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Aging modulates the impact of cognitive
interference subtypes on dynamic
connectivity across a distributed motor
network

Check for updates

Jake J. Son1,2,6, Yasra Arif1,6 , Hannah J. Okelberry1, Hallie J. Johnson1, Madelyn P. Willett1,
Alex I. Wiesman 3,4 & Tony W. Wilson 1,5

Research has shown age-related declines in cognitive control in the context of interference, but these
studies have focused on frontoparietal networks and less is known about impacts onmotor response-
related dynamics in the face of distractors. Thus, we examined whether healthy aging affected
connectivity between attention networks andmotor circuitry using amultisource interference task and
magnetoencephalography in 72 healthy-aging participants (28–63 years-old). Our results indicated
stronger beta connectivity with increasing age between bilateral primary motor (M1) and occipital
cortices, as well as stronger gamma fronto-motor connectivity during flanker-type interference.
Regarding Simon-type interference, stronger beta interactions were observed between left M1 and
right temporal and right M1 and left parietal with increasing age. Finally, the superadditivity effect
(flanker+Simon presented simultaneously) indicatedweaker beta connectivity between rightM1 and
left premotor with increasing age. These findings suggest exhaustion of age-related compensatory
adaptations in the fronto-parieto-motor network with greater interference.

A proposed mechanism of aging is the progressive depletion of
reparative molecular processes in conjunction with cumulative tissue
damage in response to lifetime use and stress. Such aging-related
changes in the brain can contribute to a decline in a wide range of neural
processes, including working memory, attention, and motor control1–6.
Across such cognitive domains, alterations in performance (e.g.,
increased reaction time and variability) have been consistently identified
as a component of aging, though the underlying mechanisms con-
tributing to such decreases in performance are less understood7–9. These
cognitive changes are thought to reflect structural (e.g., white matter
microstructure) and functional (e.g., specialization, overactivation)
alterations in a distributed network of brain regions involved in atten-
tion, cognitive control, and movement planning and execution4,6,9–12.
Specifically, currentmodels of aging suggest that age-related increases in
neural recruitment might be a compensatory mechanism that varies as a
function of task complexity and the availability of additional neural
resources13–15.

There is substantial literature to support these compensatory theories,
including findings of increased neural recruitment in the forms of over-
activation, increased connectivity, and frontal compensation4,6,13,14,16–21.
Earlier theories including the Hemispheric Asymmetry Reduction in Older
Adults (HAROLD) model, Posterior-Anterior Shift in Aging (PASA) the-
ory, and the Compensation-Related Utilization of Neural Circuits
Hypothesis (CRUNCH) provide conceptual frameworks for understanding
the increases in neural activity and connectivity that are observed in
aging14,18,22. Of note, there are also findings in the literature of decreased
activation that have been conceptualized as occipitotemporal sensory def-
icits (PASA), dedifferentiation (i.e., loss of lateralization, or HAROLD), and
neural exhaustion (CRUNCH), among others14,18,22. Though the afore-
mentioned theories incorporate many key elements of underactivation in
their aging model, the revised Scaffolding Theory of Aging and Cognition
(STAC-r) takes on amore longitudinal perspective of aging in amanner that
is compatible with structural, functional, and environmental changes
through the lifespan13,17. Specifically, STAC-r adopts a broad approach to
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characterizing the impact of aging on neurocognitive outcomes, where
existing cognitive abilities provide the foundation for the acquisition,
refinement, and execution of new skills (for a more comprehensive com-
parison of models, see Festini et al.13).

Neuroimaging studies using magnetoencephalography (MEG) have
identified resting-state and task-positive brain responses involved in basic
sensory processing, motor control, attention, and cognitive control that are
sensitive to chronological and biological measures of aging5,6,19,20,23–26. For
example, previous electrophysiological studies of cognitive control have
identified that aging affects the neural signatures associated with resolution
of twowell-known cognitive interference subtypes (i.e., flanker and Simon),
with aging effects emerging in occipital, frontoparietal, and motor
regions20,27–34. Furthermore, some of these regions appear to exhibit age-
related changes that are spectrally specific (i.e., beta and gamma), including
compensatory increases in activation or connectivity in line with existing
aging theories4,6,20,28. However, these findings primarily reflect the cognitive
components of the task and there is a relative dearth ofwork examining age-
related changes in the motor response dynamics20,28,35. Previous literature
has identified the impact of visual interference on the neural dynamics of
motor function, including response amplitude and peak frequency29,31,36.
Furthermore, the oscillatory power of these neural responses in various
regions of a distributed motor network was sensitive to the type and degree
of cognitive interference31. Thus, examining age-related changes throughout
extended regions of the fronto-parietal and motor networks using inter-
regional connectivity analyses may contribute critical new evidence on the
network level dynamics that underlie declines in motor control.

