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Network structure and fluctuation data
improve inference of metabolic
interaction strengths with the inverse
Jacobian
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Based on high-throughput metabolomics data, the recently introduced inverse differential Jacobian
algorithm can infer regulatory factors and molecular causality within metabolic networks close to
steady-state. However, these studies assumed perturbations acting independently on each
metabolite, corresponding to metabolic system fluctuations. In contrast, emerging evidence puts
forward internal network fluctuations, particularly from gene expression fluctuations, leading to
correlated perturbations on metabolites. Here, we propose a novel approach that exploits these
correlations to quantify relevant metabolic interactions. By integrating enzyme-related fluctuations in
the construction of an appropriate fluctuation matrix, we are able to exploit the underlying reaction
network structure for the inverse Jacobian algorithm. We applied this approach to a model-based
artificial dataset for validation, and to an experimental breast cancer dataset with two different cell
lines. By highlighting metabolic interactions with significantly changed interaction strengths, the
inverse Jacobian approach identified critical dynamic regulation points which are confirming previous
breast cancer studies.

With the advancement of next-generation sequencing and single-cell
technology1, we can now generate a plethora of OMICS measurements
within a short time frame. A primary focus of systems biology is to
analyze such data to determine molecular interactions and the
mechanisms through which these interactions influence the function
and behavior of the system2,3. One key goal in metabolomics is to
understand how changes in interactions between or kinetics of enzymes
and metabolites induce or reflect phenotypic differences4–9. From a
systematic perspective, metabolic networks typically involve many non-
linear relationships among metabolites and enzymes, where perturba-
tions on each compound play a crucial role10–12. While covariance ana-
lysis of themeasurements can reveal some relevant connections between
the involved compounds, it cannot uncover the system’s interaction
kinetics and dynamic regulation. The aim of this work is to find inter-
actions and regulation points with significantly changed interaction
strength between two different conditions, by combining the covariance
matrix obtained from measurements with additional information on
network structure and fluctuation sources.

Current systematic approaches for metabolomics data analysis can be
divided into three categories: statistical analysis, kinetic modeling, and
network analysis. Statistical methods, particularly machine learning algo-
rithms provide valuable insights into cellular activities under various
treatment conditions and identify key biomarkers within the biological
system13,14. These methods encompass techniques such as Principal Com-
ponents Analysis (PCA)15, clustering analysis16, deep learning17, genetic
algorithm18 and boostingmachine learningmethods19,20. However, they lack
the ability to detect perturbation sites associated with the dynamics of the
underlyingmetabolic network system.On this aspect, kineticmodels can be
constructed to improve our systemic insight into ametabolic network.Over
the last two decades, extensive biological studies have developed manually
curatedor optimizedkineticmodelswhich are available in databases such as
the BioModels Database21.

To analyze dynamic regulations of the system, it is natural to build
kinetic models fitting the metabolomics measurements. During this mod-
eling process, kinetic parameters can be obtained frompreviousmodels22 or
estimated from experimental data. Overall, the modeling process is a long
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and iterative endeavor involving literature mining and parameter tuning,
and sometimes it does not yield satisfactory results23,24. Moreover, con-
structing a comprehensive biological model often necessitates time-series
data, which is not always available due to experimental constraints.

Anothermathematical approach uses network analysis on the system’s
Jacobian matrix, often beginning with the examination of a correlation or
covariance matrix estimated from the measurements9,10,25. Subsequent stu-
dies aim to uncover underlying causal relationships from the correlation
network12,26. The available comprehensive information about metabolic
network structure is now being collected in different databases27–29, and can
be used as extra information for the interaction network inference30,31. This
approach to network inference relies on stochastic fluctuations, which
induce variability in metabolite concentrations that can be used to infer
metabolic interactions even in steady state with an inverse Jacobian
algorithm25. In recent years, several studies have focused on the steady-state
Jacobian analysis of metabolomics data32–36. The Jacobianmatrix represents
the dynamic mechanism of the metabolic network and is highly related to
the control coefficients in themetabolic control theory37,38. Jacobian analysis
can thus guide the metabolic dynamics manipulation39,40 and it is critical to
understand the interaction strengths and kinetics of the system. The dif-
ferential Jacobian reflects the changes in dynamic regulation between two
phenotypes (e.g. health and disease) and can be further utilized to uncover
new metabolic mechanisms41–43. Steuer32 developed a structural modeling
approach to investigate the steady-state probability encompassing all pos-
sible explicit kinetic parameters. Jamshidi et al. developed akinetic approach
with mass action modeling using fluxomics and metabolomics data to
calculate the system steady-state Jacobian33,34. Using time-series metabo-
lomics data, Nägele36 investigated the Metabolic regulation of subcellular
sucrose cleavage with Hessian matrices; Akbari et al., developed a dynamic
mode analysis approach to decompose the reaction networks into different
physically important timescales, which tightly connect to Jacobian
eigenvalues35. In addition, several studies have developed inverse differential
Jacobian algorithms using only metabolomics measurements with many
samples, which provide a convenient way to infer differences in the
dynamics of metabolic networks between different conditions6,30,31,41–45.

The inverse Jacobian approaches assume that the variations of steady-
state metabolomics measurements in one condition originate from fluc-
tuations in the systems12,25,30. These fluctuations reflect the stochastic
properties of biochemical reactionswithin the cell. In these previous studies,
thefluctuations are claimed to independently act on allmetabolites25,30,31,44,46.
Such fluctuations would primarily arise from stochastically perturbed
transport between the cells and their external environments.However,more
recent studies have provided evidence that fluctuations also originate from
within the network itself 47–53. Over the last years, it has been shown that
fluctuations in the gene regulatory network result in variations in enzyme
activities, either due to variations in enzyme expression or in post-
translational regulation, further leading to variations in the reaction rate
parameters50,52,53. Due to the reaction network structure, this leads to cor-
related fluctuations acting on multiple metabolites. More specifically, we
define a fluctuation matrix D to be used in the inverse Jacobian algorithm,
which in formeralgorithmswas assumeddiagonal,while thefluctuationswe
consider here give rise to a non-diagonal structure.Moreover, in contrast to
previous approaches, we reconstruct the fluctuation matrix D from the
network structure, using constraints based on the variance of the enzyme
activities. Figure 1 presents a scheme of this approach. By utilizing the
reaction network information in the structure of both the Jacobian J and the
fluctuation matrix D, we can improve the regression-loss based inverse
differential Jacobian algorithm. Using this inverse Jacobian approach, we
calculate a regression loss matrix R* to represent the differential Jacobian
matrix DJ. Large values in the regression loss matrix reflect critical changes
in metabolic interactions strength between the two phenotypes.

