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Abstract

Photobiomodulation (PBM) is a safe and effective neurotherapy that modulates cellular pathways by altering cell mem-
brane potentials, leading to beneficial biological effects such as anti-inflammatory and neuroregenerative responses. This
review compiles studies from PubMed up to March 2024, investigating the impact of light at wavelengths ranging from 620
to 1270 nm on ion channels. Out of 330 articles screened, 19 met the inclusion criteria. Research indicates that PBM can
directly affect various ion channels by influencing neurotransmitter synthesis in neighboring cells, impacting receptors like
glutamate and acetylcholine, as well as potassium, sodium channels, and transient receptor potential channels. The diversity
of studies hampers a comprehensive meta-analysis for evaluating treatment strategies effectively. This systematic review aims
to explore the potential role of optoelectronic signal transduction in PBM, studying the neurobiological mechanisms and
therapeutic significance of PBM on ion channels. However, the lack of uniformity in current treatment methods underscores
the necessity of establishing standardized and reliable therapeutic approaches.
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Graphical Abstract

PBM is a promising neurotherapeutic approach with anti-inflammatory and neuroregenerative potential through its effects
on cell membrane potential and ion channels. This systematic review analyzes 19 studies, revealing its influence on channel
activity and emphasizing the need for standardized treatment protocols.

O ©) ®

PBM Clinical applications Properties
PBM on ion channels under m =
various protocols for Al Bls
disorders characterized by — I o\
abnormal excitability ( -
NIR

W NANNNY

Red Light Penetrating

Epilepsy, tinnitus, Wavelength, power
ischemic brain injury, density, duration, and

B\’ and other neurological e N other pertinent ¢
disorders. parameters.

Person

Certain ion channels can
be activated by light, either

L )
° °®
- d by ) | ) & Safety
directly or indirectly g ) l\i\[ S 6
|
K 2 s - l Non-
® o fgvo

e TRP thermal
jf'. g channels
Voltage-gated Ligand-gated ion Thermosensitive ion
ion channels channels channels

) S 5 . o . ~ Application
PBM has the capacity to modulate various ion channels, yielding anti-inflammatory and \
Conclusion ( generative L and d ates potential therapeutic effects for central nervous
system diseases such as Alzheimer's disease, tinnitus, and brain injury. However, to fully
realize its clinical application potential, there is an urgent need to establish standardized and
\ reliable treatment protocols. /

Keywords Photobiomodulation - Ton channels - Nervous system - Neural plasticity - Non-invasive nerve stimulation

Abbreviations MOR p-Opioid receptor

PBM Photobiomodulation GluR1 Glutamate receptor 1

CCO Cytochrome c oxidase ACC Anterior cingulate cortex

TRPs Transient receptor potential channels CNS Central nervous system

ROS Reactive oxygen species MMP Mitochondrial membrane potential

AChR Acetylcholine receptor NIR Near-infrared

ChR Channelrhodopsins ATP Adenosine triphosphate

KCR Kalium channelrhodopsin NMJ Neuromuscular junction

UVB Ultraviolet radiation b nAChR Nicotinic acetylcholine receptor

FDA U.S. food and drug administration iGluRs Ionotropic glutamate receptors

ASICs Acid-sensitive ion channels mGluRs Metabotropic glutamate receptors

CFTRs Cystic fibrosis transmembrane conductance NMDARs N-methyl-D-aspartame receptors
regulators AMPARs  a-Amino-3-hydroxy-5-methyl-4-

Cw Continuous wave isoxazolepropionic acid receptors

PW Pulsed wave cGMP Cyclic guanosine monophosphate

DM Diabetic mellitus PKG Protein kinase G

SCI Spinal cord injury cAMP Cyclic adenosine monophosphate

CCI Chronic constriction injury BBB Blood—brain barrier

DC Duty cycle Ap Amyloid p protein

DRG Dorsal root ganglia COPD Chronic obstructive pulmonary disease

hASCs Human adipose-derived stem cells

BMV Bothrops moojeni venom

@ Springer



Cellular and Molecular Neurobiology (2024) 44:79

Page3of27 79

Introduction

Photobiomodulation (PBM), a non-invasive and precise
neuromodulation technique, utilizes light in the red or
near-infrared wavelengths to achieve its therapeutic effects
with minimal side effects (Hamblin 2024). This method
operates by leveraging the interaction of light particles
with cellular structures to enhance ATP synthesis, mod-
ulate gene expression, control levels of reactive oxygen
species (ROS), and modify ion channel activity (Huang
et al. 2012; Khuman et al. 2012). In recent years, PBM has
emerged as a promising therapy for neurological diseases.
Utilizing laser technology, PBM penetrates deep tissues
and activates intracellular photosensitive molecules, dem-
onstrating potential for various neurological conditions.
Research has also explored PBM’s role in modulating the
cerebral—gut axis (Blivet et al. 2024) and the use of home
portable LED devices (Razzaghi et al. 2024). The U.S.
Food and Drug Administration (FDA) has approved sev-
eral laser devices for medical use, showing positive results
in treating Alzheimer’s disease (Berman et al. 2019), tin-
nitus (Choi et al. 2024), ischemic brain injury (Chan et al.
2024), and other disorders. As research advances, PBM
may increasingly contribute to the treatment and reha-
bilitation of these challenging conditions. The efficacy of
PBM in influencing organisms can be attributed to three
key properties—Penetration, Safety, and Application,

which form the basis for our investigation into the mecha-
nism of action of PBM on ion channels.