Herein, we analyzed high-densityMEGdata in 72 healthy participants
(age range: 28-63 years) who completed a modified version of the multi-
source interference task (MSIT) to investigate the potential for distinct and
overlapping connectivity profiles of motor control in the context of sti-
mulus-stimulus, stimulus-response, and multisource interference subtypes
in healthy aging30,31,37.Wehypothesized that: (1) consistentwith the STAC-r
model,wewould primarily see age-related increases in connectivity between
higher-order regions (e.g., prefrontal and parietal cortices) and the motor
cortex, (2) that these differences would be specific to interference subtype
and intensity (i.e., flanker, Simon, andmultisource), and (3) that despite the
recruitment of additional neural resources tomeet task demands, behavioral
performance would worsen with age.

Results
Behavioral Performance
TheMSITbehavioral datawere subjected to a repeatedmeasuresANCOVA
analysiswith age as a continuous variable of interest and condition as a four-
level within-subject. Our results indicated significant main effects of inter-
ference condition (F(3,69) = 47.18, p < 0.001) and age (F(1,69) = 9.32,
p = .003) on reaction time. Regardless of age, participants were significantly
slower to respond during interference trials relative to the control trials (Fig.
1B). Specifically, participants were slower to respond during Simon
(t(71) =−19.57, p < 0.001), flanker (t(71) =−22.18, p < 0.001), and multi-
source (t(71) =−36.68, p < .001) conditions compared to the control con-
dition. Furthermore, participants were significantly slower in their
responses to the multisource condition compared to both the Simon
(t(71) = 16.83, p < .001) and flanker (t(71) = 26.42, p < 0.001) conditions,
and were also slower to respond during flanker trials relative to Simon trials
(t(71) = 9.58, p < 0.001). In addition, age was positively correlated with
reaction time across all interference conditions (r = .360, p = .001) and the
age-by-condition interaction effect was not significant for reaction time.
Accuracy was not statistically related to interference condition, age, or the
interaction effect. Finally, a repeatedmeasures ANCOVAwas conducted to
compare the effects of multisource interference to the additive model
(Simon + flanker interference) to test for potential age-related super-
additivity effects. The interference effect in the multisource condition (i.e.,
simultaneous presentation of the two interference sources) was greater than
the summed interference effects from the flanker and Simon conditions
(F(1, 70) = 4.28, p = 0.042; Fig. 1C), but neither the main effect of age (F(1,
70) = .36, p = .553) nor the interaction (F(1, 70) = 0.29, p = 0.589) was sig-
nificant for the superadditivity reaction time effect.

MEG sensor and source level oscillatory analysis
We observed strong peri-movement beta and gamma oscillations in MEG
sensors near the sensorimotor cortices (Fig. 2). In particular, a significant
decrease in power from baseline (i.e., a desynchronization) was observed in
the beta range (16 to 26Hz;−400 to 100ms, p < 0.001, corrected), while a
strong increase in power relative to the baseline (i.e., a synchronization) was
observed in the gamma range (68 to 76Hz; −50 to 100ms, p < 0.001,
corrected). These significant time-frequency windows were imaged using a
beamformer and the resulting whole-brain maps per response were

Fig. 1 | Behavioral Paradigm and Performance. A Each trial of the multisource
inference task began with a central fixation presented for 2000–2400 ms, which was
replaced by a vertically centered horizontal row of three equally spaced integers
between 0 and 3. Two of these integers were always identical (task irrelevant) and the
third was different (task relevant). The presentation of the integer stimuli lasted for
1500 ms. Participants were instructed to indicate the numerical identity (not the
spatial location) of the “odd-number-out” by using their index, middle, and ring
finger for the integers 1, 2, and 3, respectively, using a button box. Using these
stimuli, four interference conditions were possible: (1) control (no interference), (2)