We evaluate the proposed approach with several published models
collected from the EBIBioModels database21, and also apply themethod to a
breast cancer dataset with two different conditions54. We compared the
inverse Jacobian results with different assumptions on the structure of the

fluctuation matrix D. We analyzed the precision and accuracy of our
algorithm. This analysis is based on varying three factors: (1) the amplitude
of fluctuations, (2) the number of off-diagonal components in the fluctua-
tion matrix D, and (3) the fluctuation magnitude of off-diagonal compo-
nents compared to the diagonal components in the fluctuation matrix D.
The main findings are that the inverse differential Jacobian algorithm is
significantly enhanced using the non-diagonal structure with an integrative
sampling; nevertheless, it remains feasible to assume a diagonal structure of
D in the inverse differential Jacobian algorithm when the number of off-
diagonal fluctuations is large or their magnitude is relatively small. In
conclusion, this article gives thefirst comprehensive analysis of the impact of
non-diagonal fluctuations on the inverse Jacobian approach and largely
enhances the original algorithm by deducing the fluctuation structure.
Furthermore, using the enzyme activity data as fluctuation constraints, we
introduce an integrative sampling approach, which further enhances the
inverse Jacobian algorithm. This approach holds significant promise for
improving our understanding of metabolic network dynamics and the
robustness of the inverse Jacobian algorithm in various applications.

Results
Improved differential Jacobian reconstructionwhen considering
off-diagonal fluctuations
As shown in the methods section, if noise acts on reaction parameters, the
fluctuation matrix D has a non-diagonal structure. In Eq. (6) given in the
Methods section, we derived the resulting structure of D as a sum of two
matrices accounting for the fluctuations acting on compounds directly
(diagonal) and on reaction parameters (both off-diagonal and diagonal),
respectively. While the relevant structure information can be determined
from just the reaction stoichiometry, determining the relativemagnitudes of
the off-diagonal elements requires enzyme activity data. In this section, we
compare the results of the inverse Jacobian algorithm taking into account
the correct fluctuation matrix structure, but not the magnitude of fluctua-
tions, with the previous method were only a diagonal D was used.

For this evaluation, we make use of the four models described in the
Methods section. For each model, we generate artificial covariance matrix
data with fluctuations applied to metabolites directly (diagonal fluctuation
components) and ¼ of the reactions (off-diagonal components), where
these fluctuations had the samemagnitude. The covariancematrices for the
two conditions are computed through the Lyapunov equationwith εD= 0.4.
As shown in Fig. 2, the original inverse differential Jacobian algorithm is
impaired by the off-diagonal fluctuations. Using the structure information
regarding the off-diagonal fluctuations, we achieve better results in
matching the real differential Jacobian matrix. A more comprehensive
evaluation of the accuracy is described in the next sections.

Accuracy of the inverse Jacobian algorithm for different fluc-
tuation magnitudes
To evaluate the effect of varying fluctuation magnitudes on the inverse
Jacobian algorithm, we generated artificial covariance data for model 1
(carbohydrate energymetabolism) assuming a range of covariance values εD
in the fluctuationmatrix D, ranging from εD = 0.2 to εD = 0.6, and a relative
magnitude of off-diagonal fluctuations Md ranging from 0.3 to 2.4. In this
analysis, we apply non-diagonal fluctuations to three randomly chosen
reactions, and we conduct a second test with six non-diagonal fluctuations
applied, which yielded similar results as shown in Supplementary Fig. 2. For
these data, the inverse Jacobian algorithm has been applied either without
any structure information on D, or with assuming the correct structure as
described in the methods section. Figure 3 presents the evaluation results,
with the first two rows in Fig. 3A, C present the inverse Jacobian results
without and with D structure respectively, and the third row displaying the
difference between the second and the first rows. For each test with specific
εD and off-diagonal fluctuationmagnitudeMd, we repeat the workflow 200
times. We evaluate the accuracy of finding correctly the large entries of the
differential Jacobian by considering the resulting regression loss matrix R*
over the 200 repeats. In Fig. 3A, B, and Supplementary Fig. 1, we compare
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the precision and recall of correctly identifying differential Jacobian values
above a certain threshold, with or without D structure. As an alternative
accuracy measure, in Fig. 3C, we compare the precision of correctly iden-
tifying the top 1, 3 and 5 values of the differential Jacobian through large
entries in the regression loss matrix R*.

From the results, we can conclude that using the structure of the
fluctuation matrix D will significantly improve the precision of identifying
large values in the differential Jacobian. However, a surprising result is that
using the correct D structure will decrease the recall of the large differential
Jacobian values compared to just using a diagonal D. This conclusion
remains similar when using different thresholds to classify large values as
shown in Fig. 3A (threshold 0.5), Supplementary Fig. 1 (threshold 0.3& 0.7)
and 3B (line plots across thresholds 0.3–0.9). This tells us that using the
correct fluctuationmatrix structure will lower the hit rate, but enable to find
the large values in the differential Jacobian with a much higher accuracy.
Moreover, the precision of the resulting top 1, 3, and 5 interactions in the
inverse Jacobian approach is always improved when using the correct
structure of the fluctuation matrix D. Overall, this indicates that using the
correct D structure may have more false negatives than the diagonal
approach, but its hitswillmore reliably be true positives. This is consistent to
the results in the breast cancer case study, where compared to assuming a
diagonal D, the inverse Jacobian results using the D structure inferred from
the metabolic reaction network will highlight fewer interactions with large
values, while attributing a lower effect to the other interactions.