The Penetration of PBM

Light, with its wave properties manifested through photons
at a macroscopic level, exhibits characteristics of penetrabil-
ity that are essential to clarify the effects of PBM. The rela-
tionship between the frequency and wavelength of light is
crucial, as longer wavelengths result in better directionality,
reduced scattering, energy attenuation, and minimal diffrac-
tion (Castafio-Castafo et al. 2024; Escalé et al. 2017; Souto-
Neto et al. 2024). This concrete interplay is highlighted in
Fig. 1, aiding in comprehending how different wavelengths
impact PBM. Selecting the appropriate light wavelength is
a complex task for researchers and medical professionals,
as it necessitates a delicate balance between penetration and
directionality to optimize bioregulation outcomes (Bullock-
Saxton et al. 2021; Hamblin 2016). Tissue penetration of
light is influenced by various optical parameters like wave-
length, power density, and coherence, while tissue structure
at the irradiation site can alter light energy absorption (Hen-
derson et al. 2015). Alterations in these parameters signifi-
cantly affect PBM processes, impacting ion channel activity.

Channelrhodopsins (ChR) are light-gated ion channels
first discovered in Chlamydomonas reinhardtii (Sineshche-
kov et al. 2002). These channels respond to light by opening
or closing, resulting in various photobiological effects. The
primary photosensitive ion channel in humans is Kalium
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Fig. 1 Impact of varying light wavelengths on PBM. Shorter wave-
lengths of light reflect mainly the wave properties in the figure with a
solid line; longer wavelengths reflect mainly the particle nature in the

figure with a dotted line, and the stronger the particles, the wider the
distance between the dotted line
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channelrhodopsin (KCR) found in the eye (Oppermann
et al. 2024). Light-activated retinal undergoes chemical
transformations through distinct intermediates, converting
light signals into electrical signals that excite optic neurons
(Govorunova et al. 2022). Additionally, the TRP channel
protein family plays a crucial role in light signal transduction
(do Nascimento et al. 2024). Wei Wu et al. (2023) identi-
fied TRPAL1 as a potential therapeutic target for ultraviolet
radiation b-related (UVB-related) skin pigmentation dis-
eases. The TRPA1 antagonist HC-030031, applied topically,
reduced UVB-induced pigmentation. Furthermore, the abil-
ity of light to penetrate tissues opens the door for bioregula-
tion without relying on optogenetics. Though PBM may not
match optogenetics in precision and efficacy, its lack of gene
editing requirements and ease of application position it as a
promising strategy for treating CNS disorders.

The Safety of PBM

PBM is a safe and effective therapeutic approach that har-
nesses non-photothermal effects to induce beneficial biologi-
cal responses (Tang et al. 2023). The wavelength of light
plays a crucial role in determining the photothermal effect,
with far-infrared light, ranging from 1.4 to 3 pum, being
widely utilized in photothermal therapy within fields such
as rehabilitation physiotherapy and dermatology (Aggarwal
et al. 2023; Mineroff et al. 2024). Uozumi et al. (2010) have
shown that at 808 nm and a high intensity of 1.1 W/cm?,
the temperature of laser-irradiated tissues remains stable,
with minimal increase in temperature. The safety of PBM
is further underscored by the bidirectional dose response
(Barolet 2021), as outlined in the Arndt—Schulz law, indi-
cating that both too low and too high doses of light can
be counterproductive or even harmful (Huang et al. 2009).
Optimal biological effects are achieved within a safe range
of light doses, emphasizing the significance of power density
over total dose in determining the therapeutic outcomes of
PBM (Lanzafame et al. 2007; Oron et al. 2001; Vasilenko
et al. 2010).

The Application of PBM

As a technique harnessing the power of photons to activate
or inhibit ion channels, PBM is a field with broad applicabil-
ity and potential. Cells rich in mitochondria and with high
metabolic activity, such as neuronal and muscle cells, are par-
ticularly responsive to the effects of PBM (Hamblin 2018).
Presently, this technology finds application in diverse medical
areas, including the treatment of epilepsy (Ma et al. 2024),
ischemic encephalopathy (Cardoso et al. 2022), Alzheimer’s
disease (Gaggi et al. 2024), autism (Ceranoglu et al. 2024),
anxiety (Chen et al. 2024a, b), injury recovery (Behroozi et al.
2024; Dehghanpour et al. 2023), arthritis (Du et al. 2024),
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tumors (da Silva et al. 2023), and various other disorders. The
effectiveness of PBM in these diseases needs confirmation
through further clinical trials. Individual differences signifi-
cantly impact PBM. Physiological and psychological traits,
such as gender (Gutiérrez-Menéndez et al. 2022), age (Rod-
riguez-Fernandez et al. 2024), and mental state (Chamkouri
et al. 2024), can affect how PBM influences biorhythms, mood
regulation, and other functions. Candela Zorzo et al. (2024)
found that PBM notably increased cerebral metabolic activity
in males more than in females, potentially due to higher CCO
activity in males. Therefore, understanding these individual
differences is crucial for optimizing light interventions and
enhancing their effectiveness in clinical and daily applications,
allowing for more effective promotion of physical and mental
health through tailored light programs.

Ion channels, encompassing ligand-gated, voltage-gated,
and stress-activated variants, are pivotal in cell signaling by
managing sodium, potassium, and calcium ion concentrations
within and outside cells, thus governing cellular function regu-
lation (Liu et al. 2024). Recent studies have made significant
advancements in the understanding of various ion channels,
including voltage-gated, ligand-gated, TRPs, acid-sensitive ion
channels (ASICs), chloride channels (e.g., CFTRs), ATP-gated
channels (e.g., P2X7 receptor), and mechanosensitive chan-
nels (e.g., Piezo). These ion channels are crucial in regulat-
ing cellular signaling, neurotransmission, and a wide range of
physiological processes. Their detailed characterization offers
valuable molecular targets for elucidating the pathogenesis of
associated diseases and for the development of innovative ther-
apeutic strategies. PBM has garnered attention for its appli-
cations in the central nervous system due to its penetration,
safety, and application. Although the mechanisms of action
remain not fully understood, existing research has revealed the
influence of PBM on voltage-gated ion channels, ligand-gated
ion channels, and TRPs, which play critical roles in PBM.
However, the heterogeneity and reproducibility issues of PBM
protocols in animal experiments and clinical trials underscore
the urgent need for standardized parameters to facilitate fur-
ther research and clinical application of PBM. Additionally,
the biological effects of PBM and its potential in the treat-
ment and prevention of neurological disorders require deeper
exploration. Future research should focus on elucidating the
cellular mechanisms of PBM, optimizing treatment protocols,
and overcoming the limitations of existing studies to advance
innovative therapeutic strategies in the field of neuroscience.