Simon (stimulus-response interference), (3) flanker (stimulus–stimulus inter-
ference), and (4) multisource. B The main effect of interference condition was
significant, with each condition differing from the control condition in a stair-step
pattern. Reaction time differences relative to the control condition are displayed on
the y-axis with interference type on the x-axis. C Behavioral results from the
superadditivity model, with reaction time differences relative to the control condi-
tion on the y-axis and inference type (i.e., multisource and additive) on the x-axis.
The additive model reflects Simon + flanker interference effects. Datapoints con-
nected by lines indicate data from individual participants. *p < 0.05, **p < 0.001.
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Fig. 2 | Time-frequency spectrogramsofMEG sensor-level data. (Left): The grand-
averaged time-frequency representations of sensor-level neural responses that were
identified using our two-stage cluster-based permutation analysis (see Methods
section) are highlighted using white boundary boxes, with the gamma oscillatory
responses per condition shown in the top half of the figure and the beta oscillatory
responses shown in the bottom half. Within each spectrogram, frequency (in Hz)
appears on the y-axis and time (in ms) is denoted on the x-axis, with the dotted
vertical line within each boundary box indicating the motor response at time zero.
The color scale bar for percent change frombaseline is displayed between the top two

rows for the gamma plots and the bottom two rows for the beta plots. Each spec-
trogram shows data from one gradiometer that was representative of the neural
response in sensors near sensorimotor regions. Data are presented separately for
each task condition (i.e., control, Simon, flanker and multisource) and have been
averaged across all participants per condition. (Right): The grand-averaged, whole-
brain beamformer image for each response (beta and gamma). These beta and
gamma oscillatory maps have been grand-averaged across all interference condi-
tions and participants, with the color scale bar in the middle denoting response
amplitude in pseudo-t units.

Fig. 3 | Age-related changes in beta cortico-cortical coherence with left primary
motor seed. In each panel, the scatterplot shows age on the x-axis in years and
percent change in connectivity on the y-axis, with the 3D rendition above the
scatterplot showing the target cluster and the glass brains to the right showing the
pathway. A Beta flanker interference (flanker-control) coherence maps revealed
increased connectivity with increasing age between left M1 and the right occipital

cortices during motor planning and performance. B Connectivity also increased
with age between left M1 and left temporal cortices during the Simon interference
condition.C Similarly, beta connectivity between leftM1 and right parietal increased
with age during motor planning and performance in the multisource interference
condition. **p < 0.0005.
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averaged across all participants and interference conditions. The resulting
maps indicated that the beta and gamma responses originated from tissue
near the hand-knob region of the precentral gyrus, which has been
repeatedly linked to motor representations of the hand38–40. The beta
responses were observed bilaterally, while the gamma oscillations were
strongly lateralized to the left hemisphere. Note that, since the post-
movement beta rebound response occurred after the movement offset and
we found reaction time differences between our interference conditions, we
elected not to examine this response since any neural findings would likely
be confounded by behavioral differences.

Beta and gamma cortico-cortical coherence mapping
Toprobe age-related changes inmotor network connectivity underlying the
three types of cognitive interference, the peak voxels in the motor-related
beta and gamma oscillatory maps (Fig. 2) were used as the seeds for whole-
brain cortico-cortical coherence analyses (see Methods: MEG Source Ima-
ging and Statistics). For the left primary motor cortex (M1) seed during

motor planning and execution (−400 to 100ms), we observed age-
dependent increases in beta connectivity with right occipital (r = 0.520;
p < 0.0005), left temporal (r = 0.454; p < 0.0005), and right parietal cortices
(r = 0.482, p < 0.0005) for flanker (Fig. 3A), Simon (Fig. 3B), and multi-
source interference (Fig. 3C), respectively, relative to the control condition.

For the right M1 seed, stronger beta connectivity with increasing age
was observed with right occipital (r = 0.537, p < 0.0005) and left parietal
(r = 0.535, p < 0.0005) regions for flanker (Fig. 4A) and Simon (Fig. 4B)
interference conditions, respectively. Further, the superadditivity model
revealed an age-related decrease in right M1-left premotor beta coherence
(r = -0.434, p < 0.0005; Fig. 4C).

Finally, in the gamma range, we observed increasing connectivity
between leftM1 and right prefrontal cortices with increasing age during the
flanker interference condition (r = 0.490, p < 0.0005; Fig. 5).

