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Abstract
Introduction  Lung adenocarcinoma (LUAD), a common subtype of NSCLC, has a high mortality rate. Telomere genes 
are influenced by radiation therapy, affecting treatment response. Additionally, immune cell presence in the tumor 
microenvironment plays a crucial role in cancer prognosis. However, the role of Radioresistant-Related Telomere 
Genes (RRTGs) in LUAD prognosis and immune infiltration remains unclear.

Methods  In this research, we utilized diverse bioinformatics techniques to examine our personally tested 
information along with publicly accessible datasets. We conducted a comprehensive study on the genetic and 
transcriptional differences, predictive significance, and expression profiles of RRTGs. Afterwards, a RRTGs score was 
developed to forecast the overall survival (OS) and ascertain its reliable predictive capacity for patients with LUAD. 
Following this, dependable nomograms were developed to enhance the practicality of RRTGs scoring in a clinical 
setting. Furthermore, the investigation delved into the associations among RRTGs, infiltration of immune cells, 
prognosis, and clinical treatments of patients. Gene Set Enrichment Analysis (GSEA) was conducted to explore 
the potential mechanisms by which RRTGs influence the regulation of LUAD. Then, Western blot, qRT-PCR and 
Immunohistochemistry were used to detect the expression levels of RRTGs in cell lines and LUAD tumor tissues.

Results  Our research indicates that certain genes related to telomeres have a notable correlation with the prognosis 
of patients diagnosed with LUAD. The RRTGs score, which includes three key genes (ARRB1, PLK1, and DSG2), was 
developed to forecast the OS and its dependable predictive capability for individuals diagnosed with LUAD was 
ascertained. Afterwards, extremely reliable nomograms were developed to improve the practicality of the RRTGs 
score. Moreover, as illustrated, genetic characteristics can be utilized to assess the infiltration of immune cells in 
tumors, as well as clinical attributes and prognosis. RRTGs score characterizes tumor mutational burden, immune 
activity, and notable survival probabilities in addition. Furthermore, GSEA results revealed that RRTGs may influence 
LUAD by modulating immune-related pathways in high-risk groups and regulating cell cycle and DNA repair 
processes in low-risk groups. The RRTGs (ARRB1 and PLK1) were upregulated in A549 cells and radiosensitive NSCLC 
tissues compared to radioresistant A549 cells and NSCLC tissues.
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Introduction
On a global level, lung adenocarcinoma (LUAD), which 
is a type of non-small cell lung cancer (NSCLC), is a 
dominant and challenging malignancy [1, 2]. Despite 
significant progress in the early identification and treat-
ment approaches, the outlook for individuals with LUAD 
remains less than ideal. This underscores the need for 
persistent research efforts to discover novel biomarkers 
and treatment targets [3, 4].

Lately, there has been a growing curiosity in explor-
ing the complex relationship between telomeres and the 
development and advancement of cancer [5]. Telomeres, 
repetitive DNA sequences situated at chromosomal ter-
mini, constitute a paramount safeguard for chromosomal 
stability and integrity. Maintaining the length of telo-
meres is crucial for the survival of cells, and disrupting it 
has been linked to various human illnesses, with cancer 
being a major area of concern [6, 7]. Disrupted telomeres 
can engender genomic instability, fostering oncogenic 
transformation and tumor progression [8].

Radiotherapy plays a crucial role in the treatment of 
lung cancer by causing DNA harm in cancerous cells, 
resulting in the halting of cell division and triggering 
apoptosis [9]. Nevertheless, radioresistance frequently 
compromises therapeutic efficacy, posing a significant 
clinical challenge [10]. Interestingly, recent findings high-
light a possible link between telomeres and the ability of 
cancer cells to resist radiation [11]. Telomere dynamics 
and telomerase activity have been postulated to influence 
the response to radiation therapy, thus implicating telo-
meres in modulating the cellular reaction to radiation-
induced DNA damage [12, 13].

Moreover, increasing proof highlights the crucial sig-
nificance of the immune system in the advancement of 
lung adenocarcinoma and the results for patients [14]. 
Immune cells that infiltrate, including T cells, B cells, 
natural killer cells, and macrophages, engage in com-
plex communication with cancer cells and the tumor 
microenvironment, ultimately impacting tumor growth 
and the effectiveness of therapy [15, 16]. It is crucial to 
comprehend the fundamental molecular mechanisms 
that control immune infiltration in lung adenocarcinoma 
due to the intricate interaction between cancer cells and 
immune effectors [17].

Given the possible influence of telomeres on the 
response to radiotherapy and the biology of tumors, 
it becomes important to investigate the connection 
between telomere genes associated with radiotherapy 

and the infiltration of the immune system in LUAD. 
Unraveling the impact of telomere-associated genes on 
the infiltration of immune cells and the tumor micro-
environment shows potential in uncovering important 
knowledge about new treatment approaches, ultimately 
improving patient outcomes [18, 19].

Using our exclusive sequencing data, combined with 
knowledge obtained from TCGA and GEO databases, 
we examined the effects of radiotherapy-associated telo-
mere genes (RRTGs) on the advancement, Tumor Micro-
environment (TME), response to immunotherapy, and 
prognostic results in individuals suffering from LUAD. 
Furthermore, we classified patients with LUAD into sepa-
rate categories, allowing us to investigate differences in 
prognostic significance, molecular traits, responsiveness 
to anti-cancer medications, and the level of immune cell 
infiltration. Moreover, we developed a risk classifica-
tion system based on the assessment of RRTGs, enabling 
accurate prediction of clinical outcomes and overall sur-
vival  (OS) measures for patients with LUAD. Our main 
goal is to improve our comprehension of the complex 
connection between telomere genes associated with 
radiotherapy and LUAD, in order to lead the advance-
ment of strong immunotherapeutic strategies focused on 
LUAD.