Moreover, the results shown in Fig. 3A, C suggest that a larger mag-
nitude of covariance values in D has a detrimental effect on the inverse
differential algorithm in both cases, with the correct structure andwith only
assuming a diagonal structure. The precision of the results decreaseswith an

increase in the magnitude of non-diagonal fluctuations. However, the
precision decrease is much smaller when using the correct structure of D.
Subsequently, the results in thedifferenceplot demonstrate that ignoring the
off-diagonal elements in the structure of the fluctuation matrix D generally
reduces the reliability of the inverse Jacobian algorithm compared to using
the correct structure.However, if the off-diagonal values are smaller than the
diagonal values, the results between using the correct structure of D and a
diagonal D are comparable.

Finally, we perform the evaluation for all four literature models,
applying only a small magnitude ofMd = 0.3 as off-diagonal fluctuations to
all reactions, with an overall fluctuation magnitude εD = 0.4, and do the
inverse Jacobian analysis assuming a diagonal D.

Accuracy of the inverse Jacobian algorithmwith varying number
and magnitude of off-diagonal fluctuations
In this section, we analyze the effect of additional assumptions of the fluc-
tuation properties on the accuracy of the Jacobian reconstruction: the
magnitude of off-diagonal fluctuations ranging from 0.3 to 10, and the
number of off-diagonal fluctuations ranging from 6 to 42. This analysis is
applied to the first evaluation model. Instead of perturbing reaction para-
meters, randomly chosen off-diagonal fluctuations are directly added to the
fluctuation matrix D. This approach covers all possible non-diagonal fluc-
tuations, not only those from enzyme activities, and can give us a better
general understanding of the effect of non-diagonal fluctuations.

Using a similar evaluation as in the previous section, we compare the
precision and recall of the large values in the inverse Jacobian over 200
repeats. The results are shown in Fig. 4 and Supplementary Fig. 4. As
observed before, using structure information during the inference for the

Fig. 1 |Work scheme. the inverse Jacobian analysis with a non-diagonal fluctuation
matrix (adapted from30, CC-BY). This approach involves three steps: step 1, con-
struct the metabolic interaction network and generate corresponding Jacobian
matrix structure; step 2, construct the fluctuation matrix D structure as described in
Method section; step 3, use other omics datasets (transcriptomics or proteomics) to

set constraints onD; step 4, do the inverse Jacobian analysis, applyD structure andD
constraints (if available in step 3) during the sampling step in the inverse Jacobian
algorithm. Eventually, we are able to calculate a regression loss matrix R* to
represent the differential Jacobian matrix DJ and the metabolic interaction regula-
tions between two conditions.
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fluctuation matrix increases precision and decreases recall across various
magnitudes and numbers of off-diagonal fluctuations compared to inverse
Jacobian results assuming only a diagonal structure. When doing the
inference with a diagonal fluctuationmatrix, the inverse Jacobian algorithm

accuracy remains relatively consistent across different numbers of small
non-diagonalfluctuation, yet, increases with the introduction of larger non-
diagonal fluctuations as seen in Fig. 4A, C and Supplementary Fig. 4. This is
because the non-diagonal components in D originate from the same

Fig. 2 | The regression loss Jacobian algorithm evaluation with or without D
structure information. The evaluation models are: a, carbohydrate energy meta-
bolism model65; b, AMPK-mTOR pathway model66; c, hepatic glucose metabolism
model67 and d, blood cell metabolismmodel68. For eachmodel, we generate Jacobian
matrices for two conditions by changing reaction parameters, as describe in Sup-
plementary Note 1. We apply random fluctuations directly to metabolites (diagonal
fluctuation components) and to ¼ of the reactions (off-diagonal components).

Inference of differential Jacobians is done according to the evaluation workflow. For
each subplot a-d, left is the real differential Jacobian matrix; middle is the inverse
differential Jacobian results when using the structure of D in the inference; and right
is the result without D structure information for the inference, assuming a diagonal
D. In each matrix heatmap, large values represent large differential Jacobian values,
indicating large changes in interaction kinetics between the two conditions.
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Fig. 3 | Inverse differential Jacobian algorithm with/without D structure over a
range of fluctuation magnitudes (overall magnitude εD and magnitude ratio of
off-diagonal fluctuations). The evaluation is conducted using the first model with
200 repeats and 3 random enzyme fluctuations applied. A, Precision and Recall of
the large values (above 0.5) in R� and DJ over 200 repeats with/without D structure

information; B, the line plots of Precision and Recall of the large values in R� with/
without D structure information based on different large value thresholds (0.3-0.9),
where the snapshot of value 0.5 refers to A; C, the accuracy of the top 1, top 3 and top
5 large values in R� over 200 repeats with/without D structure information. The
bottom plots in A and C show the difference between top and middle plots.

Fig. 4 | Inverse differential Jacobian algorithm results with/without D structure
using a varying number and magnitude of off-diagonal fluctuations. The eva-
luation is conducted using model 1 form the methods section with 200 repeats and
εD = 0.4. A, Precision and recall of the large values (above 0.5) in R� andDJ over 200
repeats with/withoutD structure information; B, the line plots of precision and recall

of the large values in R� with/without D structure information based on different
large value thresholds (0.3-0.9), where the snapshot of value 0.5 refers to A; C, the
accuracy of the top 1, top 3 and top 5 large values inR� over 200 repeats with/without
D structure information. The bottom plots in A andC are the difference between top
and middle plots.
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fluctuations added to several metabolites; consequently, these same fluc-
tuationswill also contribute to the relateddiagonal part ofD.Thus,when the
number of these fluctuations is large enough, the diagonal part becomes
much larger due to the summation of several off-diagonal fluctuations. This
further supportsour conclusion that assuming adiagonalD remains feasible
with only small off-diagonal fluctuations. For an additional validation, we
conduct a similar evaluation with εD = 0.2 (compared to εD = 0.4 in Fig. 4),
yielding consistent results as presented in Supplementary Fig. 5.