Discussion
In this study, we utilized advanced dynamic neuroimaging techniques
coupledwith amultisource interference task to probe age-related changes in
movement-related connectivity profiles during different types of cognitive
interference30,31,37,41. Behaviorally, participants exhibited a stepwise increase
in reaction time (control < Simon < flanker < multisource) that has been
demonstrated in prior work28,31. Furthermore, age was significantly corre-
lated with overall reaction time regardless of interference condition, such
that older participantswere slower to respond correctly.Our primary neural
findings include age-related increases in connectivity from the left and right
M1 cortices to a distributed fronto-parieto-motor network serving inter-
ference resolution, motor planning, and motor execution. Interestingly, the
brain regions involved in these age-related network changes were specific to
the type of interference (i.e., flanker, Simon, multisource), mirroring prior
work showing regional differences in response amplitude based on the
interference type across extended attention and motor networks28,31,35,42.
Taken together, our key findings suggest that a more widespread functional
contribution to support motor control during motor planning and execu-
tion in aging does not engender commensurate improvements in behavioral
performance, perhaps reflecting the exhaustion of neural pools both in basic
sensory regions and higher-order processing, which would support the
revised scaffolding theory of aging and cognition (STAC-r) model14,16,17.
Below, we discuss the implications of these novel age-related changes in the
neural connectivity serving motor control and interference resolution in
healthy aging.

We identified age-related increases in connectivity between the bilat-
eral motor cortices and the right occipital (beta), as well as leftM1 and right
prefrontal (gamma), cortices during motor planning and execution

Fig. 4 | Age-related changes in beta cortico-cortical coherence with right primary
motor seed.Within each panel, the scatterplot shows age on the x-axis in years and
percent change in connectivity on the y-axis, with the 3D rendition above the
scatterplot showing the target cluster and the glass brains to the right showing the
pathway.ABeta interference coherencemaps showed stronger connectivity between
right M1 and right occipital cortices with increasing age during flanker interference.

B Similarly, during Simon interference, connectivity between right M1 and left
parietal regions increased with advancing age. C The superadditive effect of
simultaneously presented interference subtypes indicated weaker beta connectivity
with increasing age between rightM1 and left premotor cortices with increasing age.
**p < 0.0005.

Fig. 5 |Age-related increases in gamma fronto-motor connectivity duringflanker
interference. Layout of figure and axes match those in Figs. 3 and 4. The gamma
coherence between left M1 and right prefrontal cortices during movement execution
was found to increase linearly as a function of age for flanker interference. Glass brains
on the right show the pathway corresponding to the data on the left. **p < 0.0005.
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pertaining to resolution of stimulus-stimulus interference (i.e., flanker32;).
Theflanker task has previously been shown to engage elements of top-down
cognitive control systems, including the prefrontal cortex for interference
resolution and response selection that contributes to successful task
completion28,43–46. Interestingly, while the M1 cortex contralateral to
movement is neuroanatomically linked with the key pathways for move-
ment, increasing connectivity with age in the right occipital cortex was
observed with both the left (contralateral) and right (ipsilateral) motor
cortices. Involvement of ipsilateral neural resources may be a candidate
mechanism of compensatory neural processing in the context of ineffi-
ciencies and/or exhaustion of contralateral base neural systems that are
employed for task completion. Indeed, previous work has demonstrated a
shift froma lateralized tomore diffuse and/or bilateral recruitment of neural
resources with aging in motor and cognitive domains, indicating the sen-
sitivity of a wide range of neural processes to aging and compensatory
mechanisms4,47,48. While these studies have focused on alterations in neural
power, thefindings in the presentwork indicate that connectivity shifts with
age may also support such compensatory mechanisms. Furthermore, we
found that connectivity in the gamma range between the prefrontal cortex
and leftM1was positively correlatedwith age. Previous literature has shown
that various dimensions of the oscillatory gamma response (e.g., power,
frequency) correlate withmovement kinematics (e.g., timing, force applied,
movement uncertainty), as well as task complexity and behavior29,31,36,49–52.
Interestingly, age-related gamma connectivity changes were specific to the
flanker task, indicating that gammaoscillationsmaybeparticularly sensitive
to stimulus-stimulus interference35. Taken together, this suggests that
stimulus-stimulus interference prompts older individuals to rely more
heavily on neural resources associated with visual processing and top-down
attentionmodulation than younger individuals duringmovement planning
and execution.