Materials and methods
Cell culture
The A549 cells were acquired from the American Type 
Culture Collection located in Manassas, Virginia, United 
States. To induce radioresistant cells, A549 cells in the 
logarithmic growth phase were subjected to fractionated 
radiation using the TrueBeam linear accelerator from 
Varian Medical Systems located in Palo Alto, CA, USA. 
The radiation field size was 10 × 10  cm with a source-
to-skin distance of 100  cm. The cells were exposed to a 
radiation dose of 2 Gy per fraction once daily, with a total 
of 25 fractions. Following the administration of 25 frac-
tions, the cells were subsequently passaged every 3 days 
and designated as the A549/X cell line.

Transcriptme RNA sequencing
A549 and A549/X cells were cultured in 6-well dishes 
for one night, and RNA was extracted using RNAiso 
Plus following the guidelines provided by the manu-
facturer. Illumina technology was utilized to conduct 
high-throughput RNA sequencing (RNA-Seq). RNA 
quality and integrity were assessed using the Agilent 2100 

Conclusion  In conclusion, this research emphasizes the significance of RRTGs in the outlook of LUAD. The findings 
contributed to a better understanding of the link between radiotherapy, telomere-related genes, and prognosis in 
LUAD, and identified potential therapeutic targets for patients with LUAD.
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Bioanalyzer. After enrichment, fragmentation, cDNA 
synthesis, end repair, and PCR amplification, the Illumina 
sequencing was performed on the prepared sequencing 
libraries. Hisat2 was used to align clean reads to the des-
ignated reference genome in order to acquire the posi-
tional data of reference genes or sequences unique to 
each sequencing sample. The htseq-count software was 
used to identify the abundance of every protein-coding 
gene in each sample by comparing sequences with known 
reference gene sequences and annotation files. We 
sequenced three sets of A549 and three sets of A549/X 
in two runs.

Public data acquisition
Data from The Cancer Genome Atlas (TCGA) ​(​​​h​t​​t​p​s​​:​/​/​p​​
o​r​​t​a​l​.​g​d​c​.​c​a​n​c​e​r​.​g​o​v​/​​​​​) (TCGA-luad) and Gene ​E​x​p​r​e​s​s​i​o​
n Omnibus (GEO) ​(​​​h​t​​t​p​s​​:​/​/​w​​w​w​​.​n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​/​​​​​
) databases were collected as public data. To conduct a 
more thorough examination, we accessed RNA expres-
sion data of LUAD from the GEO dataset (GSE72094) 
and TCGA dataset. We corrected batch effects caused 
by non-biological technical biases using the “ComBat” 
algorithm in the SVA package. Single-cell RNA sequenc-
ing (scRNA-seq) data of RRTGs in LUAD were analyzed 
through the TISCH2 website ​(​​​h​t​​t​p​:​​/​/​t​i​​s​c​​h​.​c​o​m​p​-​g​e​n​o​m​
i​c​s​.​o​r​g​/​h​o​m​e​/​​​​​)​. We utilized the Gene Expression Profil-
ing Interactive Analysis (GEPIA) online database ​(​​​h​t​​t​p​:​​/​/​
g​e​​p​i​​a​.​c​a​n​c​e​r​-​p​k​u​.​c​n​/​i​n​d​e​x​.​h​t​m​l​​​​​) to examine the ​p​r​o​g​n​o​s​
i​s of the three model genes and compare their variations 
between the tumor and normal groups.

Detection of RRTGs with altered expression levels
Expression levels were averaged for repetitive genes 
in the transcriptome expression matrix acquired from 
TCGA. Afterwards, a differential analysis was conducted 
on the matrix of transcriptome expression, using screen-
ing criteria of |log2 fold change| > 1 and an adjusted 
p-value < 0.05. The self-test data underwent the same cri-
teria for differential analysis. Furthermore, genes associ-
ated with telomeres were acquired from ​h​t​t​​p​:​/​/​​w​w​w​​.​c​​a​n​
c​e​r​t​e​l​s​y​s​.​o​r​g​/​t​e​l​n​e​t​/​​​​​. From the self-test data, the ​c​o​m​p​a​r​
i​s​o​n of genes that were expressed differently, along with 
the comparison of genes expressed differently between 
tumor and normal groups, and telomere-related genes, 
resulted in a total of 44 genes that were differentially 
expressed and related to radiation and telomeres. Dif-
ferentially expressed genes were analyzed using GO for 
biological functions and KEGG for pathway involvement. 
Pathways were considered significantly enriched GO 
terms and KEGG pathways if they met the criterion of 
p < 0.05.

Creating and assessing the RRTGs prognostic model
The R package ‘insert’ was used to randomly divide 
TCGA-LUAD patients into training and internal test-
ing sets in a 1:1 ratio. The RRTGs that showed statisti-
cal significance in the univariate Cox regression analysis 
underwent LASSO regression analysis to precisely calcu-
late the coefficients for each established relationship. The 
interpretability and predictive capability of the statistical 
model were enhanced by utilizing the popular LASSO 
regression technique, which involved the combination of 
normalization and variable selection. Constructing the 
risk model for RRTGs involved utilizing the LASSO-Cox 
regression coefficients of each gene. Risk values for each 
LUAD patient were calculated using the ‘predict’ func-
tion from the survival R package. Based on the median 
risk value, patients were categorized into low-risk and 
high-risk groups.

To compare the survival probabilities between the two 
groups, a Kaplan-Meier analysis was performed using 
the R packages ‘survival’ and ‘survminer’ with log-rank 
tests to determine statistical significance (p < 0.05). The R 
package ‘timeROC’ was used to perform time-dependent 
receiver operating characteristic (ROC) analysis for sur-
vival probabilities at 1-year, 3-year, and 5-year intervals, 
in order to calculate the values of area under the curve 
(AUC).

