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Abstract
Purpose Semantic segmentation plays a pivotal role in many applications related to medical image and video analysis.
However, designing a neural network architecture for medical image and surgical video segmentation is challenging due to
the diverse features of relevant classes, including heterogeneity, deformability, transparency, blunt boundaries, and various
distortions. We propose a network architecture, DeepPyramid+, which addresses diverse challenges encountered in medical
image and surgical video segmentation.
Methods The proposed DeepPyramid+ incorporates two major modules, namely “Pyramid View Fusion” (PVF) and
“Deformable Pyramid Reception” (DPR), to address the outlined challenges. PVF replicates a deduction process within
the neural network, aligning with the human visual system, thereby enhancing the representation of relative information at
each pixel position. Complementarily, DPR introduces shape- and scale-adaptive feature extraction techniques using dilated
deformable convolutions, enhancing accuracy and robustness in handling heterogeneous classes and deformable shapes.
Results Extensive experiments conducted on diverse datasets, including endometriosis videos, MRI images, OCT scans, and
cataract and laparoscopy videos, demonstrate the effectiveness of DeepPyramid+ in handling various challenges such as shape
and scale variation, reflection, and blur degradation. DeepPyramid+ demonstrates significant improvements in segmentation
performance, achieving up to a 3.65% increase in Dice coefficient for intra-domain segmentation and up to a 17% increase
in Dice coefficient for cross-domain segmentation.
Conclusions DeepPyramid+ consistently outperforms state-of-the-art networks across diverse modalities considering differ-
ent backbone networks, showcasing its versatility. Accordingly, DeepPyramid+ emerges as a robust and effective solution,
successfully overcoming the intricate challenges associated with relevant content segmentation inmedical images and surgical
videos. Its consistent performance and adaptability indicate its potential to enhance precision in computerized medical image
and surgical video analysis applications.
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Introduction

Semantic segmentation has emerged as a critical tool in
computerized medical image and surgical video analysis,
empowering numerous applications in various domains. In
surgical videos, semantic segmentation is a prerequisite in
several applications ranging from phase and action recogni-
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tion, irregularity detection, surgical training, objective skill
assessment, relevance-based compression, surgical planning,
operation room organization, and so forth [1–4]. In the case
of volumetric medical images, semantic segmentation can
considerably aid in the diagnosis, treatment planning, and
monitoring [5]. Automatic segmentation of medical images
and videos can also reduce subjective errors caused by time
constraints and workloads while enhancing treatment and
surgical efficiency.

Designing a neural network architecture for medical
image and surgical video segmentation presents a challenge
due to the diverse features exhibited by different relevant
labels. Specifically, many classes of objects relevant to the
medical image and surgical video analysis are heterogeneous,
featuring deformable or amorphous instances, as well as
color, texture, and scale variation. Besides in surgical videos,
the problem of motion blur degradation becomes more crit-
ical due to the camera’s proximity to the surgical scene.
Unlike general images, medical images and surgical videos
may contain transparent relevant content (such as intraoc-
ular lens) or exhibit blunt boundaries, further complicating
the task of semantic segmentation. Accordingly, an effective
network for medical image and surgical video segmentation
should be able to simultaneously deal with (I) heterogeneity
and deformability in relevant objects, and (II) transparency,
blunt edges, and distortions such as motion and defocus blur.

This paper introduces a U-Net-based CNN for seman-
tic segmentation, which effectively addresses the challenges
associated with segmenting relevant content in medical
images and surgical videos by adaptively capturing semantic
information.1 The proposed network, called DeepPyramid+,
comprises two key modules: (i) Pyramid View Fusion (PVF)
module, which offers a narrow-to-wide-angle global view
of the feature map centering at each pixel position, and (ii)
Deformable Pyramid Reception (DPR) module, responsi-
ble for performing shape-adaptive feature extraction on the
input convolutional featuremap2.Weprovide comprehensive
experiments to compare the performance of DeepPyramid+
with state-of-the-art baselines for five intra-domain and two
cross-domain datasets. Experimental results reveal the supe-
riority ofDeepPyramid+ compared to the baselines. Ablation
studies confirm the effectiveness of each proposed module
in boosting semantic segmentation performance. To support
reproducibility and further investigations, we will release the
PyTorch implementation of DeepPyramid+ and all dataset
splits with the acceptance of this paper.

