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A multi-region single nucleus 
transcriptomic atlas of Parkinson’s 
disease
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Joana Krause-Massaguer1,2,3,4, Ayled Barreda7, David A. Davis   7, Regina T. Vontell7, 
Susanna P. Garamszegi7, Jeffery M. Vance8, Lorelle Sang9, Michael Chatigny9, David Vismer10, 
Barry Landin10, David Burstein1,2,3,4,5,6, Donghoon Lee   1,2,3,4, Georgios Voloudakis   1,2,3,4,5,6,  
Sabina Berretta9,11,12, Vahram Haroutunian   2,3,5,13, William K. Scott   7,8, 
Jaroslav Bendl1,2,3,4,15 ✉ & Panos Roussos   1,2,3,4,5,6,15 ✉

Parkinson’s Disease (PD) is a debilitating neurodegenerative disorder, characterized by motor and 
cognitive impairments, that affects >1% of the population over the age of 60. The pathogenesis of PD 
is complex and remains largely unknown. Due to the cellular heterogeneity of the human brain and 
changes in cell type composition with disease progression, this complexity cannot be fully captured 
with bulk tissue studies. To address this, we generated single-nucleus RNA sequencing and whole-
genome sequencing data from 100 postmortem cases and controls, carefully selected to represent the 
entire spectrum of PD neuropathological severity and diverse clinical symptoms. The single nucleus data 
were generated from five brain regions, capturing the subcortical and cortical spread of PD pathology. 
Rigorous preprocessing and quality control were applied to ensure data reliability. Committed to 
collaborative research and open science, this dataset is available on the AMP PD Knowledge Platform, 
offering researchers a valuable tool to explore the molecular bases of PD and accelerate advances in 
understanding and treating the disease.

Background & Summary
Parkinson’s disease (PD) is a complex neurodegenerative disorder that significantly diminishes the quality of 
life of affected individuals by impairing motor skills and often impacting cognitive function. Neuropathological 
characteristics include the buildup of α-synuclein protein within neurons, leading to the formation of Lewy 
bodies and Lewy neurites1,2, alongside the degeneration of dopamine-producing neurons3. This condition man-
ifests through symptoms such as tremors, stiffness, and memory loss, which progressively worsen, affecting daily 
activities and overall well-being4. The complex pathophysiological mechanisms that erode cognitive abilities in 
Parkinson's are still not fully understood. This knowledge gap highlights the need to examine changes in gene 
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expression, which could reveal the underlying mechanisms of PD progression and enhance the potential for 
early diagnosis and the development of more effective treatments.

Alterations in gene expression and cell type composition are common disruptions in neurodegenerative 
disorders, including PD5–10. Traditional approaches11 such as bulk or cell-sorted tissue analyses have not been 
able to fully capture the complex molecular changes in PD, mainly due to the confounding effects of changes 
in cell composition12. This problem is worsened by the narrow focus of previous research, which has tended to 
concentrate on small sample sizes and specific brain areas, notably the substantia nigra, where there is a substan-
tial decrease in dopaminergic neurons3. Moreover, the typical use of case-control studies, primarily involving 
patients in advanced stages of PD, fails to effectively track the gradual changes in gene expression that occur 
as the disease progresses. In our study, we have adopted several strategies to overcome these limitations: First, 
we utilized a single-nucleus RNA-seq assay (snRNA-seq) for data generation, enabling cell-specific analysis. 
Secondly, in collaboration with four different brain banks, we gathered extensive clinical and demographic 
records for over 600 PD cases. From this collection, we selected age- and sex- balanced specimens from 75 
PD patients at varying disease stages, based on neuropathological evaluations and staging, and included 25 
unaffected controls. To ensure coverage of all disease stages, we utilized Braak PD staging13, which quanti-
fies regional disease progression and accumulation of Lewy bodies, primarily composed of α-synuclein. This 
approach enabled the inclusion of donors with early-stage PD pathology. Furthermore, we expanded the scope 
of transcriptomic profiling to include five brain regions beyond the extensively studied substantia nigra, track-
ing the progression of abnormal immunostaining α-synuclein patterns as defined by Braak PD stages13 (Fig. 1). 
This included early affected (DMNX: dorsal motor nucleus of the Xth nerve; GPI: globus pallidus interna) to 
late-affected regions (PMC: primary motor cortex, DLPFC: dorsolateral prefrontal cortex), as well as a largely 
unaffected region (PVC: primary visual cortex). The corresponding Brodmann areas (BA) for these regions are 
as follows: PMC = BA4, DLPFC = BA9 and PVC = BA17.