During completion of the Simon task, we observed increased beta
connectivity between theM1corticesand the temporal cortex.The temporal
cortex is thought to be a critical region for the convergence of visual and
motor-related information (specifically the occipitotemporal cortex), and
has been shown to be sensitive to beta frequency dynamics related to
movement planning53,54. Therefore, successful completion of the Simon task
may require additional neural resources related to spatial organization of
visual stimuli, as well as movement planning and production. In addition,
connectivity betweenM1 andparietal corticeswas positively correlatedwith
age in the beta band during completion of the Simon and multisource
conditions. This is consistent with prior work investigating the neural
dynamics underlying Simon task performance, which has identified
frequency-specific changes in oscillatory power in frontal and parietal
regions28,31,34,55. Our findings suggest that resolution of this stimulus-
response interference may require increased reliance on the parietal and
temporal cortices for adequate relational mapping of task features in the
presence of spatial incompatibility between the stimulus and response
location42,55,56.

While we broadly observed age-related increases in fronto-parieto-
motor connectivity serving interference resolution, the beta superadditivity
model revealed an age-related beta connectivity decrease between right M1

and left premotor cortices when comparing the interference effect of the
multisource and the additive (i.e.,flanker+ Simon) conditions. Thisfinding
may reflect the ability of additional neural resources to be engaged by older
individuals to accomplish goals (i.e., task condition in this case) with rela-
tively low load, while the same individuals may exhibit neural exhaustion
when shared neural resources are overtaxed13,15. Furthermore, recent work
by Arif et. al. demonstrates both age-related increases and decreases in
connectivity profiles related to cognitive control, alluding to seemingly
disparate, though theoretically compatible, task, region, and construct
specific changes observed in the literature4,13,14,20,28,57–59.

These findings contribute to the growing body of work examining
contemporary theories of aging (i.e., STAC-r) from a neural oscillatory
perspective. Building from the novel findings of this investigation, there are
opportunities to further our knowledge of aging related compensatory
adaptations in neural function. Thoughour analyses focus on the functional
changes seen with aging, the full STAC-r model adopts a longitudinal
position to examine structural, functional, and environmental factors
simultaneously13. Future neuroimaging research could adopt a longitudinal
modeling approach to probe subtle differences in within-participant tra-
jectories, as well as between-participant differences in these trajectories.
Furthermore, future analyses examining theheterogeneity of developmental
and aging trajectories (e.g., latent growth curve modeling), as well as cross-
sectional connectivity profiles (e.g., mixture modeling) may elucidate
unique subgroups within healthy aging samples. Finally, there are various
factors associated with healthy aging (e.g., arthritis, pain with movement)
that have been linked to alterations in reaction time. Importantly, while
none of the participants in this study were diagnosed with significant
neurodegenerative or movement disorders (e.g., parkinsonism, intention
tremor, bradykinesia) that would significantly impact reaction time or
movement kinematics, we did not screen for severe arthritis or related
conditions and future work should consider such factors and potentially
incorporate more movement related measures to better dissociate changes
in movement dynamics that are due to healthy aging from other patholo-
gical processes. While such factors are unlikely to affect the strength of the
interference effects reported here (i.e., since these are derived per individual
by subtracting the reaction time of the control condition), incorporating
them into the overallmodel would lead to a deeper understanding. To close,
this is one of the first studies to examine the impact of healthy aging on
neural dynamics of motor planning and execution related to resolution of
multiple interference subtypes. Our novel findings broadly suggest the
exhaustion of age-related compensatory adaptations in the fronto-parieto-
motor network in instances of higher cognitive interference demands.

Methods
The current study is a comprehensive re-analysis of data reported in a
previous manuscript35. The neural data analyses employed in the current
study differ considerably from the previous work, and none of the neural
responses reported here were examined in that study. Specifically, the prior
study identified brain regions where the power ofmotor-related oscillations
sensitive to interference varied with age, while the current study examines
how aging affects multispectral connectivity across the neural oscillatory
networks serving motor control during different types of interference
resolution.