Integrating fluctuation data further enhances the inverse Jaco-
bian algorithm
Asdescribed in themethods section, enzymeactivity data canbe set as upper
constraints to conduct a more precise sampling of fluctuation values than
the purely topology-based sampling used for the previous evaluations. To
test the effect of taking this information into account, we vary the number of
non-diagonal fluctuations, mixing among fluctuations of small (0.3) and
large (2.4)magnitude.Using an approachas inFig. 3,we evaluate the inverse
Jacobian algorithm using three sampling strategies: a diagonal D, the
topological D structure derived from considering only elements for large
fluctuations, and integrativeD sampling fromenzyme expression or activity
data, setting constraints on all fluctuations. Figures 5A, C and Supple-
mentaryFig. 6 illustrate that the integrativeDsampling strategy significantly
improves the algorithm’s precision compared to using only the topological
D structure, when the number of large fluctuations is comparatively small.
For a comprehensive evaluation, we also conducted this analysis for a wider
spreadoffluctuationmagnitudeswith 10 vs. 0.3, and εD values of 0.2 and0.4,
respectively. Supplementary Figs. 7 & 8 present the results for these sce-
narios, which are in line with the results shown in Fig. 4.

Application to a breast cancer dataset
Finally, we apply the inverse Jacobian approach to a breast cancer dataset
from two cell lines54: a non-tumorigenic breast epithelial cell line
(MCF102A) and a pleural effusion metastasis of a breast adenocarcinoma
(MCF7). The objective is to find large values in the differential Jacobian

between these cell lines frommetabolomics covariance data. In addition to
metabolites, the authors alsomeasured transcriptomics data, andprovided a
genome-scale metabolic network model in which the reactions are anno-
tated with gene IDs corresponding to the identifiers used in the tran-
scriptomics data.Using theCobra toolbox55,we are able to generate from the
transcriptomics data a value for each reaction to represent the enzyme
activity for that reaction. Collecting the enzyme activity profiles for the
entire genome-scale model, we can then compute the variance of each
enzyme activity separately for the two different cell lines. The histograms
illustrating the variance in enzyme activity values for the two cell lines can be
found in Supplementary Fig. 9. Notably, there are a significant portion of
enzymes with small fluctuations, while only a very limited number of
enzymes exhibit activity variances exceeding 200. Even though transcript
levels are not fully representative of enzyme activity, we propose that it is a
good proxy in our application, as we only use this value as an upper bound
on relevant fluctuations instead of a definite value during the integrative
sampling.

Using the default setting in COVRECON toolbox, we first construct
the metabolic interaction network for the metabolomics dataset. The
resulting interaction structure is reported in Supplementary data 1. Con-
sequently, we map the calculated variances of the enzyme activities to the
determined metabolic interactions and use them to construct the upper
bounds on the fluctuationmatrix D as shown in Supplementary Fig. 10.We
perform the inverse differential Jacobian algorithm with the integrative
fluctuation sampling strategy. We compare different scaling of the fluc-
tuations vs. each other by setting the magnitude of fluctuations affecting
metabolites directly (D1) equal to fluctuations from enzyme activity (D2)
with variance values equal to 500, 200, and 10, respectively. The results are
thencompared to the results obtained inourprevious studyusing adiagonal
D30, as depicted in Fig. 6.

It is apparent that when scaling themagnitude of diagonal fluctuations
to be the same as a large non-diagonal enzyme activity fluctuation inD,with
a variance of 500, the inverse Jacobian algorithm result with our new
approach is close to the original inverse Jacobian algorithm result using a

Fig. 5 | Inverse differential Jacobian results using various number of large
(magnitude: 2.4) and small (magnitude: 0.3) non-diagonal fluctuations from
threefluctuationmatrix assumptions: 1, enzyme-activity integrativeD sampling,
2, diagonal D and 3, topological D, middle/bottom plot in A and C is the dif-
ference In results between assumption 1 and assumption 2/3, respectively. The
evaluation is conducted using model 1 from the methods section with 200 repeats

and εD = 0.2. A, Precision and recall of the large values (above 0.5) in R� andDJ over
200 repeats with/without D structure information; B, the line plots of Precision and
Recall of the large values in R� with/without D structure information based on
different large value thresholds (0.3-0.9), where the snapshot of value 0.5 refers to A;
C, the accuracy of the top 1, top 3 and top 5 large values in R� over 200 repeats with/
without D structure information.
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diagonal D sampling, as shown in right top subplot in Fig. 6. This result
assumes that fluctuations acting directly on metabolites instead of on
reactions are most important. Conversely, when scaling the magnitude of
diagonal fluctuations equal to a small non-diagonal enzyme activity fluc-
tuation with variance of 10, the results from the two approaches differ
significantly. In this scenario, enzymes fluctuations play the dominant role.
In line with the reduced recall seen in the previous evaluations, fewer, but
more pronounced metabolite interactions are inferred to take a large value
in thedifferential Jacobian. Following the increasedprecisionof the enzyme-
activity constrained inference seen in the previous tests, we postulate that
these elements more reliably correspond to an actual change in metabolic
interactions between the considered cell lines, even if from the available data
one can not determine the actual ratio between fluctuations acting directly
on metabolites and those acting on enzyme activities. The inverse Jacobian
results show that the main dynamic difference between the cell lines lies on
the metabolite D-Glyceraldehyde 3-phosphate, which is also identified as a
biomarker in their original t-test54. Several interactions are identified as
differences between the two cell lines where relevant enzymes activity also
show significant difference30. The circular plots where one can check the
superpathway information interactively are shown inSupplementaryFig. 11
and available as Matlab figure format in Supplementary data 1.

Unlike the changes in single metabolites identified through conven-
tional statistical analysis, our approach reveals additional insights into the
changes occuring at dynamic metabolic interactions between the two cell
lines. The large dynamic differences between the two cell lines are identified

as the high-valued elements in the right-bottom result of Fig. 6. From that
inference, the highest changed interactions are pyruvate→
D-Glyceraldehyde 3-phosphate and D-Fructose 6-phosphate→
D-Glyceraldehyde 3-phosphate (see Supplementary Data 1 for numerical
values). Further investigation of these interactions reveals that the enzyme
transketolase (EC 2.2.1.1) is involved in both interactions. In fact, this
enzyme has been widely found to play a vital role for themetabolic network
switch of breast cancer56–59, and from the results of our analysis is predicted
to also underly the metabolic differences between the two cell lines in this
dataset.