GSEA analysis
To investigate the molecular mechanisms and biologi-
cal processes associated with the three-gene model, 
GSEA analysis was conducted between high- and low-
risk groups using the KEGG and GO datasets from the 
molecular signature database ​(​​​h​t​​t​p​s​​:​/​/​w​​w​w​​.​g​s​e​a​-​m​s​i​g​d​
b​.​o​r​g​/​g​s​e​a​/​m​s​i​g​d​b​​​​​)​. A nominal p < 0.05 and FDR < 0.25 
were used as thresholds for statistical significance.

Creating nomograms and conducting an independent 
prognostic analysis
Obtained were the clinical features of patients with 
LUAD from the complete TCGA dataset, encompassing 
factors such as age, grade, and stage. The variables were 
combined with the score and subjected to both univari-
ate and multivariate Cox regression analyses. In order to 
obtain individualized forecasts for the survival probabili-
ties of LUAD patients, we created a nomogram utilizing 
clinical traits and the score derived from the R packages 
‘rms’ and ‘regplot’. To assess the accuracy of predicting 
survival probabilities at 1-year, 3-year, and 5-year inter-
vals, a time-based ROC analysis was employed. The 
nomogram’s performance was assessed using calibration 
curves, ROC curves, and decision curve analysis (DCA) 
curves [20].

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://tisch.comp-genomics.org/home/
http://tisch.comp-genomics.org/home/
http://gepia.cancer-pku.cn/index.html
http://gepia.cancer-pku.cn/index.html
http://www.cancertelsys.org/telnet/
http://www.cancertelsys.org/telnet/
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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RRTGs score and immune infiltration
Established methods were used to determine the immune 
infiltration status of TCGA database samples in order 
to investigate the correlation between immune infil-
trating cells and risk features. For each LUAD sample, 
StromalScore, ImmuneScore, and EstimateScore were 
calculated using the “ESTIMATE” R package based on 
gene expression patterns of stromal and immune cells, 
respectively [21]. The CIBERSORT algorithm was uti-
lized to approximate the ratios of 22 immune cell catego-
ries from an extensive collection of gene expression data 
obtained from tumor samples. The TCGA-LUAD RNA-
Seq data (normalized using TPM) underwent process-
ing to determine the quantities of immune cells [22]. The 
differences between high-risk and low-risk groups were 
analyzed using the Mann-Whitney U test for non-nor-
mally distributed data.

Association of the RRTGs score with tumor mutation 
burden and immune checkpoint
The patient’s response to immunotherapy is linked to 
the genes Tumor mutation burden (TMB) and immune 
checkpoint genes (ICGs). To identify variations in muta-
tion status among the score groups of LUAD patients, the 
TCGA database was utilized to extract mutation annota-
tion format (MAF) using the ‘maftools’ R package. Addi-
tionally, the TMB scores were computed for every patient 
with LUAD in the complete TCGA group.

Assessment of the RRTGs prognostic model in the immune 
therapy response and its association with the index of 
tumor stem cells
The TIDE algorithm (http://tide.dfci.harvard.edu) was 
utilized to assess the response of LUAD patients to 
immune therapy, aiding in the identification of patients 
who are better suited for immunotherapy [23]. More-
over, the RNA expression file titled ‘StemnessScores_
RNAexp_20170127.2.tsv’ was obtained. The tumor stem 
cell-like features were determined by analyzing the tran-
scriptome and epigenetic traits of the samples. A correla-
tion analysis was conducted to examine the relationship 
between RRTGs score and indices of Cancer Stem Cells 
(CSC).

Correlation of the RRTGs with chemotherapy sensitivity
The TCGA cohort was analyzed using the ‘calcPhe-
notype’ function from the ‘oncoprecdict’ R package to 
evaluate the sensitivity scores of frequently prescribed 
medications in the treatment plans for patients with 
LUAD. Greater sensitivity to the drug is indicated by a 
lower estimated drug sensitivity.

Western blot analysis
Total protein was extracted from both A549 and A549/X 
cell lines using a lysis buffer supplemented with a prote-
ase inhibitor cocktail. Protein concentration was quanti-
fied using the Bradford assay. Equal amounts of protein 
from each sample were separated on a 10% SDS-PAGE 
gel and transferred to PVDF membranes. The mem-
branes were blocked with 5% BSA in TBST for 1  h at 
room temperature and incubated with primary anti-
bodies against ARRB1 (Abclonal Technology, Wuhan, 
China), PLK1 (Abclonal Technology, Wuhan, China), and 
DSG2 (Abclonal Technology, Wuhan, China) overnight at 
4 °C. After washing, the membranes were incubated with 
HRP-conjugated secondary antibodies for 1  h at room 
temperature. Protein bands were detected using ECL 
substrate and the densitometric analysis was performed 
using ImageJ software (NIH, Bethesda, MD, USA).

Immunohistochemistry (IHC)
A total of eight patients with recurrent NSCLC after sur-
gical resection, who underwent concurrent chemoradio-
therapy at Shanghai Pulmonary Hospital, were included 
in this study. Tumor response was evaluated based on the 
Response Evaluation Criteria in Solid Tumors (RECIST, 
version 1.1). Formalin-fixed, paraffin-embedded sec-
tions of NSCLC tumor tissues were deparaffinized in 
xylene and rehydrated through a graded alcohol series. 
Antigen retrieval was performed in a citrate buffer (pH 
6.0) using a microwave. Endogenous peroxidase activity 
was quenched with 3% hydrogen peroxide. Non-specific 
binding was blocked with 5% normal goat serum for 1 h 
at room temperature. Sections were incubated with pri-
mary antibodies against ARRB1 (Abclonal Technology, 
Wuhan, China), PLK1 (Abclonal Technology, Wuhan, 
China), and DSG2 (Abclonal Technology, Wuhan, China) 
overnight at 4  °C. After washing with PBS, the sections 
were incubated with biotinylated secondary antibody 
for 30  min at room temperature, followed by treatment 
with streptavidin-HRP complex. The reaction was visual-
ized with DAB substrate, and the sections were counter-
stained with hematoxylin, dehydrated, and mounted.
 