Participants
Seventy-two healthy adults with a mean age of 45.70 years (range: 28–63
years; see Table 1) who had normal or corrected-to-normal vision were
enrolled in this study. Participants had an average of 16.28 years of edu-
cation (SD: 2.12 years) and all completed the NIH Cognitive Toolbox to
assess current cognitive function60–63. Scores on each Toolbox assessment
were converted to demographically corrected t-scores with a mean of 100
and a standard deviation of 15. Exclusionary criteria included any neuro-
logical or psychiatric disorder, any medical illness affecting CNS function
(e.g., HIV/AIDS, lupus), history of head trauma, current substance use, and
the MEG laboratory’s standard exclusion criteria (e.g., ferromagnetic

Table 1 | Sample Demographics

Mean SD

Age 45.70 12.74

Education 16.28 2.12

NIH Toolbox

Crystallized 109.78 13.57

Fluid 105.68 15.25

Overall 108.99 13.89

Handedness 66/6 (R/L)

Sex 58/14 (M/F)
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implants). A full description of the study was given to all participants,
followed bywritten informed consent.All experimental procedures adhered
to the guidelines provided by the University of Nebraska Medical Center’s
Institutional Review Board.

MEG experimental paradigm
A modified version of the multisource interference task30,31,37,41 was used to
probe cognitive interference effects on motor control (Fig. 1A). Each trial
beganwith a centralfixation cross presented for 2200ms ( ± 200ms), which
was replaced by a horizontal rowof three equally-spaced, vertically centered
integers between 0 and 3. These integerswere presented for 1500ms.Twoof
the numbers were always identical (i.e., task-irrelevant) whereas the third
was different (i.e., task-relevant). Prior to beginning the task, participants
were given a five-finger right-handed button pad and instructed that the
index, middle, and ring finger locations corresponded to the integers 1, 2,
and 3, respectively. They were instructed to indicate the “odd number-out”
by pressing the button corresponding to its numerical identity (and not its
spatial location) as soon as they can. Using these stimuli, four interference
conditions were possible: (1) control (no interference; i.e., 1 0 0, 0 2 0, etc.),
(2) Simon (stimulus-response interference; i.e., 0 1 0, 0 0 1, etc.), (3) flanker
(stimulus-stimulus interference; i.e., 1 2 2, 1 2 1, etc.), and (4) multisource
(both stimulus-response and stimulus–stimulus interference; i.e., 2 1 2, 3 1 3,
2 2 1, etc.). The trial types and responses were pseudorandomized so that no
interference condition nor any response was repeated more than twice in a
row. Each interference condition consisted of 100 trials, for a grand total of
400 trials, and a total recording time of ∼24min. Custom stimuli were
programmed inMatlab (Mathworks, Inc.) using thePsychophysicsToolbox
Version 364 and back-projected 1.99° (horizontally) and 1.48° (vertically) at
an approximate distance of 1.07m onto a nonmagnetic screen.

MEG data acquisition
All recordings were conducted in a one-layer magnetically shielded room
with active shielding engaged for environmental noise compensation.With
an acquisition bandwidth of 0.1–330Hz, neuromagnetic responses were
sampled continuously at 1 kHz using a MEGIN Vectorview MEG system
(Helsinki, Finland)with 306 sensors, including 204planar gradiometers and
102 magnetometers. During data acquisition, participants were monitored
via real-time audio-visual feeds from inside the shielded room. Each MEG
dataset was individually corrected for head motion and subjected to noise
reduction using the signal space separation method with a temporal
extension65.

Structural MRI processing and MEG co-registration
Prior toMEGmeasurement, four coils were attached to the subject’s head
and localized, together with the three fiducial points and scalp surface,
with a 3-D digitizer (Fastrak, Polhemus Navigator Sciences, Colchester,
VT, USA). Once participants were positioned for MEG recording, an
electric currentwith a unique frequency label (e.g., 322Hz)was fed to each
coil, which induced a measurable magnetic field enabling the coil to be
localized in reference to the sensors. Since coil locations were also known
with respect to head coordinates, all MEG measurements could be
transformed into a common coordinate system. With this coordinate
system, each participant’s MEG data were co-registered with their T1-
weighted structural MRI prior to source space analysis using BESA MRI
(Version 2.0). Structural T1-weighted MRI images were acquired using a
Siemens Prisma 3-Tesla MRI scanner with a 64-channel head coil and a
magnetization-prepared 180 degrees radio-frequency pulses and rapid
gradient-echo (MP-RAGE) sequence with the following parameters:
TR = 2300ms; TE = 2.98 ms; flip angle = 9°; FOV = 256mm; slice
thickness = 1 mm (no gap); voxel size = 1 × 1 × 1mm. These data were
aligned parallel to the anterior and posterior commissures and trans-
formed into standardized space. Following source analysis (i.e., beam-
forming), each subject’s functional MEG images were also transformed
into standardized space using the transform thatwas previously applied to
the structural MRI volume and spatially resampled.

