INTERNAL dataset, the majority of
patients were male (64%), in the EXTERNAL dataset less
than half of patients was male (46%). The median number
of CRLM at diagnosis (12 versus 1) and the median largest
diameter (42 mm versus 19.5 mm) were higher in the
INTERNAL dataset. Imaging data consisted of CT-PVPs
at baseline before systemic therapy (INTERNAL: 373
(48%), EXTERNAL: 410 (52%)) and at follow-up after
systemic therapy (INTERNAL: 31 (62%), EXTERNAL: 19
(38%)). See Table 1.

Segmentation model
The COALA model achieved a mean DICE score of 0.83
(IQR: 0.10) on the EXTERNAL dataset, with a mean DICE
score of 0.84 (0.10) and 0.82 (IQR: 0.05) on pre- and post-
NAT scans, respectively. On the withheld subset of the
INTERNAL dataset, the COALA model achieved a mean
DICE score of 0.85 (IQR: 0.05) with a mean DICE score of
0.87 (IQR: 0.02) and 0.85 (IQR: 0.05) on pre- and post-
NAT scans, respectively. A Welch’s t-test revealed no
significant difference between the model’s performance
on pre- or post-NAT scans on either the EXTERNAL of
the INTERNAL dataset (p= 0.64 and p= 0.22). A visual
comparison between the segmentation results garnered by
the model and the ground-truth merged segmentation is
depicted in Fig. 3.

Total tumor volume analysis
The agreement of the TTV derived from the COALA
model’s with the volumes from the merged segmentations
reached an ICC of 0.97 on both the EXTERNAL dataset
INTERNAL datasets. The median, largest, and smallest
TTV in voxels obtained from the model’s and the merged
segmentations are denoted in Table 2.

Discussion
This study presents the development and external eva-
luation of a fully automatic CRLM segmentation and TTV
assessment model COALA. By employing a self-learning
training setup with a diverse dataset and consolidating
CRLM segmentations from three radiologists into a uni-
fied ground truth, we reduced the required manual

Fig. 2 The proposed learning framework for CRLM and abdominal organ segmentation on contrast-enhanced CT scans. CT-PVP, portal venous phase
computed tomography scan
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training samples, enhanced the model’s robustness and
generalizability, and mitigated observer-dependent varia-
tions. The COALA model showed no significant differ-
ence in CRLM segmentation DICE scores and displayed
near-perfect agreement for TTV assessment in the
external evaluation cohort from the Oslo University
Hospital. Collectively, these findings suggest that the
proposed COALA model has the potential to provide
reliable and consistent TTV assessments in routine clin-
ical practice.
While automatic segmentation of primary liver tumors

has been extensively studied using various deep learning
architectures [8–17], the segmentation of colorectal liver
metastases (CRLM) presents unique challenges due to
their heterogeneous appearance and less well-defined
borders. Vorontsov et al made significant contributions in
applying deep learning to TTV assessment for CRLM
[17]. Their methodology, based on fully convolutional
networks, did offer improvements in segmentation speed
but was compromised by a lack of segmentation and
volumetric accuracy. Specifically, the DICE score achieved
by their automated and even user-corrected CRLM seg-
mentation model was substantially lower than the DICE
score achieved by our COALA model (with 0.68 com-
pared to 0.85). Similarly, Wesdorp et al introduced an

automatic segmentation model for CRLM, but it fell short
in an external test cohort [16]. These limitations under-
score the need for more precise models capable of
clinical-grade CRLM segmentation. By utilizing a larger
and more diverse training dataset of 833 scans, compared
to 115 in the previous study, we sought to enhance the
model’s ability to generalize to new, unseen data from
various patient populations. Furthermore, we strength-
ened the reliability of our ground truth by incorporating
annotations from three experienced radiologists, reducing
the risk of individual bias or errors. Lastly, our study
included an external evaluation of the COALA model
using data from Oslo University Hospital, demonstrating
its applicability and effectiveness across different medical
centers.
There are several limitations of our study that should be

acknowledged. First, the retrospective nature of our study
limits the prediction of the model’s efficacy in prospective
clinical settings. Second, the merged segmentations were
created by radiologists correcting an existing pre-seg-
mentation, likely resulting in higher inter-rater DICE
scores and ICC compared to from-scratch segmentations.
Third, the external test cohort differed from the training
cohort, specifically in the number of CRLMs per patient.
While the model’s good performance despite this

Fig. 3 Comparison between the COALA model’s segmentation and the merged segmentation within a portal venous phase axial computed
tomography scan. Red= automatic segmentation performed by our model, green=merged manual segmentation performed by three radiologists and
merged using the STAPLE algorithm

Table 2 TTV derived from the COALA model’s and the merged segmentations in voxels on the INTERNAL and EXTERNAL datasets

TTV in voxels EXTERNAL COALA model EXTERNAL merged INTERNAL COALA model INTERNAL merged

Median (IQR) 2,024 (2,573) 2,315 (3,011) 59,760 (135,198) 62,772 (127,396)

Largest 11,240 12,546 656,040 684,647

Smallest 189 122 721 2601

TTV total tumor volume, IQR interquartile range
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discrepancy can be considered a strength, it also poses
questions about how representative the training data is for
a wide range of clinical scenarios. Finally, we did not
evaluate our model on a publicly available benchmark
dataset, as existing ones, such as the Liver Tumor Seg-
mentation (LiTS) dataset, mainly comprise primary liver
tumors, not CRLM [25]. To address this, we make our
internal test set publicly available along with our model
for future benchmarking. Future studies should incorpo-
rate data from global centers and include more clinically
representative test cohorts. Automating manual radi-
ological evaluations, such as response evaluation currently
done in clinical practice using RECIST1.1 criteria, pre-
sents a promising application.
In conclusion, our study introduces the first fully

automatic CRLM segmentation model COALA, which
aligns with inter-observer agreement for segmentation
and displays near-perfect agreement for TTV assessment.
The model’s robustness is highlighted by its external
evaluation of data annotated by three radiologists, offering
a substantial mitigation of observer-dependent variations.
These advancements provide a promising foundation for
reliable and consistent TTV measurements, crucial for the
effective management of patients with colorectal cancer
liver metastases.

Abbreviations
AI Artificial intelligence
COALA COlorectal CAncer Liver metastasis Assessment
CRLM Colorectal cancer liver metastasis
CT-PVP Portal venous phase CT scan
ICC Intraclass correlation coefficient
RECIST Response Evaluation Criteria in Solid Tumors
STAPLE Simultaneous Truth and Performance Level Estimation
TTV Total tumor volume
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