1 This paper is an extendedversionofDeepPyramid [6], featuringminor
enhancements in the DPR module.
2 The PyTorch implementation of DeepPyramid+ is publicly available
at https://github.com/Negin-Ghamsarian/DeepPyramid_Plus.

Related work

U-Net [7] was initially proposed for medical image segmen-
tation and achieved succeeding performance being attributed
to its skip connections.ManyU-Net-based architectures have
been proposed over the past years to improve the segmenta-
tion accuracy and address different flaws and restrictions in
the previous architectures [8–14].

Attentionmodules

Attention mechanisms can be broadly described as the
techniques to guide the network’s computational resources
(i.e.,the convolutional operations) toward the most determi-
native features in the input feature map [9, 15, 16]. Such
mechanisms have been especially proven to be gainful in
the case of semantic segmentation. The scSE blocks [15]
aim to recalibrate the feature maps based on pixel-wise
and channel-wise global features. BARNet [12] adopts a
bilinear-attention module to extract the cross-dependencies
between the different channels of a convolutional feature
map. PAANET [11] uses a double-attentionmodule tomodel
semantic dependencies between channels and spatial posi-
tions in the convolutional feature map.

Fusionmodules

Fusion modules can be characterized as modules designed
to improve semantic representation via combining several
feature maps. The input feature maps could range from
varying-level semantic features to the features coming from
parallel operations. PSPNet [17] adopts a pyramid pooling
module (PPM) containing parallel sub-region average pool-
ing layers followed by upsampling to fuse the multi-scale
sub-region representations. Atrous spatial pyramid pooling
(ASPP) [18, 19] was proposed to deal with objects’ scale
variance by aggregating multi-scale features extracted using
parallel varying-rate dilated convolutions. CPFNet [13] uses
another fusion approach for scale-aware feature extraction.

Methodology

We present a segmentation network that focuses on (I) mod-
eling heterogeneous classes featuring deformations, shape,
scale, color, and context variation, (II) dealing with content
distortion due to motion blur and reflection, and (III) han-
dling objects’ transparency and blunt boundaries (Fig. 1).
At its core, our network adopts the U-Net architecture, with
the encoder part being set to VGG16. We develop two
decodermodules specifically tailored to tackle thementioned
challenges: (1) Pyramid View Fusion (PVF), which aims
to replicate a deduction process within the neural network
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Fig. 1 Overall architecture of DeepPyramid+ consisting of encoder blocks of the VGG16 network, and the proposed PVF and DPR modules. The
numbers in each block correspond to the output feature map’s dimensions

analogous to the functioning of the human visual system
by enhancing the representation of relative information at
each individual pixel position. (2) Deformable Pyramid
Reception (DPR), which addresses the limitations of reg-
ular convolutional layers by introducing deformable dilated
convolutions and shape- and scale-adaptive feature extraction
techniques. Thismodule allows for handling the complexities
of heterogeneous classes and deformable shapes, resulting in
improved accuracy and robustness in the segmentation per-
formance.

We specify the functionality of each module in the fol-
lowing subsections. Additional discussions regarding the
effectiveness of each module and an analysis of the com-
plexity for each module are available in the supplementary
material.

Notations. Throughout this paper, we represent convolu-
tional layers with a kernel size of (k × k), dilation of d,
m output channels, and g groups as �m,g

k,d . For deformable

convolutions, we use the symbol �̃m,g
k,d . Additionally, we

illustrate the average-pooling layer with a kernel size of (k×
k) and a stride of s pixels as

∑s
k and global average pooling

as
∑G . The symbol ++ D denotes feature map concatena-

tion over dimension D. Furthermore, we employ⇑(Wout ,Hout )

and ⇓(Wout ,Hout ) for upsampling and downsampling opera-
tions with a scale factor of (Wout , Hout ), respectively. We
use σ(·) to represent the Softmax operation, ‖·‖n for layer
normalization over the last n dimensions,R(·) for the ReLU
nonlinearity function, and τ(·) for the hard tangent hyper-
bolic function.