Some of the interactions which we have identified as being highly
changedbetween the cell lineswith thedifferent inverse differential Jacobian
approaches could have been suspected by just looking at the enzyme fluc-
tuation data (Supplementary Fig. 10). Specifically, the interactions sn-
Glycerol 3-phosphate->D-Glyceraldehyde 3-phosphate andPyruvate->(S)-
Lactate are already assigned high enzyme fluctuation values. However, the
interaction Pyruvate->(S)-Lactate is not seen in the inference with the non-
diagonal D, so it might be a false positive from the previous algorithm.

Also, the enzyme fluctuations in each of the cell lines individually need
of course not actually be related to changes between the cell lines. For this,
one might look at the difference in enzyme fluctuations which we con-
sidered in Supplementary Fig. 12 (based on transcriptomics data). Even
though the largest differences are related to Glutathione disulfide, this
metabolite does not seem to be involved in highly changed dynamic
interactions from the inverse Jacobian approaches. This suggests that the

Fig. 6 | Inverse differential Jacobian analysis on the breast cancer dataset. The
four panels show inference results using a diagonal D, and three sets of enzyme-
activity based Dh and Dd sampling for inference with a non-diagonal D, where the

magnitude of diagonal fluctuations defining D1 is scaled equal to fluctuations from
enzyme activities with variances of 500, 200, and 10, respectively, defining D2.
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key changes inmetabolic dynamics observed between the cell lines do rather
stem from the effect of enzyme fluctuations on the reaction network, than
absolute enzyme abundance inferred from transcriptomics, which supports
taking the metabolic network structure into account as we are proposing in
the integrative approach.

Discussion
Jacobian analysis is an important approach for metabolic networks. Pre-
vious studies inferred kinetics, and the associated Jacobian matrix, with
fluxomics data33,34 or time-series metabolomics measurements35,36. Using
high-throughput metabolomics data samples from steady state, coupled
with metabolic reaction databases, several studies have developed inverse
Jacobian approaches6,25,30,31,42,45. In this article, we have enhanced this
approach by leveraging more information about the structure of the fluc-
tuation matrix, including reaction network structure and enzyme activity
data. A novel fluctuation sampling strategy is applied by setting fluctuation
constraints using variance in enzyme activity estimated from suitable data.
We assessed the influence of these non-diagonal fluctuations on the inverse
Jacobian algorithm based on three key factors: (1) the magnitude of cov-
ariance values, (2) the number of non-zero off-diagonal components in the
fluctuation matrix D, and (3) the magnitude of off-diagonal components
compared to that of diagonal components. The main findings are:
1. While sacrificing the positive hit rate, incorporating the non-diagonal

D structure into the analysis significantly enhances the precision of the
inverse Jacobian algorithm. Using an enzyme-activity based sampling
strategy further improves the algorithm’s accuracy compared to using
only a topological structure of the fluctuation matrix.

2. There are two cases inwhich assuming a diagonal fluctuation structure
remains feasible for the inverse differential Jacobian analysis: (1)When
non-diagonal fluctuations are relatively small in comparison to direct
metabolite fluctuations; (2) when there are numerous non-diagonal
fluctuations with similar magnitudes.

The inverse Jacobian approach aims to find changes in the causal
dynamic regulations between two different metabolic conditions from
measured covariance matrices, using extra information about the under-
lying network structure obtained from metabolic network databases. This
new approach integrates fluctuation analysis and different OMICS datasets
into the inverse Jacobian analysis, contributes to our deeper understanding
of metabolic network interaction and dynamics, and enhances the robust-
ness of the inverse Jacobian inference. Notably, without enzyme fluctuation
data, this approach still improves the original algorithm by using only the
topological structure of the fluctuation matrix. Meanwhile, several limita-
tions still exist. Firstly, by trading off fluxomics and time-series measure-
ments, this approach will need a large sample number (tens to hundreds) to
achieve a relatively accurate covariance calculation. In addition, any allos-
teric interactions are not included in the considered network structure, due
to lack of comprehensive knowledge available in databases.

The proposed algorithm is validated first by artificial data, and also by
being able to show that a metabolic switch in breast cancer which was
already known from other studies also underlies metabolic differences
between the cell lines in the considered experimental dataset.

Methods
The differential Jacobian
Consider a biological system that consists of n metabolites denoted by
Xi

� �
i¼1...n. The vectorM= {Mi} = {|Xi|} represents the concentrations of the

nmetabolites. The systemdynamics can bemodeledwith the set of ordinary
differential equations (ODEs):

dM
dt

¼ F M; pð Þ ¼ S � v M; pð Þ ð1Þ

where S is the stoichiometry matrix formed by the stoichiometric coeffi-
cients of all the m reactions v M; pð Þ ¼ v1 M; pð Þ; � � � ; vmðM; pÞ� �

in the

system. The reaction rates vi M; pð Þ; i ¼ 1; :::;m are usually modeled by
Michaelis-Menten kinetics60 or mass action equations61 depending on
metabolite concentrationsM and parameters (e.g., enzyme activities) p.

The steady-state Jacobianmatrix Jof Eq. (1) is definedas a |Rn×n|matrix
in which Jij is the first-order derivative of the rate of change fi of the meta-
bolite concentrationMj, evaluated at steady state, noted as Jij ¼ ∂f i

∂Mj

���
steady

:

J ¼ ∂F
∂Msteady

¼ S �

∂v1
∂M1

∂v1
∂M2

∂v2
∂M1

∂v2
∂M2

� � �
∂v1
∂Mn

∂v2
∂Mn

..

. . .
. ..

.

∂vm
∂M1

∂vm
∂M2

� � � ∂vm
∂Mn

2
6666664

3
7777775
steady ð2Þ

In a previous study, Steuer et al. 25 used amodel perturbed by stochastic
fluctuations to establish a relation between the covariance matrix C of the
metabolite concentrations and the steady-state Jacobian matrix of the sys-
tem J given by the so-called Lyapunov equation

J � C þ C � JT ¼ �2D ð3Þ

Thereby, C 2 Rn× n is the covariance matrix of the metabolite con-
centrations Mj around their steady-state values
Msteady

j ;Cij ¼ E MiMj

h i
� E½Mi� � E½Mj�, where E denotes the expected

value. The fluctuation matrix D is the covariance of fluctuation sources
acting on the system dynamics.