Methods
Search of the Literature

We conducted an extensive literature search in the Pub-
Med database to explore the impact of PBM on ion channel
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function and its potential applications in the nervous system.
Our search, which encompassed studies up to 6 March 2024,
utilized MeSH terms such as “photobiomodulation,” “low-
intensity laser therapy,” “ion channel,” and “receptor.” The
detailed search strategy is shown as follows: ((Low-intensity
laser therapy) OR (photobiomodulation)) AND ((channel)

OR (receptor) OR (ion channel)).
Study Selection

The selection of literature was predicated on the alignment
of titles and abstracts with our inclusion criteria. Subse-
quently, full texts were scrutinized to ascertain adherence
to these criteria. This process was conducted manually, with
no reliance on software or Al assistance.

Inclusion Criteria

In adhering to the established inclusion criteria, our litera-
ture selection process focused on in vitro and in vivo stud-
ies investigating the impact of light on ion channels. Wave-
lengths outside the range of 620—1270 nm were omitted due
to their dissimilarity to PBM light and limited effect on the
nervous system (Barbora et al. 2021). Exclusions comprised
studies from unrelated fields like materials’ science, those
unrelated to nervous system, non-English publications, and
non-original articles such as reviews, case report, and com-
mentary papers.

Extraction of Qualitative Data

Data extraction involved a meticulous cross-review process
by two independent reviewers to ensure thoroughness, with
discrepancies resolved through consultation with a third
reviewer. The final selection encompassed literature perti-
nent to the role of PBM in ion channel modulation within
the nervous system, with extracted information including
authors, publication year, study population, PBM param-
eters, targeted ion channels, and key findings.

Results

In conducting a literature search on PubMed utilizing the
specified search strategy, a total of 330 articles were iden-
tified, devoid of duplicates or unavailable literature. Upon
review of titles and abstracts, 94 papers were selected for
eligibility assessment. Following a thorough screening pro-
cess, 19 articles met the inclusion criteria and pertained to
the study population under review. All 19 studies underwent
a comprehensive qualitative analysis. The study’s inclusion
criteria and literature flow are visually represented in Fig. 2.

The primary objective of this paper is to delve into the
mechanism of action of PBM in modulating ion channels
within the nervous system. The overarching goal is to har-
ness the potential of light for non-invasive neurostimula-
tion. The study also aims to evaluate various PBM protocols,
weighing their respective advantages and disadvantages in
terms of their impact on ion channels. Furthermore, the
research seeks to elucidate the intricate interplay between
light and cellular signals and their effects on ion channels.
Various discussions on animal models, research goals, and
treatment protocols have led to experiments with significant
heterogeneity. This diversity presents challenges in accu-
rately assessing the conclusions through Meta-analysis. In
Table 1, we have summarized the different treatment pro-
tocols used in these experiments as a reference for future
research. A detailed synopsis of the included studies is pro-
vided in Table 2.

The analysis presented in Fig. 3A underscores the esca-
lating research interest in utilizing PBM for modulating
ion channels within the nervous system. Our investigation,
guided by specific search parameters, revealed that one of
the pioneering studies exploring PBM’s impact on ion chan-
nel modulation in the nervous system dates back to 2005
(Ignatov et al. 2005). Since 2016, there has been a gradual
uptick in the number of related publications, reaching a pin-
nacle in 2021 with the publication of six original papers. As
of 2024, although ongoing research persists, no new papers
have been released to date. The graphical representation
vividly illustrates the varying degrees of research attention
dedicated to distinct ion channels, each denoted by a distinct
color. Figure 3B delves into the specific ion channels that
have garnered significant interest in recent years within the
realm of PBM application in the nervous system. Notably,
glutamate receptors emerge as the most extensively studied
group, with a total of 8 papers, closely followed by TRPs (6
papers), AChR (2 papers), potassium channels (2 papers),
and sodium channels (1 paper).

Discussion

PBM, a technique gaining increasing attention in the realm
of neurological disorders, holds promise for modulating ion
channels to influence cellular excitability. Various condi-
tions, like epilepsy, tinnitus, and Alzheimer’s disease, are
known to stem from disruptions in cellular excitability, often
linked to ion channel activities (Maiorov et al. 2024; Martin
et al. 2023; Negandhi et al. 2014; Ruiz-Clavijo et al. 2023).
While existing studies have shed light on the anti-inflam-
matory and stem cell differentiating effects of PBM through
CCO photostimulation, which enhances ATP synthesis and
nitric oxide release, investigations into how this modality

@ Springer
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Fig.2 Flowchart of studies selected for PBM on ion channels

impacts ion channels and cellular excitability are still limited
(Moos et al. 2023; Powner et al. 2024).

PBM induces neuromodulatory effects by interact-
ing with various ion channels, altering their activity. (1)
PBM harnesses light energy absorbed by photosensitive
or thermosensitive ion channels in cell membranes, lead-
ing to energy transfer that modifies ion channel function
and intracellular signaling. Caiyun Meng et al. (Meng
et al. 2020) found that 630 nm LED inhibits the growth
of human synovial cell MH7A, likely by regulating the
TRPV4/PI3K/AKT/mTOR signaling pathway, resulting

@ Springer

photobiomodulation
(n=3)
e Expression in other
than English (n=6)
e Review (n=8)

in decreased inflammatory factors (IL-6, IL-1f, IL-8, and
MMP-3) and increased anti-inflammatory factor IL-10. (2)
PBM may also directly impact calcium channels, decreas-
ing Ca2 +influx, which activates downstream transcription
factors, alters gene expression, and decreases protein syn-
thesis (Navarro et al. 2024). Iuliia Golovynska et al. (2022)
found that PBM significantly reduced pro-inflammatory
cytokine expression and increased Ca’* influx in mac-
rophages. These insights not only elucidate the therapeu-
tic potential of PBM in inflammatory conditions but also
highlight the intricate interplay between light exposure
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Table 2 (continued)

18

potassium ion current, reflecting alterations in the total num-
ber of functionally active channels, with the specific effect

of radiation varying according to its dose

Ion channels Major findings

Effects of helium—neon laser irradiation and local anesthetics Voltage-dependent slow potassium channels Laser irradiation modulates the magnitude of transmembrane
on potassium channels in pond snail neurons

Title

Authors
Ignatov et al.