For whole genome sequencing (WGS), we utilized genomic DNA extracted from the PVC (Fig. 1). The data 
described in this study represent the largest PD-oriented single nucleus data collection to date and is available at 
the AMP PD Knowledge Platform.

Methods
Cohort data collection.  The cohort consists of genetic (WGS) and transcriptomic (snRNA-seq) assays col-
lected using a cohort of 100 donors sourced from the following brain banks: NIH NeuroBioBank at the Mount 
Sinai School of Medicine, NIH NeuroBioBank at the Harvard Brain Tissue Resource Center, NIH NeuroBioBank 
at the University of Miami, the University of Miami Brain Endowment Bank and the University of Miami Udall 
Center of Excellence for Parkinson's Disease Research (Fig. 1 and Table 1). All data were obtained from biobanks 
with appropriate informed consent from all participants. Detailed cognitive, neuropathological, and demographic 
information was gathered for all donors, who were mainly of European descent with a male-to-female ratio of 3:2 
(Fig. 2a–d). The study included 75 donors across a spectrum of PD severity, based on the Braak PD staging (Braak 
et al.13), which tracks the spread of Lewy body pathology (Fig. 2e–g), and 25 donors without the disease as control 
subjects (Table 1). Additionally, data were collected on Alzheimer’s disease (AD) Braak staging14, which evaluates 
tau neurofibrillary tangle accumulation, and the Hoehn and Yahr scale15, assessing functional disability in PD. 
The importance of examining both neuropathological (Braak PD staging) and detailed clinical characteristics of 
PD is evident from only a limited correlation observed between those phenotypes (Fig. 2h). Furthermore, the 
availability of both Braak AD and Braak PD stages provides an opportunity to explore the transcriptomics basis 
of symptomatic, clinical16, and, to a lesser extent, genetic overlaps17,18 between Tau and Lewy body accumulation. 
However, it is important to note that all donors were either unaffected controls or clinically diagnosed exclusively 
with PD but no other neurological or major neuropsychiatric diseases, including AD.

snRNA-seq data generation.  Nuclei isolation and snRNA-seq library preparation.  All buffers were sup-
plemented with RNAse inhibitors (Takara). Six samples, each from a different individual, were processed in par-
allel. Twenty-five mg of frozen postmortem human brain tissue from each specimen was homogenized in cold 
lysis buffer (0.32 M Sucrose, 5 mM CaCl2, 3 mM Magnesium acetate, 0.1 mM, EDTA, 10 mM Tris-HCl, pH8, 1 
mM DTT, 0.1% Triton X-100) and filtered through a 40 µm cell strainer. The flow-through was underlaid with 
sucrose solution (1.8 M Sucrose, 3 mM Magnesium acetate, 1 mM DTT, 10 mM Tris-HCl, pH8) and centrifuged 
at 107,000 g for 1 hour at 4°C. Pellets were resuspended in PBS and quantified (Countess II, Life Technologies). 
2 million nuclei from each sample were then pelleted at 500 g for 5 minutes at 4˚C and re-suspended in 100 µl 
staining buffer (2% BSA, 0.02% Tween-20, 10 mM Tris, 146 mM NaCl, 1 mM CaCl2 and 21 mM MgCl2). Each 
sample was incubated with 1 µg of a distinct TotalSeq-A nuclear hashing antibody (Biolegend) for 30 min at 4°C. 
Prior to Fluorescence-Activated Nuclei Sorting (FANS), volumes were brought up to 250 µl with staining buffer 
and 7-AAD (Invitrogen) added to facilitate the detection of nuclei. 7-AAD positive nuclei were sorted into tubes 
pre-coated with 5% BSA using a FACSAria flow cytometer (BD Biosciences).