A typical inverse task in this setup is to infer the Jacobian matrix J,
representing the interactions in the network, from estimates for C and
potentially D from steady-state metabolomics data. Furthermore, for the
inverse differential Jacobian, wemore specifically infer the ratio between the
Jacobian matrices for two biological conditions, for example a healthy and
disease condition, abbreviated as ‘h’ and ‘d’, thereby identifying regulations
in biochemical interactions that act differently between these two condi-
tions. The differential Jacobian DJ is defined as30:

DJ ij ¼
max

ðJdÞij
ðJhÞij

��� ���; ðJhÞij
ðJdÞij

��� ���� �
1; if ðJhÞij ¼ 0:

8<
: ð4Þ

with the twoconditional Jacobianmatrix at steady-statedenoted as Jh and Jd.
The initial problem in the inverse task is that the system is under-

determined, since the covariance matrix C and the fluctuationmatrix D are
symmetric matrices, but the Jacobian matrix J is in general not symmetric.
Sun andWeckwerth addressed this problemby constraining the structure of
the inferred Jacobian matrix from a topological metabolic interaction net-
work, yielding entries which are constrained to zero in the Jacobian matrix
J31. They argued that the topological network can be built from a genome-
scale network reconstruction, available from publicly accessible databases,
such as KEGG28 and BioCyc62. At that time, the proposed algorithm was
limited by two issues: they relied on structural network information that
needs to be assembled manually, and they encountered a numerical
instability problem due to ill-conditioned regression problems for large-
scale metabolic networks30,45. In a more recent study, we developed a fully
automated COVRECON workflow and related Matlab toolbox30 that can
automatically construct the topology of the metabolic interaction network
from KEGG28, BiGG27 and ModelSeed29 databases, and replaces the ill-
conditioned regression problem with a regression loss-based inverse Jaco-
bian algorithm.

Inferring the fluctuation matrix structure and adding constraints
based on enzyme activity data
Previous inverse Jacobian algorithms25,30,31,44,45 have assumed that indepen-
dent stochastic noise affects each metabolite individually, giving rise to a
diagonal fluctuation matrix D in the Lyapunov Eq. (3). In this article, we
introduce additional stochastic fluctuations in enzyme activity47,48,50,51.
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Through the coupling of metabolites by reactions, these result in correlated
fluctuations of metabolite concentrations. Importantly, we assume that
noise acting through the enzyme activity and noise acting directly on
metabolites are statistically independent noise sources.

Suppose in the same system with dynamics Eq. (1), the steady-state
concentration of Xi isM ¼ M0

i

� �
, when the parameters p take the nominal

values p0. We consider stochastic fluctuations on the metabolites as Gaus-
sian noise vector ω, and stochastic fluctuations of parameters p with a
Gaussian noise vector τ. According to the above assumption, ω and τ are
statistically independent. Thus, the reaction parameter vector becomes
p tð Þ ¼ p0 þ τ. Small fluctuations of metabolite concentrations around
steady state are described by

Mi ¼ M0
i þmi ð5Þ

The vector m ¼ ½mi� is the variation of metabolite concentrations
around steady-state. Overall, the dynamicswith stochastic fluctuations thus
become

dM
dt

¼ S � v M; pð Þ þ ω ¼ S � ν M0 þm
	 


; p0 þ τ
	 
	 
þ ω ð6Þ

A Taylor expansion near the system’s nominal steady state ðM0; p0Þ
then yields

dm
dt ¼ S � ν M0; p0

	 
þ S � ∂ν
∂M

��
M0 ;p0

� mþ ∂ν
∂p

���
M0 ;p0

� τ
� �

þ ω

¼ S � ∂ν
∂M

��
M0 ;p0

� mþ S � ∂ν
∂p

���
M0;p0

� τ þ ω

Observing that K ¼ ∂ν
∂p

���
M0 ;p0

is a constant matrix, we get

dm
dt

¼ J � mþ S � K � τð Þ þ ω≜J � mþ Δ

Here ¼ S � K � τð Þ þ ω is the total stochastic fluctuation acting on
themetabolites. The stationary solution of P (m) of the previous equation is
known to be a multivariate Gaussian distribution, and the corresponding
derivation of Eq. (3) has been presented previously25,63. In our case, the
fluctuation matrix D is determined as

D ¼ E½Δ � ΔT � ¼ E½ S � K � τð Þ þ ωð Þ � S � K � τð Þ þ ωð ÞT �
¼ S � K � E½τ � τT � � KT � ST þ E ω � ωT

� �
¼ S � K � D2 � KT

	 
 � ST þ D1

ð7Þ

whereD1 ¼ E½ωωT � andD2 ¼ E½ττT � are diagonalmatrices describing the
covariance of fluctuations acting onmetabolite concentrations and reaction
parameters, respectively.

Equation (7) gives the structure of the fluctuation matrix D in the
Lyapunov Eq. (3), where the matrix D1 represents the covariance of sto-
chastic fluctuations acting directly on metabolites, and D2 represents the
covariance of stochastic fluctuations in the reaction rate parameters p.
According to our assumption that noise acting on the individual compo-
nents is statistically independent, we can model D1 and D2 as diagonal
matrices. In specific cases, coordinated gene regulation may also lead to
correlated fluctuations in reaction rate parameters, which could be reflected
by off-diagonal entries in D2. Furthermore, enzyme activity or expression
data could be used to further constrain the entries ofD2. As shown in Fig. 1,
we claim that enzymes with large activity variances indicate large fluctua-
tions in related reaction rate parameters p.