Springer

and cellular ion homeostasis, offering avenues for further
research and clinical applications in the management of
inflammatory diseases.

PBM modulates crucial intracellular signaling pathways
like MAPK/ERK and AKT/PI3K, which are vital for neu-
ronal growth, differentiation, and synaptic plasticity (Bathini
et al. 2022). Its mechanism for promoting neural regenera-
tion involves altering ion channel activity and enhancing
the synthesis of neurotrophic factors. Yun-Hee Rhee et al.
(2019) demonstrated that PBM reversed cellular morphol-
ogy disruption and improved cell viability in neurons inhib-
ited by ouabain, indicating that PBM treatment alleviates
Na/K imbalance and aids neural repair. Xiaodong Yan et al.
(2017) highlighted the Ca>*-ERK-CREB cascade as a key
pathway in PBM-induced BDNF synthesis, underscoring the
role of calcium ions in enhancing neurotrophic factor pro-
duction. Collectively, these effects contribute significantly to
the repair and regeneration of neuronal cells. By promoting
cellular resilience and enhancing the intrinsic regenerative
mechanisms, these interventions facilitate the restoration
of neural function. Such positive outcomes are crucial for
advancing treatments for neurodegenerative diseases and
injuries, ultimately improving patient recovery and quality
of life.

lon Channels

Ton channels are particularly vital for the nervous system
due to their involvement in transmembrane ion flow, affect-
ing cellular electrophysiology (Kariev et al. 2024). Neuronal
communication, essential for transmitting sensory, cognitive,
and motor signals in the brain, relies on electrical signaling
through synapses (Gonzéilez-Cota et al. 2024). When we
receive external stimuli, neurons generate electrical signals
and transmit these signals to other neurons through synapses.
This process is fundamental to the normal functioning of the
nervous system and is an important mechanism that ena-
bles us to perceive and respond. PBM influences the action
potentials of neurons through various pathways, including
enhancing mitochondrial function, regulating the activity of
ion channels, providing neuroprotection, and increasing syn-
aptic plasticity (Ishibashi et al. 2024; Yoo et al. 2013). The
ability of PBM to modulate ion channels offers a non-inva-
sive means of neurostimulation, crucial not only for disease
treatment but also for applications in optical communication
and brain—computer interfaces (Ghaderi et al. 2021; Savi¢
et al. 2023). Our research has identified several key ion chan-
nels influenced by PBM, such as glutamate receptors, AChR,
potassium channels, sodium channels, and TRPs. Further
exploration into the modulation of these channels by PBM
is anticipated to deepen our understanding of its therapeutic
mechanisms and potential applications in the future.
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Glutamate Receptors

Glutamate receptors are ubiquitous in the nervous system,
serving as key regulators of neuronal excitability, synaptic
transmission, learning, memory, and various physiological
processes (Gurung et al. 2016; Ladagu et al. 2023). These
receptors are involved in excitatory neurotransmission, being
the primary excitatory neurotransmitter in the central nerv-
ous system (CNS) (Chakraborty et al. 2023). Glutamate
receptors can be broadly classified into two major catego-
ries: ionotropic and metabotropic (McElroy et al. 2024; Par-
ent et al. 2024). Ionotropic glutamate receptors (iGluRs) are
ligand-gated ion channels that directly gate the flow of ions
across the cell membrane, while metabotropic glutamate
receptors (mGluRs) are G-protein-coupled receptors that
regulate ion channel activities indirectly through second-
messenger systems (Paoletti et al. 2013).

Within the ionotropic glutamate receptors, there are
three major subclasses: N-methyl-p-aspartame recep-
tors (NMDARs), a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptors (AMPARs), and erythro-
cyanine receptors, of which the first two types have been
studied the most (Goldsmith 2019). NMDARs play a crucial
role in synaptic plasticity and learning and memory pro-
cesses (Kim et al. 2024). When the cell membrane remains
unpolarized, voltage-gated Mg?* channels prevent NMDAR
activation (Dingledine et al. 1999). NMDAR can evoke cel-
lular depolarization upon binding to glutamate or NMDA,
altering the membrane voltage and relieving Mg”* blockade
of voltage-dependent channels.

This leads to a significant influx of Ca’* and subse-
quent modulation of cellular functions (Golovynska et al.
2019; Paoletti et al. 2007). Golovynska et al. (2019, 2021)
demonstrated that 808 nm laser irradiation of neuronal
and HeLa cells in vitro induced a substantial Ca’* influx.
Application of dizocilpine, a specific NMDAR blocker,
reduced this influx, indicating that the laser’s effect on
Ca?* influx primarily occurs via NMDAR activation.
NMDAR’s rapid response and low depolarization poten-
tial highlight its importance in the initial stages of Ca®*
influx. Subsequently, the influx of Ca*" activates AMPAR,
enhancing its synthesis and promoting Na* and K* influx,
thereby maintaining membrane depolarization (Nanou
et al. 2007). Zhang et al. (Zhang et al. 2021) demonstrated
that PBM can alleviate glutamatergic dysfunction in mice
with depression induced by chronic unpredictable mild
stress. This effect is achieved by stimulating ATP synthe-
sis through activation of CCO, leading to elevated cAMP
levels. This subsequently enhances AMPA receptor phos-
phorylation and surface expression through the cAMP/
PKA signaling pathway. Separately, Shen et al. (2021)
investigated the impact of PBM using a 635 nm semicon-
ductor laser on an Alzheimer’s disease mouse model. Their

@ Springer

findings revealed that PBM effectively inhibited JNK3
phosphorylation, which reduced AMPA receptor endocy-
tosis and restored surface levels. This treatment also sig-
nificantly decreased amyloid accumulation, neuroinflam-
mation, and synaptic loss in APP/PS1 transgenic mice.