PyramidView Fusion (PVF)

To optimize computational complexity, the initial step
involves creating a bottleneck by employing a convolutional
layer with a kernel size of one, as illustrated in Fig. 2.
Following this dimensionality reduction stage, the resulting
convolutional feature map is fed into four parallel branches.
The first branch features a global average pooling layer,
which is subsequently followed by upsampling. The other
three branches employ average pooling layers with progres-

sively increasing filter sizes while maintaining a stride of one
pixel. The use of a one-pixel stride is specifically important
to achieve a pixel-wise centralized pyramid view, as opposed
to the region-wise pyramid attention approach employed in
PSPNet [17]. The output feature maps from all branches are
then concatenated and fed into a convolutional layer with
four groups, for extracting inter-channel dependencies during
dimensionality reduction. Subsequently, a regular convo-
lutional layer is applied to extract joint intra-channel and
inter-channel dependencies. The resulting featuremap is then
passed through a layer-normalization function, which helps
normalize the activations for improved stability and perfor-
mance.

Deformable Pyramid Reception (DPR)

The architecture of the Deformable Pyramid Reception
(DPR) module, as depicted in Fig. 2, can be described as
follows. Initially, the upsampled coarse-grained semantic
feature map from the preceding layer is concatenated with its
symmetric fine-grained feature map from the encoder. Sub-
sequently, these concatenated features are passed through
three parallel branches. The first branch employs a regular
convolution operation, while the other two branches utilize
deformable convolutions with different dilation rates of three
and six. The structured convolution covers the immediate
neighboring pixels up to one pixel to the central pixel. The
deformable convolutions with the dilation rate of three and
six cover an area from two to four and five to seven pixels
far away from each central pixel, respectively. Accordingly,
the DPR module forms a learnable sparse receptive field of
size 15× 15 pixels by incorporating these layers. These lay-
ers share the weights to avoid imposing a huge number of
trainable parameters.

To compute the feature-map-adaptive offset field for each
deformable convolution, a regular convolution operation is
employed. Considering the target area of the two deformable
convolutions, the offset field should be computed based on
the internal content within four and seven pixels away from
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Fig. 2 The detailed architecture of the PVF and DPR modules

each central pixel (k = 9, k = 15). The computed offset
values are then passed through a tangent hyperbolic func-
tion, which clips them within the range of [−1, 1], to ensure
that each deformable convolution adaptively covers an area
within the range of [k − 1, k + 1]. The offset field provides
two values per element in the deformable convolutional ker-
nel (horizontal and vertical offsets). Accordingly, the number
of offset field’s output channels for a deformable convolution
with a kernel of size 3 × 3 is equal to 18. This enables the
deformable convolution to spatially adjust its receptive field
based on the learned offset values, improving its ability to
capture contextually relevant information.

The output feature maps of the parallel structured and
deformable convolutions are then passed through a feature
fusion decision (FFD) module [4]. This module determines
the significance of each input featuremap based on the spatial
descriptors using pixel-wise convolutions. These descrip-
tors are concatenated and subjected to a Softmax operation,
resulting in normalized descriptors. The normalized descrip-
tors determine the pixel-wise contribution or weight of each
input convolutional feature map in the final fused feature
map. The output feature map of the FFD module is obtained
as a weighted sum of the input feature maps, where the
normalized descriptors serve as pixel-wise weights. The
resulting feature map from the FFD module goes through
a series of additional operations for deeper feature extraction
and normalization.

Experimental settings

Datasets

Weevaluate the performance of our proposed network on five
intra-domain datasets from three different modalities (video,
MRI, and OCT) and two cross-domain datasets from two dif-
ferentmodalities. Table 1 details the specifications of adopted
datasets, and Fig. 3 presents exemplary images together with
the ground-truth segmentations from each dataset. These
datasets cover a wide range of object classes with distinct
characteristics. For example, endometriosis videos contain
amorphous endometrial implants with color and texture vari-
ations.OCTscans involve amorphous intraretinal fluid,while
prostate MRI images include deformations and variations
in scale, contrast, and brightness. In addition, instrument
segmentation in cataract and laparoscopy surgeries presents
various challenges, such as scale variation, reflection, motion
blur, and defocus blur degradation. The diversities in datasets
ensure realistic conditions for evaluating the proposed net-
work’s effectiveness in addressing challenges in medical
image and surgical video segmentation.3 For result repro-