Following FANS, nuclei were washed in staining buffer before being re-suspended in 22 µl PBS and quan-
tified. Nuclei concentrations were normalized and equal amounts from each sample were pooled together. 
Two aliquots of 60,000 pooled nuclei (i.e. 10,000 per sample) were processed in parallel using 3’ v3.1 reagents 
(10x Genomics). At the cDNA amplification step, reactions were supplemented with a hash-tag oligo (HTO) 
cDNA “additive” primer (GTGACTGGAGTTCAGACGTGTGCTCTTCCGAT*C*T; *Phosphorothioate 
bond). Following cDNA amplification, supernatants from the 0.6x SPRI selection step were retained for HTO 
library15 generation. Otherwise, cDNA libraries were prepared according to the manufacturer’s instructions (10x 
Genomics). HTO libraries were prepared as described previously19. All libraries were sequenced at the New York 
Genome Center (NYGC) using the Novaseq 6000 platform (Illumina).
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Fig. 1  Schematic overview of dataset collection and main study deliverables. Harvard: NIH NeuroBiobank at 
the Harvard Brain Tissue Resource Center; MSSM: NIH NeuroBioBank at the Mount Sinai Brain Bank; Udall: 
University of Miami Udall Center of Excellence for Parkinson's Disease Research; UMiami: NIH NeuroBioBank 
at the University of Miami and University of Miami Brain Endowment Bank.

Brain Bank #

Disease Status Sex Age Data Available

Case Control Male Female <70 70–84 >85 Clinical WGS snRNAseq

UDa 21 21 0 14 7 1 13 7 21 21 21

HAb 25 22 3 15 10 6 15 4 25 25 25

UMc NIH 
NeuroBioBank 17 12 5 10 7 3 9 5 17 17 15

UMc Brain 
Endowment Bank 13 8 5 9 4 3 7 3 13 13 12

MSd 24 12 12 14 10 3 19 2 24 24 24

Total 100 75 25 62 38 16 63 21 100 100 97

Table 1.  Summary of clinical and demographics data stratified by source brain bank. aUdall Center of 
Excellence for Parkinson’s Disease Research (UD). bNIH NeuroBioBank at Harvard Brain Tissue Resource 
Center (HA). cUniversity of Miami (UM). dNIH NeuroBioBank at the Mount Sinai Brain Bank (MS).
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Computational processing.  Alignment of sequencing reads from each multiplexed sample batch was conducted 
using the STARsolo (v.2.7.9a)20,21 algorithm against the hg38 reference genome. To assign the cells from each 
sequencing pool to their respective donors, we used a genotype-based demultiplexing strategy followed by a 
genotype concordance check. Initially, cellSNP-lite (v.1.2.0)22 collected allele data from polymorphic loci over-
lapping snRNA-seq reads from genes expressed in at least 10 cells. These polymorphic loci were required to dis-
play a minor allele frequency of at least 0.1 and meet the UMI threshold of 20. Subsequently, the vireo (v.0.5.8)23 
segregated cells into clusters that corresponded to the six distinct donors in each batch. Identity verification for 
each cell cluster was performed through a genotype concordance analysis using the QTLtools-mbv (v.1.3)24, 
comparing cell clusters against WGS. To ensure the accuracy of this procedure, we filtered out cells not meeting 
baseline quality control (QC) metrics, i.e. minimum number of expressed genes (n ≥ 1,000) and maximum frac-
tion of mitochondrial reads (less than 5%). Despite most pools containing the expected donors, genotype con-
cordance data was crucial for identifying and correcting sporadic instances of sample mislabeling or swapping.

Following alignment and donor assignment, a stringent, three-tiered QC protocol was employed to eliminate 
ambient RNA and ensure only viable cells were retained for subsequent analyses. Initially, a rigorous cell-level 
QC was implemented, which built on preliminary checks from the demultiplexing phase. Cells falling out-
side the defined ranges for UMI counts (1,500 to 110,000), gene expression (1,100 to 12,500 genes), and mito-
chondrial content (below 2%) were excluded. This stage also included assessment for potential ambient RNA 
contamination, particularly from non-messenger RNAs such as rRNA, sRNA, pseudogenes, and the lncRNA 
MALAT1. Additionally, cell doublets were identified and removed using the Scrublet (v.0.2.3)25. The second 
QC stage focused on gene expression, removing genes not consistently expressed in at least 0.05% of nuclei. The 
final QC step targeted the sample level, excluding samples represented by fewer than 50 cells to minimize noise 
in downstream analysis.