Neuroplasticity refers to the brain's remarkable capacity
to reorganize and adapt its neural connections in response
to environmental changes, including injuries and various
experiences that affect the nervous system (Chou et al.
2024). This inherent plasticity plays a crucial role in how
organisms react to both internal and external stimuli.
Recent studies have provided valuable insights into the
mechanisms underlying neuroplasticity. For instance,
research by Pascal Jorratt et al. (2023) highlights that pro-
longed stimulation of NMDAR can intensify activity in
glutamatergic neurons, leading to dendritic field expansion
that may worsen psychiatric conditions such as anxiety.
Conversely, findings from Hongli Chen et al. (2024a, b)
demonstrate that PBM can alleviate behavioral deficits,
reduce neuroinflammation, and restore synaptic function
in the hippocampus of depressed mice, likely through the
enhancement of brain-derived neurotrophic factor signal-
ing. Moreover, Katayoon Montazeri et al. (2024) showed
that the expression of doublecortin, a neuroplasticity
marker, was significantly reduced in the dentate gyrus
of rats experiencing tinnitus, suggesting that PBM may
promote neuroplasticity that is compromised by sodium
salicylate-induced auditory disorders. In summary, these
studies emphasize the complex interplay between neural
plasticity and PBM in the treatment of neurological and
psychiatric disorders, with glutamate receptors potentially
playing a significant role. Further research is necessary to
explore how PBM influences neural plasticity through its
effects on glutamate receptors.

Excitotoxicity, a series of pathologic changes in the
CNS triggered by neuroinflammation or ischemic trauma,
can result from the over-synthesis of glutamate by micro-
glia or abnormally active glutamate function in neuronal
cells (Neves et al. 2023). This abnormal activation of glu-
tamate receptors can lead to elevated intracellular Ca®*
levels, ultimately causing cell death and contributing to the
pathogenesis of conditions such as epilepsy (Sarlo et al.
2021). Furthermore, chronic noise damage affecting the
cochlear nucleus can elevate glutamate concentrations and
increase glutamate receptor expression, potentially leading
to conditions like tinnitus (Muly et al. 2004). Research on
PBM as a treatment for CNS disorders has shown promis-
ing results by improving mitochondrial function, boosting
ATP synthesis, and countering neuroinflammation (Lim
2024). However, the impact of this therapy on ion channels
and the specific mechanisms involved in the therapeutic
process require further investigation. Studies have indi-
cated that PBM can both promote and inhibit glutamate
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receptor activity, with its biological effects likely depend-
ent on the light regimen employed (Amaroli et al. 2019).

AChR

AChR plays a crucial role in various bodily functions,
particularly in synapses, where they are pivotal in para-
sympathetic action and motor function (Sine 2012). These
receptors are categorized into M and N receptors (Ved
et al. 2020). M receptors, upon binding with acetylcholine,
elicit parasympathetic excitatory effects such as inhibiting
cardiac contraction and promoting smooth muscle contrac-
tion in the digestive tract (Eglen et al. 2001). On the other
hand, N receptors trigger skeletal muscle contraction or
excitation of postganglionic neurons following acetylcho-
line binding (Changeux et al. 1992). Pissulin et al. (2017)
have shown promising outcomes in using GaAs laser
therapy to restore the morphology of the neuromuscular
junction and AChR post-injury caused by bupivacaine.
Their studies on PBM for nerve injury due to local anes-
thetics demonstrated that irradiation with 904 nm laser
light reduced myonecrosis and significantly increased the
expression of the e-subunit of the AChR. The e-subunit
of the nAChR ion channel plays a crucial role in regu-
lating calcium ion influx, thereby ensuring stable initial
interactions between nerves and muscles, leading to syn-
aptic maturation (Castro et al. 2022). These findings shed
light on potential therapeutic interventions for nerve inju-
ries and underscore the intricate mechanisms underlying
nerve—muscle interactions.

The role of AChR in cognitive processes has been widely
acknowledged in the scientific community. By either increas-
ing acetylcholine synthesis or directly activating AChR,
researchers have found that these approaches can be effective
in treating neurodegenerative diseases such as Alzheimer’s
disease (Castro et al. 2022), schizophrenia (Dean 2023) and
Parkinson’s disease (Castro et al. 2022; Vallés et al. 2023).
In the case of Parkinson’s disease, the lack of dopamine
synthesis in the brain leads to an imbalance with acetylcho-
line neurotransmitters, resulting in symptoms like tremors
(Morris et al. 2024). Chiao-Hsin Lan et al. (2022) reported
a myasthenia gravis patient treated with PBM, who regained
muscle strength. SPECT brain imaging revealed a signifi-
cant increase in perfusion in the prefrontal lobe and ante-
rior cingulate gyrus. We speculate that this may be linked
to PBM’s activation of AChR, but further investigation is
needed to clarify the underlying mechanism. While the exact
mechanism of this treatment method is still being explored,
it offers a potential alternative for diseases related to AChR
dysfunction. Further research into the use of PBM for neu-
rodegenerative diseases holds great promise and may lead to
new therapeutic approaches for patients in the future.