3 This paper aims to design a dedicated network tailored to address
medical image and video segmentation challenges, emphasizing vari-
ous modalities but not within a multi-modal training framework. We
substantiate the efficacy of our model through distinctive validations
across diverse medical image and video datasets.
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Table 1 Specifications of the single-domain and cross-domain datasets

Application Modality Objects Folds Train|test size (per fold) Reference

Single domain

Cataract Video Instruments 4 207|138 Cataract-1K [20]

Laparoscopy Video Instruments 4 109|1179 Endovis [21]

Endometriosis Video Endometrial implant 4 119|39 ENID [22]

Prostate MR MRI Prostate 4 275|110 MS-Net [23]

Retina OCT IRF Fluid 4 105|299 RETOUCH [24] (Spectralis)

Application Modality Objects Source|target set Folds Train|test size (per fold) Reference

Cross-domain

Cataract Video Instruments Cataract-1K|CaDIS 4 207|458 Cataract-1K|CaDIS [25]

Prostate MR MRI Prostate BMC|BIDMC 4 275|64 MS-Net [23]

This dataset is a small subset of Cataract-1K dataset that will be released upon the acceptance of this paper

Fig. 3 Exemplary images from the different datasets along with their corresponding overlayed masks

ducibility, we provide all train/test sets as CSV files in the
paper’s GitHub repository.

Alternativemethods

Wecompare the effectiveness of our proposed network archi-
tecture with eleven state-of-the-art neural networks using
different backbones. Table 2 lists the specifications of the
baselines and the proposed network. Note that UNet+ is an
improved version of UNet, where we use VGG16 as the
backbone network and double convolutional blocks (two
consecutive convolutions followed by batch normalization
and ReLU layers) as decoder modules. To have fair compar-
isons with alternative methods, we report the performance

of DeepPyramid+ with three different backbones (VGG16,
ResNet34, and ResNet50).

Training settings

All backbones are initialized with the ImageNet pre-trained
parameters. We use a batch size of four for all datasets, set
the initial learning rate to 0.001, and decrease it during train-
ing using polynomial decay lr = lrinit × (1 − iter

total-iter )
0.9.

The input size of the networks is 512 × 512 for all datasets.
We apply cropping and random rotation (up to 30◦), color
jittering (brightness = 0.7, contrast = 0.7, saturation = 0.7),
Gaussian blurring, and random sharpening as augmentations
during training, and use the cross-entropy log dice loss during
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Table 2 Specifications of the proposed and alternative approaches

Model Backbone Params. Upsampling Target References

UNet++ VGG16 24.24 M Bilinear Medical images Zhou et al. [14]

CPFNet VGG16 | ResNet34 39.17 M | 34.66 M Bilinear Medical images Feng et al. [13]

BARNet ResNet34 24.90 M Bilinear Surgical Instruments Ni et al.[12]

PAANet ResNet34 22.43 M Trans Conv and bilinear Surgical instruments Ni et al. [11]

CE-Net VGG16 | ResNet34 33.50 M | 29.90 M Trans Conv Medical images Gu et al. [10]

RAUNet ResNet34 22.14 M Trans Conv Surgical instruments Ni et al. [9]

FED-Net ResNet50 59.52 M Trans Conv and Pixel Shuffle Liver lesion Chen et al. [8]

scSENet VGG16 | ResNet34 22.90 M | 25.25 M Bilinear Medical images Roy et al. [15]

DeepLabV3+ ResNet50 26.68 M Bilinear Scene Chen et al. [26]

UPerNet ResNet50 51.26 M Bilinear Scene Xiao et al. [27]

U-Net+ VGG16 22.55 M Bilinear Medical images Ronneberger et al. [7]

DeepPyramid VGG16 33.57 M Bilinear Medical images Proposed

In “Upsampling” column, “Trans Conv” stands for Transposed Convolution

training [6]. All experiments are conducted using NVIDIA
RTX:3090 GPUs.

Ablation study settings

To evaluate the effectiveness of different modules, we use the
improved version of UNet (UNet+), with the same backbone
(VGG16) as our baseline. This network does not include any
PVF modules. Besides, the DPR module is replaced with a
sequence of two convolutional layers, each of which being
followed by a batch normalization layer and a ReLU activa-
tion.