Superpathway based zero and sign structure of the
fluctuation matrix
In the previous section, the structure of the fluctuation matrix D is derived
for a complete metabolic network. However, in most experiments only a
limited number of metabolites is measured which often not provides full
coverage of the network. For that situation, we previously developed the
COVRECON approach, where we construct a reduced metabolic interac-
tion network for the measured metabolites based on superpathways. Each
interaction is a superpathway that consists of several reaction steps taking all
the possible interaction effects (reactant-product, reactant-reactant, pro-
duct-product) into account30,42. Notably, each enzyme fluctuation within a
superpathway will exert a correlated influence on the metabolites at both
ends of the superpathway, introducing off-diagonal components into the
structure of the fluctuation matrix D. Consequently, we can map the
enzyme-reaction associations to the non-zero elements of D.

The reaction structure also allows to distinguish positive and negative
off-diagonal elements in D (due to covariance properties, the diagonal
elements are all positive). Figure 7 illustrates the three types of superpath-
ways that we need to consider. In the first two types, superpathwayX- > Y is
just a one-steppathway.Perturbationson this reaction ratewill actpositively
on the products and negatively on the reactants. Thus, when X and Y are
located onopposite sidesof the reaction (type 1), theperturbation changesX
andY in different directions, leading to a negative sign in the corresponding
element. Conversely, when X and Y are on the same side of the reaction
(type 2), the perturbation affects bothX andY in the same direction, leading
to a positive sign in the element of D corresponding to the interaction
between X and Y. On the other hand, when introducing a perturbation
directly to the metabolite instead of an enzyme, it will enhance the reaction
rate and exert a decreasing effect on other metabolites on the same side.
Moreover, the influence will pass through the other side of the reaction and
influence the metabolites on the other side in the same way. In the more
complicated type 3, the superpathway fromXtoYconsists of several steps of
either of the first two types with a number of intermediate metabolites Ai.
Assuming the enzymeperturbationacts on intermediate stepAk ! Akþ1, it
generates perturbations to both metabolites Ak and Akþ1 following the
scenarios in type 1 or 2. These perturbations propagate in both directions
along the entire superpathway up to X and Y. As illustrated in Fig. 7, for the
intermediate steps corresponding to type 1, that results in a negative sign;
while for intermediate steps of type 2, it results in a positive sign. Conse-
quently, if there are k steps of type 2 whereAi andAi+1 are on the same side
of a reaction, thefinal sign of theDelement corresponding to the interaction
between X and Y will be�1kþ1.

The (sign) structure of the fluctuation matrix D is used in the COV-
RECON Jacobian algorithm to constrain the sampling range for the con-
sidered fluctuation values during the inference.

COVRECON workflow and regression loss based differential
Jacobian algorithm
Once we have the structure information of fluctuation matrix D, we follow
the same workflow as outlined in COVRECON30. It consists of three sub-
modules: (i) building of an organism-specific database, (ii) construction of a
superpathway-based topological model for metabolite interactions using a
pathway search based on the generated organism-specific database, (iii) the
regression loss based inverse differential Jacobian computation. Thereby, in
step (iii), we sample fluctuation matrices according to the structure of the
fluctuation matrix as derived above.

In the inverse Jacobian approach, the Lyapunov Eq. (3) is solved using
optimization with the data-based covariance matrix C and a sampled
fluctuation matrix D. This linear equation can be rewritten in the form

Ah qh ¼ bh
Ad qd ¼ bd

ð8Þ

where Eq. (3) can be transformed into the form Aq = b, A, q and b are
computed fromcorresponding elements fromC, J andD respectively44,64. Li,
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et al. 30 showed that under numerical variations in b, coming from sampled
fluctuation values, the variation of the regression solution q is much larger
compared to the variation in the regression loss r. Basedon this property, we
construct a “regression loss matrix” R� that aims to capture the relative
importance of individual elements in the differential Jacobian, rather than
directly calculating the actual values in the differential Jacobianmatrix. Each
element of this regression loss matrix R* is calculated by solving the linear
Eq. (8) with an additional constraint, giving the solution

q�s ¼ ðAc
TAcÞ

�1
Ac

Tbc

where Ac is constructed by combining Ah and Ad in Eq. (8) with the addi-
tional constraint that only element Jij is the same between the Jacobians Jh
and Jd, andbc ¼ ½bh; bd�. If the assumption is incorrect, the element Jijwill be
different for the two Jaocbian matrixes.

The regression losswith respect to that element Jij, corresponding to the
element R�

ij of the regression loss matrix, is then defined as

R�
ij ¼ minbc jjbc � Acq

�
s jj ð9Þ

Because we only have the structure information of the fluctuation
matrixesDh andDd, not the actual values, we iterate the regression loss over
a number of samples for possible values of the fluctuation matrix that are
generated according to its non-zero structure as derived above. The results
reported in this paper are based on using 1000 samples. Then, the finalR�

ij is
taken as the minimum regression loss for different values of bc in the dif-
ferent samples. If the above constraint on the Jacobian element Jij is
incorrect, the regression losswill increase, and thus a largerR�

ij reflects larger
differences between Jh and Jd. For simplicity, the elements in R� are nor-
malized to [0,1]. In thiswork,weuse threedifferent samplingmethods of the
fluctuation matrices Dh, Dd and corresponding bc for the inverse Jacobian
approaches described in the following section.

In the resulting regression loss matrix R�, larger values indicate cor-
respondingly larger values in the differential Jacobian matrix and large
metabolic interaction changes between the two conditions. This relation has
been shown in ref. 30, where also further details of our inverse differential
Jacobian algorithm are described.

Fluctuation sampling constraints based on enzyme activity data
In the first approach in this paper as well as in the original inverse Jacobian
algorithms, the fluctuation matrix D is sampled according to the assumed
structure (diagonal or with non-zero off-diagonal elements) with values
fromanarbitrary “normalized” range between0 and1.This assumes that no
information on the magnitude of the fluctuations acting on the metabolic
network is available.

Additionally, we propose a second integrative approach by applying
constraints during sampling of the D matrix from variability in enzyme
activity, where larger enzyme activity variance allows larger fluctuation in
reaction rates. We integrate all the non-diagonal fluctuations inferred from
the whole enzyme activity dataset, and sample each non-zero component in
bc with its absolute value between zero and the enzyme activity variance
related to that component. Thereby, the sign of each bc component is
determined as inFig. 7, or randomly given+1or -1 if not clearly determined.