Potassium Channels

Potassium channels play a crucial role in the regulation of
cellular excitability within all cells (Abbott 2021). These
channels can be categorized into four main types based on
their structure and function: calcium-activated potassium
channels, inwardly rectifying potassium channels, tandem
pore domain potassium channels, and voltage-gated potas-
sium channels (Griffith 2001). Among these, calcium-
activated and inwardly rectifying potassium channels are
particularly influenced by photobiological regulation. (1)
Calcium-activated potassium channels are activated through
an indirect pathway involving the absorption of specific
wavelengths by CCO within the mitochondrial oxidative
respiratory chain (Liebert et al. 2023; Salehpour et al. 2018).
This activation leads to the release of NO, a key intracel-
lular signaling molecule that triggers a cascade resulting
in the opening of potassium channels and the regulation of
vasodilation (Hennessy et al. 2017). NO plays a crucial role
as a significant intracellular signaling molecule by trigger-
ing soluble guanylate cyclase to produce cyclic guanosine
monophosphate (cGMP). This cGMP then initiates the acti-
vation of protein kinase G (PKG), which subsequently facil-
itates the influx of calcium ions, opens calcium-activated
potassium channels, and governs the process of vasorelaxa-
tion (Bardou et al. 2001). (2) ATP-sensitive potassium chan-
nels, a subtype of inwardly rectifying potassium channels,
are also activated indirectly. Lais et al. (2018) have demon-
strated that CB1 receptors play a role in modulating calcium
and potassium channels in response to light exposure, with
the ATP-sensitive potassium channel inhibitor glibenclamide
reversing certain effects.

Potassium channels are pivotal in the modulation of neu-
ronal electroactivity, with aberrant potassium channels being
intricately linked to the pathogenesis of numerous CNS dis-
orders. Notably, acquired mutations in the ol subunit of
calcium-activated potassium channels have been associated
with 50% of individuals afflicted by petit mal seizure (Du
et al. 2005), while mutations in the 4 subunit have been
shown to induce epileptiform behavior in mice (Wang et al.
2009). Various potassium channels are implicated in condi-
tions such as epilepsy (Gribkoff et al. 2023), tinnitus (Lai
et al. 2024), and Alzheimer’s disease (Taylor et al. 2022),
although a comprehensive exploration of the interplay
between these ion channels and diseases is beyond the scope
of this discourse. For further insights, the commentary paper
authored by Yian Huang et al. (2018) provides a valuable
resource. While a plethora of potassium channel activators
have been developed for treating CNS disorders, their utility
is hampered by non-specific drug targets, severe side effects,
and the emergence of drug resistance. Consequently, phar-
macotherapy may not always represent the optimal treatment
modality (Sills et al. 2020). PBM emerges as a promising
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alternative, enabling precise modulation of neuronal activity
without affecting non-target sites, thereby reducing adverse
reactions. Moreover, PBM circumvents the issue of drug
resistance, offering novel avenues for managing CNS ail-
ments. Future investigations in neuromodulation are poised
to unravel the intricate mechanisms governing the regulation
of distinct potassium channel subtypes, paving the way for
tailored interventions in various diseases.

Sodium Channels

Sodium channels play a crucial role in cellular function by
facilitating the entry of sodium ions into the cell through
an electrochemical gradient. These membrane proteins are
essential for various physiological processes and can be clas-
sified into different types based on their mode of activation,
such as ionic and ligand-type sodium channels (McDougall
et al. 2024). Cervetto et al. (2023) have demonstrated how
the irradiation of nerve endings with an 8§10 nm laser in
adult mice cultured in vitro can activate ligand-type sodium
channels and Ca®* channels in the postsynaptic membrane.
This activation process may involve photon-induced stimu-
lation of the CCO in the presynaptic membrane, leading to
ATP synthesis and the release of glutamate into the cyto-
sol. Additionally, Li et al. (2013, 2014) have revealed the
association between the opening of sodium channels and the
photothermal effect. Neuronal cells depolarized by electri-
cal pulses from — 70 to — 30 mV exhibit peak Na* currents,
with the 980 nm near-infrared laser appearing to decrease
ion channel resistance. Furthermore, there is a positive cor-
relation between the accelerated inward flow of Na™ in the
extracellular fluid induced by irradiation and the transient
temperature rise.

Maintaining the normal function of sodium channels is
crucial for the proper functioning of the CNS. Numerous
research studies have highlighted the significance of muta-
tions or irregular activities in sodium channels in the onset
and progression of various CNS disorders. Conditions such
as epilepsy, Parkinson’s disease, and Alzheimer’s disease
have been linked to abnormalities in sodium channels, as
evidenced by several studies (Barbieri et al. 2023; Thompson
et al. 2023; Vaidya et al. 2024). In response to these findings,
pharmaceutical interventions in the form of sodium chan-
nel blockers like lidocaine, quinidine, and phenytoin sodium
have been developed for the management of epilepsy, tinni-
tus, and other associated disorders. Sodium channels, akin to
potassium channels, have emerged as pivotal therapeutic tar-
gets in the treatment of CNS disorders (Zierath et al. 2023).

Sodium channels are crucial for neuronal excitability, and
studying their structure and function has revealed important
insights into this process. These complex protein molecules,
which consist of about 3000 amino acids, typically comprise
four subunits, each featuring intra- and extra-membrane
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transmembrane regions (Schott et al. 2024). This arrange-
ment forms a channel that allows sodium ions to flow across
the cell membrane during potential changes, triggering elec-
trical activity in neurons and modulating their excitability.
Overactivation of sodium channels can lower the threshold
for action potentials, enhancing neuronal firing and leading
to abnormal excitation (Miralles et al. 2024). Conversely,
reduced sodium channel function can impede normal action
potential firing, resulting in diminished excitability. Thus,
studying sodium channel’s role in regulating neuronal excit-
ability is vital for understanding related diseases and devel-
oping new therapies.

Despite the acknowledged importance of sodium channels
in CNS disorder pathogenesis, the exploration of the effects
of PBM on their modulation remains relatively uncharted
territory, as indicated by our comprehensive review of
the existing literature. We posit that further fundamental
research in this area will pave the way for a more seamless
transition of PBM technology from theoretical understand-
ing to practical clinical applications.