Experimental results

Table 3 reports the segmentation performance of the pro-
posed and state-of-the-art networks across three different
modalities. DeepPyramid+ consistently demonstrates the
highest average performance across all datasets with various
backbones, while other methods, such as CPFNet, exhibit
varying performance with different backbones and 2.22%
compared to DeepPyramid+, respectively. Besides, Deep-
Pyramid+ achieves the best results with all three backbones
for endometrial implants and prostate segmentation and the
best results with ResNet34 and ResNet50 backbones for IRF
segmentation in OCT. Considering instrument segmentation
performance (Table 4), DeepPyramid+ with VGG16 back-
bone shows more than 5.6% gain in segmentation compared
to CPFNet as its main alternative (58.93% vs. 53.29%).
Across all backbones, DeepPyramid+ with VGG16 back-
bone shows more than 2.7% higher performance compared
to other methods. Besides, the best results for both datasets
correspond to DeepPyramid+ with VGG16 backbone. Over-

all, DeepPyramid+ with our suggested backbone (VGG16)
achieves the best segmentation performance in instrument
and organ/disease segmentation.

Table 5 compares the cross-domain segmentation per-
formance of DeepPyramid+ and its best two alternatives
for three backbones (considering single-domain results in
Table 3 and Table 4). Overall, DeepPyramid+ consistently
outperforms other methods across all backbones. Consider-
ing the MRI dataset, DeepPyramid+ with VGG16 backbone
showsmore than 4.8% gain in Dice compared to alternatives.
For instrument segmentation in cataract surgery, DeepPyra-
mid+ with the VGG16 backbone exhibits an impressive
improvement of approximately 19.5% in Dice score com-
pared to CPFNet with the same backbone (55.10% vs.
35.59%), and a 17% improvement compared to the best alter-
native across all backbones (55.10% vs. 38.10% achieved
by UPerNet). This exceptional performance in dealing with
cross-domain distribution gaps [28] can be attributed to the
effectiveness of the proposedmodules in incorporatingmulti-
scale local and global features.

Table 6 provides an ablation study ofDeepPyramid+ com-
ponents. The results suggest that both PVF andDPRmodules
contribute significantly to improvements in segmentation
performance across all datasets. This impact is more promi-
nent in the case of cataract surgery, where the addition of
PVF and DPR modules lead to a 4.95% and 4.72% increase
in the Dice coefficient, respectively.

Conclusion

In recent years, considerable attention has been devoted to
computerized medical image and surgical video analysis. A
reliable relevant-instance-segmentation approach is a prereq-
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Table 3 Quantitative comparisons among the performance of DeepPyramid+ and alternative methods in organ and disease segmentation, with top
two results shown in italic and bold, respectively

Modality Endometriosis surgery MRI OCT

Backbone Network IoU (%) Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) Avg. IoU (%)

VGG16 UNet+ 51.02 64.94 72.44 82.30 51.89 64.95 58.45

scSENet 48.95 62.95 72.31 82.23 52.12 65.18 57.79

FEDNet 50.38 64.16 71.03 81.82 48.70 62.31 56.70

CE-Net 44.40 58.48 70.84 81.27 47.33 61.10 54.19

CPFNet 52.82 66.09 73.28 82.80 47.90 61.17 58.00

UNetPP 51.02 64.83 72.49 82.32 51.58 64.60 58.36

DeepPyramid+ 53.22 66.37 76.02 85.36 50.79 63.99 60.01

ResNet34 scSENet 46.20 60.65 72.99 82.66 49.64 63.31 56.28

FEDNet 28.19 37.85 70.24 80.61 45.34 59.79 47.92

CE-Net 11.02 18.94 13.76 17.51 15.68 25.53 13.49

CPFNet 23.07 35.54 59.95 73.26 18.29 28.99 33.77

DeepPyramid+ 54.04 67.63 73.46 83.66 51.22 64.82 59.57

ResNet50 UPerNet 48.93 62.56 72.73 82.68 46.17 60.18 55.94

DeepLabV3+ 43.00 56.66 70.83 80.79 44.64 58.86 52.82

DeepPyramid+ 53.11 67.12 73.93 83.97 50.99 64.63 59.34

The best results are shown in bold and the second-best are shown in results italic