Cell clustering.  All 2,232,626 nuclei resulting from the previous QC steps were unified into a single dataset. 
Normalization and clustering were performed using the SCANPY (v.1.9.3)26 and Pegasus package27. Briefly, 
counts for all nuclei were scaled by the total library size and logarithmically transformed. Subsequently, 
6,000 highly variable genes were identified based on dispersion and mean (excluding sex chromosomes and 
mitochondria-related genes), followed by regression of the technical influence of the total number of counts, 
percentage of mitotic counts and cell cycle difference using pg.regress_out() function in Pegasus. Furthermore, the 
data were also corrected for batch effects coming from different brain banks using the Harmony28 approach via the 
pg.run_harmony() function. Principal Component Analysis (PCA) was carried out on the variable genes, followed 
by Uniform Manifold Approximation and Projection (UMAP)29 dimensionality reduction on the top 30 principal 
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Fig. 2  Study cohort characteristics. (a–c) Numbers and distributions of male and female donors across 
brain regions and age. (d) Distribution of donors by the most similar ancestry superpopulation predicted by 
QDA (AFR: African, AMR: Admixed American, EUR: European, SAS: South Asian). (e–g) Distribution of 
donors by age, source brain bank and Braak PD staging. (h) Spearman correlation coefficients among PD-
related phenotypes. Harvard: NIH NeuroBiobank at the Harvard Brain Tissue Resource Center; MSSM: NIH 
NeuroBioBank at the Mount Sinai Brain Bank; Udall: University of Miami Udall Center of Excellence for 
Parkinson's Disease Research; UMiami: NIH NeuroBioBank at the University of Miami and University of 
Miami Brain Endowment Bank.
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components (PCs). We confirmed that more than 30 PCs capture 100% of the data variance. The top 50 PCs were 
utilized to construct a k-nearest-neighbors cell–cell graph with k=100 neighbors. The Leiden algorithm was then 
applied to identify cell clusters. These analyses were performed using the functions pg.pca(), pg.elbowplot(), pg.
neighbours() in Pegasus, and leiden clustering using sc.tl.leiden() in SCANPY. Differential gene expression analysis 
for each cluster was conducted using the variance-adjusted t-test implemented in the sc.tl.rank_genes_groups() 
function in SCANPY. The top 300 ranking genes for each cluster were extracted and tested for overlap with 
previously reported markers30–32. Subsequently, during iterative sub-clustering, additional potentially dubious 
clusters representing low-quality or doublet cells were identified based on extreme separation from the rest of the 
sub-cluster population from the same cell type. Among these, clusters characterized by a distinctly high number 
of total counts or/and mixed expression of markers from different cell types were detected as potential doublets 
and excluded from downstream analyses, resulting in a total of 2,096,155 nuclei retained. Furthermore, cellular 
identities at the class level of taxonomy were confirmed by examining cosine similarity correlations which com-
pared to pseudo bulk-level transcriptome of detected Leiden clusters with reference datasets30–32.

Whole-genome sequencing.  Library preparation.  DNA was extracted from tissue samples using the 
QIAmp DNA kit (Qiagen, kit number 51306), according to the manufacturer’s instructions. Once DNA was 
extracted, samples were quantified using the Qubit Fluorometer (Life Technologies) and PicoGreen (Thermo 
Fisher), and sample quality was evaluated by checking Fragment Analyzer (Advanced Analytical) traces. 
WGS libraries were prepared using the Truseq DNA PCR-free Library Preparation Kit (Illumina, kit number 
20015965, lot numbers 20698565 and 20706057) in accordance with the manufacturer’s instructions. Briefly, 1 
µg of DNA was sheared using a Covaris LE220 sonicator (adaptive focused acoustics). DNA fragments under-
went bead-based size selection and were subsequently end-repaired, adenylated, and ligated to IDT for Illumina 
TruSeq DNA UD Indexes (kit 20040870, lot number 20704419). Final libraries were quantified using the Qubit 
Fluorometer (Life Technologies) or Spectromax M2 (Molecular Devices) and library size determined using a 
Fragment Analyzer (Advanced Analytical) or Agilent 2100 BioAnalyzer. Libraries were sequenced on an Illumina 
Novaseq 6000 sequencer using 2x150bp cycles and S4 reagent kit v1.5 (catalog number 20028312).

Computational processing.  Sequencing reads were aligned using BWA-mem33 to the hg38 reference genome. WGS 
variant calling was performed according to the Genome Analysis Toolkit (GATK, v.3.9.0) best practice recom-
mendations34. Briefly, sample-level nucleotide variants (SNVs) and insertions/deletions (indels) were called using 
the GATK’s HaplotypeCaller and GenotypeGVCFs tools. To refine and annotate variants, Variant Quality Score 
Recalibration (VQSR) was conducted within the GATK framework. Sample-level QC followed established described 
pipelines35–37 involving an assessment of relatedness, DNA contamination (by VerifyBamID, v.1.1.3)38, sample-level 
missingness (exclusion when > 0.05), and overall coverage (exclusion when < 25x). Furthermore, outlier samples 
were checked against various metrics, including the number of called SNVs and indels, insert size length, align-
ment mapping quality score, CRAM file size, transition/transversion (Ti/Tv) ratio, the ratio of novel variants to all 
variants, and the mapped reads to paired reads ratio as previously described35–37. Variant-level filtering eliminated 
variants with missingness > 0.10 and high heterozygosity levels (InbreedingCoeff < −0.8). Individual genotype 
calls with depth < 10 or genotype quality < 20 were set as missing. Analyses were restricted to biallelic variants only.