Quantitative real-time PCR (qRT-PCR)
 
Total RNA was extracted from the cell lines using TRIzol, 
followed by reverse transcription into cDNA with the 
SYBR Green Master Mix kit. GAPDH served as the 
endogenous control, and data were analyzed using the 
comparative Ct method (2−△△Ct).

http://tide.dfci.harvard.edu
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The primer sequences were as follows:
 
ARRB1, Forward5’-​T​G​A​T​G​A​C​G​A​C​A​T​T​G​T​A​T​T​T​G​A​G​
G​A​C-3’, Reverse5’-​A​A​G​A​A​G​A​C​G​A​G​T​A​A​G​C​A​T​C​C​G​A​
G​T − 3’;
PLK1, Forward5’-​A​A​G​A​G​A​T​C​C​C​G​G​A​G​G​T​C​C​T​A-3’, 
Reverse5’-​T​C​A​T​T​C​A​G​G​A​A​A​A​G​G​T​T​G​C​C-3’;
DSG2, Forward5’-​A​T​G​A​C​G​G​C​T​A​G​G​A​A​C​A​C​C​A​C-3’, 
Reverse5’- ​G​G​G​T​C​A​G​T​T​T​G​T​G​G​C​T​G​A​C​T-3’.
And GAPDH Forward5’- ​T​A​A​A​G​G​G​C​A​T​C​C​T​G​G​G​C​T​
A​C​A​C​T-3’, Reverse5’- ​T​T​A​C​T​C​C​T​T​G​G​A​G​G​C​C​A​T​G​T​
A​G​G-3’.

Statistical analysis
R software (version 4.1.2) was utilized for all statistical 
computations. Continuous variables with a normal distri-
bution were analyzed using independent sample t-tests, 
whereas continuous variables with a non-normal distri-
bution were analyzed using the Mann-Whitney U test. 
Comparison among three or more groups was conducted 
using both One-way ANOVA and the Kruskal-Wallis 
test. The significance of differences was determined by 
conducting survival analysis using the Kaplan-Meier 
method and employing the log-rank test. A significance 
level of less than 0.05 was deemed statistically significant.

Results
Genetic and transcriptomic variations of RRTGs in LUAD
The flowchart of this study is illustrated in Fig.  1. By 
intersecting the self-test data, the differentially expressed 
genes between tumor and normal groups in TCGA, and 
the telomere-related genes (Fig.  2A-C), we were able to 
identify 44 RRTGs that exhibited differential expres-
sion. Figure 2D displays the mutation status of telomere-
associated genes in patients with LUAD. Out of the 616 
patients with LUAD in the TCGA group, 191 individuals 
(31.01%) exhibited genetic mutations. The gene mutation 
rate was highest for CENPF at 6%, with MKI67, DSG2, 
FGFR4, and MAP3K3 also showing notable mutation fre-
quencies. In addition, we examined the occurrence rate 
of copy number variations (CNVs) in the 44 genes associ-
ated with telomeres in LUAD. In Fig. 2F, PIAS3 exhibited 
the highest frequency of amplification, whereas GAMT 
and FANCA experienced extensive losses in CNVs. On 
23 chromosomes, Fig. 2E displays the positions of CNV 
alterations in the 44 genes associated with telomeres.

The GO enrichment analysis identified key biologi-
cal processes related to cell division and chromosome 
organization, such as the regulation of nuclear division, 
G2/M transition of the mitotic cell cycle, mitotic check-
point signaling, and chromosome segregation. Addi-
tionally, activities involving condensed chromosomes, 
spindle microtubules, and protein kinase regulation were 

Fig. 1  The flowchart of this study
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Fig. 2  Analysis of expression and mutation of RRTGs in LUAD. (A) Volcano map of differentially expressed genes (DEGs) between A549 and A549/X. (B) 
Volcano map of the differentially expressed genes between tumor and normal groups in TCGA. (C) The Venn diagram of DEGs1, DEGs2, and telomere-
related genes. (D) Mutation frequency of 44 RRTGs in LUAD from the TCGA-LUAD dataset. (E) The chromosome distribution of CNV among 44 RRTGs. (F) 
The frequency of CNV among 44 RRTGs
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enriched. Meanwhile, KEGG pathway analysis revealed 
significant enrichment in pathways like progesterone-
mediated oocyte maturation, the Fanconi anemia path-
way, and the cell cycle pathway, all crucial for DNA repair 
and cell cycle control. These findings suggest that the 
44 RRTGsare closely related to cell cycle regulation and 
DNA maintenance, which may be linked to radiotherapy 
resistance (Figure S2A-B).

Developing and assessing the prognostic model for RRTGs
We combined the TCGA and GSE72094 datasets and 
performed univariate analysis on the 44 differentially 
expressed telomere genes to identify 32 genes with prog-
nostic significance. Following that, we conducted LASSO 
and multivariate Cox regression analyses, which led to 
the discovery of three crucial genes, specifically ARRB1, 
DSG2, and PLK1, for the development of the prognostic 
model (Figure S1).