TRPs

TRPs, initially discovered in Drosophila mutants and pre-
dominantly associated with vision development in insects,
have now been recognized as pivotal light- and heat-gated
ion channels crucial for modulating cellular functions (Feng
2014). The PBM process works with chromophore CCOs
and heat/light-gated ion channels to raise secondary mes-
sengers like calcium ions, cAMP, and ROS. These secondary
messengers play a vital role in initiating the activation of
transcription factors and signaling molecules, which sub-
sequently trigger downstream signaling cascades leading to
profound photobiological effects within the cell (Ma et al.
2024). Notably, TRPs exhibit responsiveness to both green
and near-infrared light, although the limited penetration
capability of green light through the cranium necessitates
the predominant utilization of near-infrared light in PBM
practices to activate TRPs effectively (Gholami et al. 2022).
Wang et al. (2017a) have demonstrated that when subjecting
adipose-derived stem cells to laser irradiation in vitro using
wavelengths exceeding 900 nm, the primary chromophore
absorbing the light is the TRPs located on the cell mem-
brane. Della Pietra A et al. (2024) have highlighted a signifi-
cant correlation between TRPs and migraine. Their findings
suggest that individuals suffering from migraines exhibit
elevated levels of TRPs compared to those without the con-
dition. Moreover, these TRPs appear to be more responsive
to external stimuli such as light, heat, and mechanical pres-
sure in migraine patients. Our research also highlights the
critical role of TRPs in mediating the analgesic properties
associated with PBM.
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However, it is puzzling that the activation of TRPs
appears to be triggered not only by light stimulation but
also by capsaicin, other vanilloids, acid, and heat (Caterina
et al. 1997; Gunthorpe et al. 2007; Julius et al. 2001). This
contradicts the concept of PBM, which focuses on the non-
thermal effects of light. The debate continues on whether
the regulation of TRPs through photobiological means truly
falls under PBM. Despite this, our study includes relevant
TRPs studies for the reference of other researchers. Delving
into the regulation of TRPs through photobiological methods
presents significant challenges, particularly in completely
eliminating non-light stimuli. Even with the most rigorous
experimental setups, controlling cell temperature may have
limitations, and subtle temperature changes undetectable by
instruments could activate TRPs, leading to the erroneous

Table 3 Description of the parameters in PBM

attribution of biological effects to light exposure. There-
fore, further precise and meticulous experimental designs
are essential for studying the regulation of TRPs through
photobiological means.

Protocols for PBM of Effects on lon Channels

PBM is a sophisticated therapeutic technique that requires
careful consideration of multiple parameters to effectively
harness its potential in non-invasive neuromodulation. In
Table 3, we outline the key parameters influencing PBM.
It is concerning that, despite previous research on PBM
parameters, a consensus has yet to be reached on a reason-
able and standardized set of parameters. This lack of agree-
ment not only introduces systematic bias, diminishing result

Parameters Descriptions

Laser sources

Light sources can be classified into two categories: diode lasers and semiconductor lasers. Each type has distinct bio-

logical effects. Diode lasers emit coherent light with an uneven energy distribution from the center to the edge of
the spot, while semiconductor lasers emit light energy that is evenly distributed throughout the spot. Diode lasers
have greater penetration capabilities compared to semiconductor lasers; however, semiconductor lasers are more
cost-effective and are advantageous for creating array laser sources. Depending on the specific research require-
ments, both diode and semiconductor lasers can be utilized effectively in experiments

Wavelength (nm)

Defined as the distance between two consecutive wave peaks, wavelength plays a significant role in determin-

ing the depth of penetration and biological effects of these waves. In the field of PBM, a wavelength range of
620—1270 nm is commonly chosen for its therapeutic benefits

Mode

Lighting modes are commonly classified into two categories: continuous and pulsed wave. In the continuous wave

mode, the light source emits light continuously during the illumination process, whereas in the pulse wave mode,
light emission occurs periodically according to a specific time wave. In this context, the frequency at which these
pulses occur is referred to as the pulse frequency, measured in Hertz (Hz), while the duration of each pulse is
known as the pulse width, measured in seconds (s). The duty cycle, which is the ratio of the total time of illumina-
tion to the total time, reflects the actual degree of illumination achieved. Typically, the pulse frequency ranges from
1 to 3000 Hz (Sommer et al. 2012). Research suggests that pulsed light may influence the electronic oscillations
within nerve cells, potentially enhancing the opening or closing of ion channels(Kampa et al. 2004)

Power density (mW/cm?)

Power density is a crucial parameter that must be carefully considered in any application involving electromagnetic

fields. It plays a significant role in determining the potential effects on living organisms, including modulation
effects and the risk of tissue damage. Typically, power density levels are maintained within the range of 0.1-100
mW/cm? to minimize the risk of thermal damage

Radiant exposure (J/em?)

Radiant exposure serves as a crucial parameter in quantifying the accumulation of light energy on the surface of

action. It is defined as the product of power density, which represents the amount of power per unit area, and the

actual illumination time

Duration

The determination of illumination time stands as a pivotal parameter in experimental design, directly shaping the

course of research endeavors. This factor, which encompasses both the number and duration of illuminations,
exhibits remarkable flexibility, adapting to the unique demands of each study subject

Spot area (cm?)