Evaluation of differential Jacobian inference with
literature models
To evaluate our algorithm and the potential effect of non-diagonal fluc-
tuations on the differential Jacobian, we consider the four literature models
that have alsobeenused inourprevious study30. SupplementaryNote1 gives
the model references, and describes how we construct the two conditions
required todefineadifferential Jacobian.The Jacobianmatrices are available
in Supplementary data 1. The resulting differential Jacobian matrices for
these four cases are shown in Fig. 2, left column.

Similar as in previous studies30,31,44,45, we generate artificial perturbed
covariance data for evaluation from the Lyapunov equation by giving ran-
dom fluctuation matrixes Dh and Dd with different randomness εD, see
ref. 30. The structures of matrixes Dh and Dh are randomly generated as
non-diagonal matrixes.

In the evaluation, we compare three inverse Jacobian algorithm:
1. The original COVRECON approach30, assuming a diagonal fluctua-

tion matrix D.
2. With D structure: Assumes the structure information of D is known

(given in evaluation models and constructed from COVRECON
approach in general cases), where D elements have values of 0, +1
or−1.

3. Enzyme activity integrative D sampling: Assumes the structure
information of D is known, with upper constraints on non-diagonal
elements based on additional omics data (e.g., enzyme activity data).

Fig. 7 | Determine the sign of the non-diagonal D
structure in several cases. After generating the
metabolic interaction network and the correspond-
ing sparsity structure ofmatrices J andD,we are able
to further determine the sign of the elements in the
matrix D based on the related superpathway infor-
mation according to three types. The non-diagonal
element has a negative sign for type 1, and a positive
sign for type 2. In the more complicated type 3, the
non-diagonal D element has the sign�1kþ1, where k
is the number of type 2 connections in the related
superpathway.
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Workflow to evaluate the inference algorithm
The overall workflow for evaluation is shown in Fig. 8 and includes two
parts: an in silico part to generate artificial data, and an inverse Jacobian part
for the actual inference algorithm. First, for each evaluation model, we
generate a second condition by changing some parameters (detailed in
SupplementaryNote 1). The Jacobianmatrices of the two conditions (h and
d) are determined from the given kinetic model, and the real differential
Jacobian matrix DJ is calculated as in Eq. 4. Subsequently, we generate in
silico covariance matrixes Ch and Cd. In previous studies we employed two
methods for that: first, a numerical simulations of the underlying stochastic
differential equation (SDE) to get the samples for two conditions, then
calculate Ch and Cd; second, to calculate Ch and Cd directly from solving
Eq. 3 with sampled Dh and Dd. We have shown previously that these two
methods are essentially equivalent. However, the second method sig-
nificantly saves on computation time30,31,44,45, which is why we generated
artificial data with this method.

In the in silico part of this evaluation, we first sample fluctuation
matricesDhandDddependingon threeparameters: (1) themagnitudeof the
fluctuation covariance εD, (2) the numberof off-diagonal components in the
fluctuationmatrixD, denoted asN and (3) thefluctuationmagnitude of off-

diagonal components compared to the diagonal components in fluctuation
matrix D, denoted as Md. First, N off-diagonal elements are randomly
chosen to get non-zero values. Then,we assign a randommagnitude in [0,1]
to each (diagonal) element ofD, and add a randommagnitude in [0,Md] to
each of theN non-zero off-diagonal entries and the corresponding diagonal
element. To introduce variability that would stem from limited sampling
size in real experiments, we finally add further random noise to all elements
in Dh and Dd, with standard deviation εD, scaled to the magnitude of off-
diagonal componentsMd, toDh andDd. Using the fluctuationmatricesDh

and Dd, we calculate in silico Ch and Cd by Eq. 3.
In the second part of the workflow, for the inference algorithm

using the Lyapunov equation, we only make use of the structural
information of the Jacobian matrix (elements valued 0 or 1), the con-
sidered constraints on the fluctuation matrix D, and the given data
represented by the covariance matrices Ch and Cd. We conduct the three
inverse Jacobian approaches as described above, using 1000 samples for
the fluctuationmatrix, corresponding to bc in (9). Finally, to evaluate the
performance of the inference, we compare the large values in the
regression loss matrix R*with the actual differential JacobianDJ known
from the model.

Fig. 8 | Evaluation workflow. For each evaluation model, we first generate two
conditions as in Supplementary Note 1 and calculate the two Jacobianmatrixes Jh, Jd
and the differential Jacobian matrix DJ. Then for each setting N, Md and εD, we
generate in silicoCh andCd as described in themethods. In the inverse Jacobian part,
we calculate R* fromCh, Cd, the Jacobian structure matrix, and different D structure

constraints from the three approaches. Finally, we calculate several performance
measures to represent the identification accuracy of the large elements in R* com-
pared to the realDJ. For each setting N,Md and εD, we repeat the random evaluation
200 times and calculate the average precision, recall of large elements, and accuracy
of Top values in R* vs DJ.
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The whole evaluation process is repeated 200 times for each choice of
the parameters used in the generation of artificial data.

Inverse differential Jacobian accuracy
To evaluate how accurately the large components in the real differential
Jacobian matrix DJ are identified, we assess the Precision (Positive Pre-
dictive Value, PPV) and Recall (True Positive Rate, TPR) of the matrix
elements exceedingdifferent threshold values (0.3–0.9) in the regression loss
matrixR�. In addition, we assess the precision of theTop 1, Top 3 andTop5
largest values by rank in R�.

Enzyme activity upper constraints estimation using the Cobra
toolbox
In the breast cancerdataset54, the transcriptomics dataweremeasured, and a
manually curated genome-scale model was provided with the manuscript
(‘RECON3D_301_hgnc_id.xml’). We map the transcriptomics data to
enzyme activities with the function ‘mapExpressionToReactions’ in the
Cobra toolbox, using max for AND and sum for OR operators in the gene-
protein-reaction-association.

Data availability
The data underlying this article are available in the online supplementary
material. The original data of the breast cancer case study can be accessed in
the Ref. 54

Code availability
The Matlab code is available in https://bitbucket.org/mosys-univie/
covrecon/
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