Fig. 3  Construction and validation of the RRTGs risk score model. (A) Heat map and the risk point plot of model gene expression in the high and low-risk 
groups in the TCGA cohort. (B) Heat map and the risk point plot of model gene expression in the high and low-risk groups in the training set. (C) Heat map 
and the risk point plot of model gene expression in the high and low-risk groups in the test set. (D) KM survival curves for the high and low-risk groups in 
the TCGA cohort. (E) KM survival curves for the high and low-risk groups in the training set. (F) KM survival curves for the high and low-risk groups in the 
test set. (G) ROC curves for the high and low-risk groups in the TCGA cohort. (H) ROC curves for the high and low-risk groups in the training set. (I) ROC 
curves for the high and low-risk groups in the test set
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The TCGA cohort patients were split into training and 
testing cohorts in a 1:1 proportion. Figure  3A-C shows 
the variation in expression of ARRB1, DSG2, and PLK1 
between high-risk and low-risk groups in the TCGA total 
cohort, training, and testing cohorts, as depicted by the 
heatmap. Moreover, the risk graph illustrates that indi-
viduals with elevated risk scores experienced increased 
mortality rates and reduced survival durations. Accord-
ing to the Kaplan-Meier analysis, patients in the high-risk 
group exhibit decreased OS in comparison to patients in 
the low-risk group across the TCGA total cohort, as well 
as the training and testing cohorts (P < 0.001) (Fig. 3D-F). 
Figure 3G-I shows that in the TCGA training group, the 
AUC values for predicting 1-, 3-, and 5-year OS are 0.676, 
0.623, and 0.595, correspondingly. The AUC values for 
predicting 1-year, 3-year, and 5-year overall survival (OS) 
in the TCGA testing group are 0.672, 0.648, and 0.609, 
correspondingly.

Creation and verification of the RRTGs Nomogram
We performed univariate and multivariate Cox regres-
sion analyses to assess if the RRTGs score can function as 
an autonomous prognostic indicator for OS. Significant 
variations in tumor stage and risk score were observed in 
the TCGA cohort, as depicted in Fig.  4A and B. After-
wards, we merged the risk score with clinical data of 
patients, which included age, sex, and tumor stage, in 
order to create a nomogram within the TCGA group. The 
nomogram offers a numerical approach to produce indi-
vidualized prognostic forecasts for patients with LUAD 
(Fig. 4D). The assessment of the model, utilizing the AUC 
measurements, calibration curve, and decision curve 
analysis (DCA), showcased the predictive ability and pre-
cision of the nomogram (Fig. 4C, E, F).

Examining the immune microenvironment in groups and 
GSEA analysis in at high and low risk for RRTGs
In order to investigate the possible involvement of 
RRTGs in immune infiltration of LUAD, we employed 
the ESTIMATE algorithm to compare the tumor TME 
score and the abundance of immune cells in the high-risk 
and low-risk groups. Figure 5A demonstrates that ARRB1 
displayed a notable positive association with monocytes, 
M2 macrophages, and quiescent CD4 memory cells, 
whereas it exhibited a significant negative correlation 
with activated CD4 memory cells. In addition, ARRB1 
exhibited a notable positive association with neutrophils, 
M0 macrophages, and activated mast cells, while display-
ing a significant negative association with resting mast 
cells. Furthermore, PLK1 exhibited noteworthy positive 
associations with M0 macrophages, M1 macrophages, 
and activated CD4 memory cells, whereas it demon-
strated a substantial negative correlation with resting 
CD4 memory cells. The results indicate a correlation 

between these genes and immune cells. In the low-
risk group, the TME scores (comprising stromal score, 
immune score, and ESTIMATE score) exhibited a sub-
stantial increase (Fig.  5B). Furthermore, variations were 
observed in the manifestation of genes associated with 
radiotherapy and chemotherapy (AKR1C1, EGFR, EZH2, 
HOXA9, HGMT, SOX2, and TBX5) among the two sets. 
Furthermore, there were differences in the expression of 
immune checkpoint genes (PDCD1LG2, CD274, TIGIT, 
LAG3, CTLA4, PDCD1, HAVCR2, SIGLEC15) and 
HLA-related genes observed between the high-risk and 
low-risk groups (Fig. 5C-E).

The GSEA analysis revealed distinct enrichment pat-
terns between the high- and low-risk groups. In the 
high-risk group, GO terms were significantly enriched 
in immune-related processes, such as adaptive immune 
response, antigen processing via MHC class II, comple-
ment activation, and MHC class II protein complexes. 
KEGG pathways in this group were also enriched in 
immune and metabolism-related pathways, includ-
ing asthma, cell adhesion molecules, drug metabolism 
(cytochrome P450), the intestinal immune network for 
IgA production, and systemic lupus erythematosus. In 
contrast, the low-risk group showed enrichment in GO 
terms related to cell division and chromosome dynamics, 
such as chromosome segregation, mitotic nuclear divi-
sion, and sister chromatid segregation. KEGG pathways 
for this group were focused on the cell cycle, DNA rep-
lication, oocyte meiosis, p53 signaling, and the spliceo-
some, indicating an emphasis on cell cycle regulation and 
genomic stability (Figure S3A-D).

ScRNA-seq data of ARRB1, DSG2, PLK1 in LUAD
ScRNA-seq data of ARRB1, DSG2, PLK1 in LUAD was 
analyzed using the online TISCH2 ​(​​​h​t​​t​p​:​​/​/​t​i​​s​c​​h​.​c​o​m​
p​-​g​e​n​o​m​i​c​s​.​o​r​g​/​h​o​m​e​/​​​​​) website to seek their expres-
sions at the single cell level. As displayed in Fig. 6A, the 
GSE131907 dataset was analyzed. We discovered that 
ARRB1 is primarily expressed in Endothelial cells, Oligo-
dendrocyte cells, DC cells, and Mono/Macro cells; DSG2 
is mainly expressed in Epithelial cells and Fibroblast cells; 
PLK1 is predominantly expressed in Plasma cells, DC 
cells, and Epithelial cells (Fig. 6B-E). Moreover, in differ-
ent stages of LUAD, there are variations in the expression 
of ARRB1, DSG2, and PLK1 in the aforementioned cells 
(Fig. 6F).