The spot area is a crucial parameter that is often underestimated in its importance. Even with identical power levels,

variations in spot area can lead to substantial differences in power density. Moreover, the size of the spot area
directly influences the precision of PBM manipulation. In research involving rodents as experimental subjects,
maintaining the spot diameter at the millimeter level is imperative. If the spot size is too large, multiple areas may
inadvertently receive irradiation simultaneously, introducing a notable system bias due to the anatomical curvature
of the irradiation point. This factor cannot be disregarded, as it may contribute to the diminished credibility of

numerous experiments

Location

The location of illumination in a study can vary depending on the specific research objectives. Common areas for

illumination include the head, limbs, chest, and abdomen. Researchers should carefully consider the purpose of
their study when selecting the appropriate location for illumination to ensure accurate and reliable results

Distance (cm)

Distance refers to the space separating the light source from the subject, impacting the spot size and the thermal

influence of the rising ambient temperature from the light source
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reliability, but also hampers experimental reproducibility
and impedes in-depth investigation into the mechanism
of action. Among the reviewed studies, only five papers
included all parameters, with spot area and distance being
the most commonly omitted (de Oliveira et al. 2021; Pires
de Sousa et al. 2016; Pissulin et al. 2017; Shen et al. 2021;
Zhang et al. 2021). This paper aims to establish a detailed
and standardized experimental design framework for PBM to
assist researchers in conducting more effective experiments.

Promising Applications of PBM

Recently, PBM applications have expanded beyond tradi-
tional CNS irradiation, demonstrating potential in various
areas, particularly brain—gut axis intervention and enhancing
blood-brain barrier (BBB) permeability. (1) PBM modulates
interactions between the nervous system and gut microbiota,
improving mood and cognitive function (Huang et al. 2024).
Qiangian Chen et al. (2021) found that PBM on the abdo-
men of amyloid p protein (Af)-induced Alzheimer’s disease
mice led to significant changes in intestinal microflora after
8 weeks, affecting pathways related to hormone synthesis,
phagocytosis, and metabolism. This suggests that PBM can
diversify the intestinal flora and mitigate Alzheimer’s-related
damage. (2) Additionally, PBM enhances blood-brain bar-
rier permeability, enabling more efficient drug delivery to
the CNS. Ting Zhou et al. (2021) showed that an 808 nm
laser significantly increased permeability in a cellular model
of the BBB, likely due to inhibited metalloproteinase activity
and altered tight junction protein expression in endothelial
cells. These findings position PBM as a promising method
for improving drug delivery through the blood-brain bar-
rier, providing innovative treatment avenues for neurological
diseases, and paving the way for further exploration of PBM
mechanisms in clinical settings. Despite these preliminary
results, the specific mechanisms behind these applications
require further investigation, particularly concerning the
potential role of ion channels.

Limitations and Potential for Future
Research

e Despite the promising therapeutic effects that PBM has
demonstrated in various central nervous system disor-
ders, there remains a notable lack of convincing evidence
from randomized controlled trials to support its efficacy
(Figueiro Longo et al. 2020). Consequently, the effective-
ness of PBM requires more rigorous scientific investiga-
tion and well-structured experimental designs, aspects
that are currently insufficiently addressed in the existing
research. The variability in parameters across different
experimental protocols, coupled with the frequent omis-
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sion of critical factors such as spot size and the distance
between the light source and the treatment area, signifi-
cantly hampers the comparability of PBM treatments
and does not accurately reflect their therapeutic poten-
tial. Moving forward, it is imperative to standardize the
selection of treatment parameters for PBM and conduct
more scientifically robust randomized controlled trials to
compare PBM with widely accepted treatment modali-
ties, ultimately elucidating its therapeutic efficacy.

e Research on the relationship between PBM and ion chan-
nels remains limited, primarily addressing voltage-gated,
ligand-gated, and TRP channels. Further investigation
into the roles of different channels in PBM is necessary.
The P2X7 receptor has garnered significant attention due
to its link with inflammation, particularly in the context
of chronic obstructive pulmonary disease (COPD) and
temporomandibular arthritis (da Cunha Moraes et al.
2018; Mazuqueli Pereira et al. 2021). However, GABAR,
acid-sensitive ion channels, chloride channels, and mech-
anosensitive ion channels have yet to be explored, pre-
senting opportunities for future research.

e The opening of many ion channels relies on ATP, so
PBM not only modifies ion channel protein structure
through photon interactions but also enhances ATP syn-
thesis, influencing ion channel function. Different cell
types exhibit significant variations in mitochondrial num-
ber and activity, and it remains unclear how PBM affects
mitochondria in these diverse cell types—a topic that
requires further investigation in future research.

Conclusions

PBM demonstrates the ability to effectively regulate the
excitatory and inhibitory states of neurons by directly
influencing the activity of ion channels, thereby fine-
tuning the transmission and processing of neural signals.
A plethora of studies have underscored the capacity of
PBM to influence an array of ion channels, encompassing
glutamate receptors, AChR, potassium and sodium chan-
nels, and TRPs, among others. This modulation intricately
adjusts the dynamics of neuronal membrane potentials,
impacting the initiation and propagation of action poten-
tials. Such a regulatory mechanism assumes a pivotal role
in the pathological progression of neurological disorders.
This article endeavors to present the available data in a
comprehensible manner, serving as a springboard for
future investigations and offering insights into potential
therapeutic avenues for combating neurological condi-
tions arising from aberrant excitability. Of the 19 stud-
ies we reviewed, all involved rodent and cellular models,
indicating a lack of clinical studies on the mechanisms of
ion channels following PBM treatment for various CNS
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disorders. This is why we have not focused extensively
on clinical research when discussing the mechanisms of
action of different PBMs on ion channels. The limited
exploration may stem from PBM’s experimental status
in the CNS, focusing more on treatment efficacy than on
mechanistic understanding. Therefore, this paper summa-
rizes all PBM studies on ion channels conducted to date,
aiming to inspire researchers and broaden applications and
clinical inquiries into other ion channels yet to be stud-
ied. While numerous aspects remain to be elucidated or
refined, the evolving comprehension of PBM mechanisms
and the exploration of diverse ion channels represent a
quest to unveil novel and promising therapeutic domains.
Therefore, a thorough exploration of the interplay between
PBM and ion channels is of paramount significance in
unveiling the principles governing nervous system activ-
ity and in devising innovative strategies for the treatment
and prevention of neurological ailments.
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