Ancestry estimation.  Based on the success of Mahalanobis distance techniques in ancestry assignment39,40, we 
leveraged quadratic discriminant analysis (QDA) to assign ancestry using scikit-learn (v.1.14.4)41. For each sam-
ple, we identified the most similar genetic ancestry group among the 1000 Genomes Project’s five superpopula-
tions42. First, unimputed genotypes were merged with GRCh38 v2a 1000 Genomes Project data42 using BCFtools 
1.9). PCs of the merged genotypes were computed using PLINK (v.2.0) PCA after variant-level filtering, i.e. retain-
ing SNVs with minor allele frequency ≥ 0.01, Hardy-Weinberg equilibrium p-value ≥ 10−10 and variant-level 
missingness ≤ 0.01, followed by linkage disequilibrium pruning (window size = 1,000 kb, step size = 10, R2 = 
0.2). Forward selection was used to select PC1 to PC6 to train the QDA models with regularization parameter 5−7.

Data Records
All data described herein are available for use by the research community and have been deposited in the AMP PD 
Knowledge Platform43 (https://app.terra.bio/#workspaces/amp-pd-public/AMP-PD-In-Terra; select “AMP PD 
Release 4”). The released dataset encompasses files for snRNA-seq and WGS. For snRNA-seq, the data includes 
raw multiplexed sequencing files (FASTQ), sample-level and combined gene expression profiles (h5ad), and 
sample-level metadata. For WGS, the dataset comprises sample-level aligned sequencing data (CRAM), genomic 
variants (gVCF), and a set of QC files produced by Picard (v.2.22.3) and GATK (v.3.9.0), including insert size met-
rics, duplication metrics, GC bias metrics, alignment summary metrics, and WGS-specific metrics. The dataset 
webpage includes several Terra notebooks in Python and R for data analysis in a cloud environment. Access to this 
data is governed by a Data Use Agreement that permits its use for approved research and educational purposes 
by registered and compliant users. Single-cell data can be further inspected at CELLxGENE (RRID:SCR_021059) 
portal (https://cellxgene.cziscience.com/collections/d5d0df8f-4eee-49d8-a221-a288f50a1590).

Technical Validation
snRNA-seq data quality control.  After completing the QC process and excluding all low-quality samples, 
our snRNA-seq dataset included a total of 2,096,155 nuclei distributed across 161 pools. Each pool comprised 
six samples, and each pool was sequenced in replicate across two different flowcells. The average yield per pool 
was 20,640 nuclei (Fig. 3a) and these were expected to be evenly distributed across the samples. Despite this 
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expectation, substantial variability in cell counts was observed, largely due to differences in the quality and con-
dition of the samples within the same pool, which influenced cell viability and capture efficiency44. Typically, the 
largest sample captured about 25% of the nuclei (µ=3,680 nuclei), while the smallest captured about 7% (µ=1,043 
nuclei) (Fig. 3b). Such variability is, however, not unusual and has been observed in other studies23,44,45. Despite 
these variations in per-sample nuclei count, the comparison of total number of nuclei between replicates showed 
almost perfect correlation (Spearman’s ρ=0.79), suggesting data robustness (Fig. 3c). In contrast, samples that 
were removed at the QC step contained approximately 70% fewer nuclei compared to those that passed QC (1,407 
vs 4,721 cells, Fig. 3d). Donor representation across brain regions also varied: 71 donors were represented in each 
of the five brain regions and 18 were missing samples from only one region (Fig. 3e). Conversely, only one donor 
had samples from a single brain region and 3 donors did not generate any snRNA-seq data. Notably, regions 
affected early in Parkinson's disease exhibited significantly fewer cells than later affected, or putatively unaffected, 
regions (Fig. 3f). This suggests regional variations in cellular vulnerability and pathological progression, under-
scoring the importance of targeted studies to elucidate region-specific disease mechanisms in PD. Cell taxonomy 
identified nine major cell type clusters that are known to be present in the investigated brain regions (Fig. 3g).