The relationship between RRTGs associated with 
radiotherapy and TMB and CSC in LUAD is being examined
Prior research has suggested that an elevated TMB 
score is linked to improved reaction to immunotherapy. 
The TP53 mutation rate was considerably greater (59%) 
in the high-risk group compared to the low-risk group 
(31%) as shown in Fig.  7A, B. The group at greater risk 

http://tisch.comp-genomics.org/home/
http://tisch.comp-genomics.org/home/
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Fig. 4  The nomogram was established in LUAD with RRTGs score. (A) Independent prognosis-univariate Cox Forest plot. (B) Independent prognosis 
multifactorial Cox Forest plot. (C) 1-, 3-, and 5-year calibration curve. (D) Nomogram for prediction of 1-year, 3-year, and 5-year survival of LUAD patients. 
(E) ROC curves showed the prognostic performance of the model in the TCGA cohort. (F) DCA curves of the nomogram. (* for P < 0.5, ** for P < 0.01, *** 
for P < 0.001, and ns for no sense)
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demonstrated notably elevated TMB scores, and there 
was a positive correlation between the RRTGs score 
and TMB scores (Fig. 7C, D). Patients with higher TMB 
scores had improved overall survival (Fig.  7E) based on 

the expression level of ICGs, which has been linked to the 
clinical advantages of checkpoint blockade immunother-
apy. Furthermore, there was a noted positive association 
between the risk score and CSC, as depicted in Fig. 7F.

Fig. 5  The immune microenvironment was different between the low and high-risk groups. (A) Heat map of immune cell correlation analysis in the high 
and low-risk groups. (B) Sample tumor purity was assessed by ESTIMATE with the estimated, immune, and stromal scores. (C) Immune checkpoint-related 
genes in the high and low-risk groups-Violin diagram. (D) Chemoradiotherapy-related genes in the high and low-risk groups-Violin diagram. (E) HLA-
related genes in the high and low-risk groups-Violin diagram. *p < 0.05, **p < 0.01, and ***p < 0.001
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Evaluating the predictive model of RRTGs in the response 
to immunotherapy for LUAD
The TIDE algorithm was employed to assess the immu-
notherapy reaction using transcriptomic information 
from patients with LUAD. The findings indicated that the 
TIDE scores exhibited a notable increase in the high-risk 
cohort as opposed to the low-risk cohort, suggesting that 
patients belonging to the low-risk group might experi-
ence greater advantages from immunotherapy (Fig. 8A). 
Figure  8B, C show that patients classified as low-risk 
had elevated levels of functional impairment scores and 
reduced exclusion scores. Furthermore, individuals who 
exhibited a positive response to immunotherapy were 
linked to reduced TIDE scores (as shown in Fig. 8D). No 
notable disparities were observed in the levels of MSI 
Expr Sig and Merck18 between the high-risk and low-
risk groups, as depicted in Fig. 8E and F. The worst prog-
nosis was linked to the combination of elevated risk and 
high TIDE scores, as depicted in Fig. 8G, H.

Evaluating patient reactions to different anti-cancer 
medications using the RRTGs score
Afterwards, different cancer-fighting medications were 
chosen to evaluate the responsiveness of individuals 
in the low-risk and high-risk categories. Patients who 
obtained high scores exhibited reduced IC50 values for 
Gefitinib, Erlotinib, Bortezomib, Cediranib, Docetaxel, 
and Dasatinib, as observed. Conversely, individuals with 
reduced scores exhibited notably decreased IC50 values 

for cancer treatment medications, such as Elephantin, 
Doramapimod, and Dactolisib. The results indicate a 
connection between the genetic score and the sensitivity 
of the drug (Fig. 9A-I).

The Kaplan-Meier curves and the gene expression of 
ARRB1, DSG2, and PLK1 were analyzed in LUAD
A favorable prognosis was linked to reduced levels of 
DSG2 and PLK1, whereas an unfavorable prognosis 
was linked to reduced levels of ARRB1 (Fig.  10A-C). 
DSG2 and PLK1 were highly expressed in tumors, while 
ARRB1 showed no significant difference in expression 
between tumor and normal tissues in GEPIA database 
(Fig. 10D-F).

The findings indicate that RRTGs score and the levels 
of ARRB1, DSG2, and PLK1 expression could have signif-
icant implications for the prognosis of LUAD, response 
to immunotherapy, and sensitivity to drugs. These fac-
tors have the potential to serve as valuable biomarkers for 
clinical decision-making and treatment approaches.