Table 4 Quantitative
comparisons among the
performance of DeepPyramid+
and alternative methods in
instrument segmentation, with
top two results shown in italic
and bold, respectively

Modality Cataract surgery Laparoscopy surgery

Backbone Network IoU (%) Dice (%) IoU (%) Dice (%) Avg. IoU (%)

VGG16 UNet+ 45.79 56.73 57.74 70.29 51.76

scSENet 45.74 56.19 56.14 69.08 50.94

FEDNet 44.25 55.45 53.69 66.69 48.97

CE-Net 41.72 53.04 48.91 62.34 45.31

CPFNet 49.42 60.15 57.16 69.60 53.29

UNetPP 45.74 56.67 57.40 69.88 51.57

DeepPyramid+ 56.48 66.40 61.39 73.09 58.93

ResNet34 scSENet 50.00 60.91 50.71 63.88 50.35

FEDNet 47.10 58.68 23.34 32.44 35.22

CE-Net 16.46 26.52 30.73 44.48 23.59

CPFNet 28.70 41.14 49.28 63.40 38.99

RAUNet 43.36 55.36 1.62 2.97 22.49

BARNet 51.78 63.09 51.09 64.70 51.43

PAANet 51.14 58.68 48.91 61.85 50.02

DeepPyramid+ 49.11 59.72 57.14 69.80 53.12

ResNet50 UPerNet 56.27 66.93 56.08 68.70 56.17

DeepLabV3+ 36.98 49.16 48.80 62.04 42.89

DeepPyramid+ 49.28 59.90 57.12 70.06 53.20

The best results are shown in bold and the second-best are shown in results italic
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Table 5 Quantitative
comparisons of cross-domain
performance among
DeepPyramid+ and
state-of-the-art methods, with
top two results shown in italic
and bold, respectively

Modality MRI Cataract surgery

Backbone Network IoU (%) Dice (%) Network IoU (%) Dice (%)

VGG16 CPFNet 40.66 54.24 UNet+ 26.26 35.59

UNet++ 36.30 49.30 CPFNet 25.14 34.04

DeepPyramid+ 44.43 59.11 DeepPyramid+ 42.93 55.10

ResNet34 scSENet 40.23 53.19 BARNet 20.22 29.31

FEDNet 33.05 44.47 PAANet 14.01 20.48

DeepPyramid+ 41.52 56.14 DeepPyramid+ 32.87 43.96

ResNet50 UPerNet 38.45 51.78 UPerNet 28.40 38.10

DeepLabV3+ 37.55 49.62 DeepLabV3+ 9.14 14.16

DeepPyramid+ 38.89 53.00 DeepPyramid+ 29.76 40.54

The best results are shown in bold and the second-best are shown in results italic

Table 6 Ablation study of DeepPyramid+ component across different datasets

PVF DPR Endometriosis MRI Cataract surgery Laparoscopy surgery

IoU (%) Dice (%) IoU (%) Dice (%) IoU (%) Dice (%) IoU (%) Dice (%)

✗ ✗ 51.02 64.94 72.44 82.30 45.79 56.73 57.74 70.29

✔ ✗ 52.68 66.14 74.51 84.41 51.42 61.68 60.65 72.72

✔ ✔ 53.22 66.37 76.02 85.36 56.48 66.40 61.39 73.09

uisite for a majority of these applications. In this paper, we
introduce a novel network architecture for semantic segmen-
tation that addresses the challenges encountered in medi-
cal image and surgical video segmentation. Our proposed
architecture, DeepPyramid+, incorporates two innovative
modules, namely “Pyramid View Fusion” and “Deformable
Pyramid Reception.” Experimental results demonstrate the
effectiveness of DeepPyramid+ in capturing object features
in challenging scenarios, including shape and scale variation,
reflection and blur degradation, blunt edges, and deforma-
bility, resulting in competitive performance in cross-domain
segmentation compared to state-of-the-art networks. The
ablation study validates the efficacy of the proposed mod-
ules in DeepPyramid+, showcasing their performance across
diverse datasets. The obtained promising results indicate
the potential of DeepPyramid+ to enhance the precision in
various computerized medical imaging and surgical video
analysis applications.
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