Whole-genome sequencing quality control.  The mean mapped coverage across all samples was 39x 
(±5x; Fig. 4a), with 94.2% (±0.3%) of the genome achieving at least 1x coverage and 93.1% (±0.3%) reaching 
at least 10x coverage (Fig. 4b). On average, each sample contained approximately 3.35 million SNPs (±0.15 mil-
lion) and 418,813 indels (±15,274; Fig. 4c,d). Additionally, our analysis clearly distinguished male from female 
samples and demonstrated high concordance between inferred and self-reported ancestry across all donors 
(Fig. 4e,f). Pairwise genotype comparison between WGS samples as well as genotype comparison between WGS 
and snRNA-seq samples confirmed a clear separation between pairs from the same donors compared to those 
from different donors (Fig. 4g,h).

Usage Notes
We would like to highlight the availability of additional clinical metadata beyond Braak PD staging and the 
binary clinical definition of PD case/control status. Specifically, we provide Braak AD staging data for 83% of the 
donors. Additionally, other metrics, including longitudinal data and detailed clinical features of PD, are availa-
ble. These metrics use the Movement Disorder Society – Unified Parkinson’s Disease Rating Scale46, Mini-mental 
state examination47, Modified Schwab & England scale48, Epworth Sleepiness Scale49, and are primarily available 
for donors from UD (Table 2). The UD cohort consists of 21 donors, all diagnosed with Parkinson's disease and 
having a Braak PD stage of at least 2. Thus, the UD cohort does not cover the entire spectrum of disease progres-
sion, and users utilizing only data from UD should consider this limitation in their analyses.

Our study involves tissue samples from four brain banks, each contributing different proportions of cases 
and controls, males and females, and varying age-at-death distributions. To account for unwanted biological and 
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technical variation, we recommend adjusting for relevant covariates from the metadata. The choice of covariates 
should align with the specific research question; for instance, sex should not be adjusted if studying sex-specific 
differences. In most of our studies, we typically account for demographic and technical factors such as sex, age, 
brain bank, RNA integrity number (RIN), and postmortem interval (PMI).

Access to the AMP PD Knowledge Platform data can be obtained by following the registration process out-
lined at http://amp-pd.org/register-for-amp-pd. This process includes the submission of a registration form, 
obtaining approval, and compliance with the AMP PD Data Use Agreement.
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Table Name Description

Brain Bank

Ref [PMID]UD HA UM MS

PD Medical History initiation and use of PD medication, changes of 
diagnosis over time, indication of surgeries X X X X

Family History PD indication of PD diagnosis for father, mother and/or 
other relatives X X

Smoking and alcohol history indication and quantification of severity of smoking 
and alcohol consumption X X X

Epworth Sleepiness Scale general level of daytime sleepiness X 1798888

LBD_Cohort_Clinical_Data clinical symptoms (e.g. visual hallucionations, loss of 
memory, mood disorder) X X X X

LBD_Cohort_Path_Data neuropathological assessments (CERADa, AD Braak, 
PD Braak) X X X X

MDS UPDRSb Part I non-motor symptoms covering aspects like mood, 
cognition and sleep X 12815652

MDS UPDRSb Part II motor symptoms impacting daily activities X X 12815652

MDS UPDRSb Part IV motor complications related to PD disease treatment X 12815652

MMSEc screening for cognitive impairment and monitoring fo 
changes in mental status over time X X 1202204

Modified Schwab & England (ADLd) assessment of the capabilities of people with impaired 
mobility X

UPDRSb other UPDRS metrics not involved in Part I-IV X 12815652

Table 2.  Summary of availability of clinical metadata stratified by source brain bank. aCERAD: Consortium to 
Establish a Registry for Alzheimer’s Disease. bMDS UPDRS: Movement Disorder Society – Unified Parkinson’s 
Disease Rating Scale. cMMSE: Mini Mental State Examination. dADL: Activities of Daily Living. Complete 
description of all metrics at https://amp-pd.org/harmonized-clinical-assessments.
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Code availability
The source code used to analyze the metadata and create figures for this manuscript can be found on GitHub at 
this location: https://github.com/DiseaseNeuroGenomics/AMP-PD_SciData. Additionally, jupyter notebooks for 
working with the dataset at Terra platform are available at this location: https://app.terra.bio/#workspaces/amp-
pd-release-v4/Getting%20Started%20Tier%202%20-%20Clinical%20and%20Omics%20Access.
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