Expression analysis of ARRB1, PLK1, and DSG2 in cell lines 
and NSCLC tumor tissues
Western blot and qRT-PCR analysis was conducted to 
assess the expression levels of ARRB1, PLK1, and DSG2 
in the A549/X and A549 cell lines. The results demon-
strated that both protein and mRNA levels of ARRB1, 
PLK1, and DSG2 were significantly upregulated in A549 
cells compared to A549/X cells (Fig. 11A-B, E). IHC was 

Fig. 6  The distribution of the ARRB1, DSG2 and PLK1 in tumor microenvironment in LUAD by single-cell analysis. (A-D) Umap plots of ARRB1, DSG2 and 
PLK1 in LUAD. (E) Violin plots of ARRB1, DSG2 and PLK1 in tumor microenvironment in LUAD. (F) Violin plots of ARRB1, DSG2 and PLK1 in tumor microen-
vironment in LUAD in different TMN stage

 



Page 12 of 19Li et al. Cancer Cell International          (2024) 24:387 

Fig. 7  Correlations of the RRTGs risk score with TMB and CSC in LUAD. (A, B) The mutational landscape of LUAD patients in high- and low-risk groups. (C) 
Correlations between the TMB and the RRTGs score. (D) Difference in the TMB score between high-and low-risk groups. (E) The Kaplan–Meier OS curves 
among four groups classified by the TMB score and RRTGs score. (F) Correlations between the CSC index and RRTGs risk score
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Fig. 8  Estimation of the RRTGs prognostic model in immunotherapy response in LUAD. (A) Difference in TIDE scores between high- and low-risk groups. 
(B) Difference in dysfunction scores between high- and low-risk groups. (C) Difference in exclusion scores between high- and low-risk groups. (D) The 
distribution of immunotherapy response in indicated groups stratified by the telomere-related risk scores based on the TIDE algorithm. (E) Difference in 
MSI Expr Sig between high- and low-risk groups. (F) Difference in Merck18 between high- and low-risk groups. (G) The Kaplan–Meier OS curves among 
two groups classified by TIDE score. (H) The Kaplan–Meier OS curves among four groups classified by RRTGs risk score and TIDE score. *p < 0.05, **p < 0.01, 
and ***p < 0.001.“ns” indicates p ≥ 0.05, not statistically significant
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utilized to determine the protein expression of ARRB1 
and PLK1 in NSCLC tumor tissues. ARRB1 and PLK1 
were found to be highly expressed in radioresistant 
NSCLC tissues (n = 4) compared to radiosensitive sam-
ples (n = 4). Whereas, DSG2 expression did not show sig-
nificant variation between the two groups (Fig. 11C-D).

Discussion
In recent years, several clinical trials with individuals 
diagnosed with lung adenocarcinoma have verified the 
significance of radiotherapy in extending lifespan and 
enhancing overall well-being. The significant discover-
ies have strengthened the position of radiotherapy in the 
treatment of LUAD [24, 25]. Radiotherapy’s mechanisms 
encompass not just its notable tumor-fighting impacts, 
effectively reducing tumor size, but also its capacity to 
initiate an immune response against tumors and induce 

Fig. 9  Correlations of the RRTGs risk score with drug sensitivity in LUAD. Gefitinib (A), Erlotinib (B), Elephantin (C), Doramapimod (D), Bortezomib (E), 
Cediranib (F), Docetaxel (G), Dasatinib (H), Dactolisib (I) sensitivity between high- and low-risk groups
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substantial alterations in the tumor microenvironment 
[26, 27].

Nonetheless, overcoming radiotherapy resistance in 
lung adenocarcinoma continues to be a substantial chal-
lenge in attaining successful therapeutic results [28]. 
Preliminary studies indicate that focusing on genes asso-
ciated with telomeres can increase tumor sensitivity to 
radiotherapy and decrease cancer-induced toxicity [5, 
12]. This suggests a close connection between resistance 
to radiotherapy and telomere-related genes. The GO and 
KEGG enrichment analyses further support the con-
nection between radiotherapy resistance and telomere-
related genes by highlighting key biological processes 
related to cell division and chromosome organization. 
Specifically, the regulation of nuclear division, G2/M 

transition of the mitotic cell cycle, and mitotic checkpoint 
signaling were identified as critical processes enriched in 
the 44 RRTGs. These processes are fundamental to cell 
cycle regulation and ensure proper chromosome segrega-
tion and stability. Additionally, the significant enrichment 
of KEGG pathways like progesterone-mediated oocyte 
maturation, the Fanconi anemia pathway, and the cell 
cycle pathway—pathways crucial for DNA repair and cell 
cycle control—suggests that the RRTGs play a vital role 
in maintaining genomic stability. Disruptions in these 
pathways may contribute to radiotherapy resistance, as 
the cell’s ability to repair radiation-induced DNA damage 
could be compromised. Thus, targeting these pathways 
could be a promising therapeutic strategy to overcome 
resistance and enhance the effectiveness of radiotherapy.

Fig. 10  The Kaplan–Meier OS curves and genes expression of ARRB1, DSG2 and PLK1 in LUAD. (A, B, C) The Kaplan–Meier OS curves among two groups 
classified by ARRB1, DSG2 and PLK1 expression. (D, E, F) ARRB1, DSG2, PLK1 expression between tumor and normal tissues. *p < 0.05
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Fig. 11  Validating characteristic gene expression in cell lines and LUAD tissues. (A, B) Western blot results showing the expression of ARRB1, PLK1 and 
DSG2 in A549 and A549/X cells. (C, D) IHC results showing the expression of ARRB1, PLK1 and DSG2 in radiosensitive (RS) (n = 4) and radioresistant (RR) 
(n = 4) LUAD tissues. (E) qRT-PCR results showing the expression of ARRB1, PLK1 and DSG2 in A549 and A549/X cells. *p < 0.05.“ns” indicates p ≥ 0.05, not 
statistically significant
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Further analysis led to the identification of three key 
telomere-associated genes—ARRB1, PLK1, and DSG2—
that significantly influence radiotherapy response and 
prognosis in lung adenocarcinoma. In order to enhance 
the accuracy of forecasting the life expectancy of individ-
uals diagnosed with lung adenocarcinoma, we employed 
intricate risk models and nomograms for assessment.

We acquired LUAD samples and relevant informa-
tion by integrating our sequencing data with the TCGA 
and GEO databases. Initially, we detected the overlap of 
genes with altered expression in our dataset, genes with 
altered expression between tumor and normal groups, 
and genes associated with telomeres, leading to the iden-
tification of 44 genes with altered expression and related 
to telomeres. Afterwards, we conducted univariate and 
multivariate Cox regression analyses in order to develop 
the RRTGs score, which can be used to identify high-risk 
and low-risk subgroups. Patients who had higher RRTGs 
scores showed worse clinical outcomes, suggesting that 
individuals with elevated RRTGs scores experienced a 
more unfavorable prognosis. Additionally, we combined 
patient tumor stages and RRTGs scores to construct a 
nomogram tumor prediction model, which showed good 
predictive ability.

The interaction of the immune system is a significant 
factor in the development of cancer and is also a focus for 
treatment in LUAD. Previous research has suggested that 
the TME primarily consists of stromal and immune cells. 
Additionally, the clinical characteristics and prognosis of 
LUAD are linked to immune and stromal scores, as indi-
cated by prior studies [16, 29]. Applying the ESTI-MATE 
algorithm for TME score estimation, we observed a nota-
ble increase in immune and stromal scores within the low 
RRTGs score group when compared to the high RRTGs 
score group. The presence of telomere-related genes in 
TME implies a potential role in controlling the develop-
ment and advancement of LUAD. The GSEA analysis 
further revealed distinct enrichment patterns between 
high- and low-risk groups, providing additional insight 
into the biological mechanisms. In the high-risk group, 
immune-related processes such as adaptive immune 
response, antigen processing via MHC class II, and com-
plement activation were significantly enriched, as well 
as pathways related to immune response and metabo-
lism, including asthma and cell adhesion molecules. 
Conversely, the low-risk group showed enrichment in 
pathways associated with cell division and chromosome 
dynamics, such as mitotic nuclear division and chromo-
some segregation, as well as KEGG pathways involving 
the cell cycle and DNA replication. These findings high-
light the differential involvement of immune activity in 
high-risk groups and genomic stability processes in low-
risk groups, further supporting the potential influence of 
RRTGs on LUAD prognosis and therapy responses.

Furthermore, researchers have discovered that abnor-
mal immune cells can promote LUAD progression, while 
immune therapy based on checkpoint inhibitors can 
improve survival in advanced cancer patients [30, 31]. 
With RRTGs, an accurate prognostic model represent-
ing the TME has been established. Through a thorough 
examination of RRTGs and considering clinical fac-
tors, this aids healthcare professionals in assessing the 
effectiveness of immunotherapy as a viable treatment 
choice. Furthermore, notable variations were noted in 
the clinical prognostic characteristics, genetic mutations, 
immune infiltration, stromal scores, and drug responsive-
ness among the two groups of patients. Consequently, 
the classification of LUAD patients’ prognosis becomes 
more accurate, offering improved understanding of the 
genetic foundation of the ailment and suggesting innova-
tive approaches to tumor immunotherapy.

A major constraint of our research is the reliance on 
genomic datasets that are accessible to the public. While 
these datasets offer valuable resources for large-scale 
analyses, they are generated from different studies with 
varying experimental conditions, platforms, and patient 
cohorts. As a result, the introduction of batch effects and 
potential biases may have an impact on the precision and 
replicability of our findings. The challenge of integrat-
ing diverse datasets should not be underestimated, as it 
requires meticulous preprocessing and normalization 
to ensure data harmonization. To mitigate these issues, 
we applied rigorous quality control measures and uti-
lized standardized analytical pipelines [32, 33]. Despite 
the presence of dataset heterogeneity, it is important to 
acknowledge that future research could be enhanced by 
employing more uniform datasets or confirming our dis-
coveries through independent cohorts.

Additionally, the inherent limitations in establish-
ing causal relationships between the identified telomere 
genes and treatment outcomes or immune infiltration 
dynamics are posed by the retrospective nature of the 
analyzed data. Despite employing advanced statistical 
analyses to control for confounding variables, the possi-
bility of unmeasured or residual confounders cannot be 
fully ruled out. To understand the functional effects of 
changed telomere gene expression and their influence on 
the advancement of lung adenocarcinoma and response 
to therapy, it is necessary to conduct future studies or 
experiments using models.

Furthermore, the complexity of telomere biology in 
lung adenocarcinoma is enhanced by the specific incor-
poration of three more genes related to telomeres, 
namely ARRB1, DSG2, and PLK1, in addition to the gen-
eral restrictions mentioned earlier. ARRB1, a constituent 
of the arrestin protein group, has been linked to cellular 
reactions to DNA damage caused by radiation and could 
impact the results of radiotherapy [34, 35]. DSG2 codes 
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for the enzyme dihydrofolate reductase, which is linked 
to the regulation of telomeres and the stability of chro-
mosomes, indicating its possible involvement in the 
advancement of tumors and the response to therapy [36, 
37]. However, its involvement in radiotherapy has rarely 
been reported yet. The dysregulation of PLK1, a kinase 
that regulates the cell cycle, has been associated with 
tumor growth and resistance to treatment due to its cru-
cial involvement in telomere maintenance and replication 
[38–40]. By incorporating these genes into our analysis, 
we gain a more extensive perspective on the molecular 
mechanisms implicated in lung adenocarcinoma.

To summarize, we presented a thorough examination 
of RRTGs in lung adenocarcinoma and developed a novel 
risk model for the treatment and prognosis of patients 
with this type of lung cancer. This model includes three 
genes (ARRB1, PLK1, DSG2) as important compo-
nents. In addition, we have determined the functions of 
these genes in lung adenocarcinoma, which impact the 
immune microenvironment of the tumor, clinical char-
acteristics, approaches to treatment, and future outlook. 
The results emphasize the possible clinical consequences 
of RRTGs, indicating that RRTGs could serve as potential 
treatment targets for individuals diagnosed with LUAD.
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