MEG preprocessing, time-frequency transformation, and
sensor-level statistics
Eye blinks and cardiac artifacts were removed from the data using signal
space projection (SSP), which was accounted for during source
reconstruction66. The continuousmagnetic time serieswas thendivided into
3500ms epochs, with movement onset as time zero and the baseline
extending from−1600 to−1100ms prior tomovement (i.e., button press).
Epochs containing artifacts were removed based on a fixed threshold
method, supplemented with visual inspection. In brief, for each individual,
the distribution of amplitude and gradient values across all trials were
computed, and those trials containing the highest amplitude and/or gra-
dient values relative to this distributionwere rejectedby selecting a threshold
that excluded extreme values. Importantly, these thresholds were set indi-
vidually for eachparticipant, as inter-individual differences in variables such
as head size and proximity to the sensors strongly affect MEG signal
amplitude.An average amplitude threshold of 1282.29 (SD = 263.47) fT/cm
andanaverage gradient thresholdof 263.47 (SD = 124.78) fT/(cm*ms)were
used to reject artifacts. Across the sample, an average of 362 (SD = 22) trials
per participant were used for further analysis. To ensure there were no
systematic differences in the number of trials per participant, an ANCOVA
was run, and this showedno significantmain effect of condition, age, or their
interaction, on the number of trials used (all p’s > 0.05).

Artifact-free epochs were transformed into the time-frequency
domain using complex demodulation67, with a time/frequency resolution
of 2 Hz/25ms and a bandwidth of 4–100Hz. The resulting spectral power
estimations per sensor were averaged over trials to generate time-frequency
plots of mean spectral density. These sensor-level data were normalized per
time-frequency bin using the respective bin’s baseline power, which was
calculated as themean power during the -1600 to -1100ms baseline period.
The specific time-frequency windows used for source reconstruction were
determined by statistical analysis of the sensor-level spectrograms across all
participants using the entire array of 204 gradiometers. Briefly, each data
point in the spectrogram was initially evaluated using a mass univariate
approach based on the general linear model. To reduce the risk of false-
positive results while maintaining reasonable sensitivity, a 2-stage proce-
dure was followed to control for Type-1 error. In the first stage, two-tailed
paired-sample t-tests against baseline were conducted on each data point,
and the output spectrogramof t-valueswas thresholded at p < 0.05 to define
time-frequencybins containing potentially significant oscillatory deviations
across all participants. In stage two, time-frequency bins that survived the
threshold were clustered with temporally and/or spectrally neighboring
bins that were also above the threshold (p < 0.05), and a cluster value was
derived by summing the t-values of all data points in the cluster. Non-
parametric permutation testing was then used to derive a distribution of
cluster values, and the significance level of the observed clusters (from stage
1)were testeddirectly using this distribution68,69. For each comparison, 1000
permutations were computed. Based on these analyses, the time-frequency
windows that contained significant oscillatory events across all participants
and conditions were subjected to the beamforming analysis. For further
details on our data processing pipeline, see Ref. 70.

MEG source imaging and statistics
Oscillatory neural responses were imaged using the dynamic imaging of
coherent sources (DICS) beamformer71, which applies spatial filters in the
time-frequency domain to calculate voxel-wise source power for the entire
brain volume. The single images were derived from the cross-spectral
densities of all combinations of MEG gradiometers averaged over the time-
frequency range of interest and the solution of the forward problem for each
location on a grid specified by input voxel space. Following convention, we
computed noise-normalized source power for each voxel per participant
using active (i.e., task) and passive (i.e., baseline) periods of equal duration
and bandwidth72 at a resolution of 4.0 × 4.0 × 4.0 mm. Such images are
typically referred to as pseudo-t maps, with units (pseudo-t) that reflect
noise-normalized power differences (i.e., active versus passive) per voxel.
MEG preprocessing and imaging used the Brain Electrical Source Analysis
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(BESA V7) software. To assess the neuroanatomical basis of the significant
oscillatory responses identified through the sensor-level analysis, mean
whole-brain maps were computed across all interference conditions and
participants for the selected time-frequency windows.

To study theunderlying cortico-cortical interactions, peakvoxels in the
grand-averaged maps were used as seeds for the calculation of a coherence
beamformer using the DICS approach71. These images represent the voxel-
wise coherence with the identified reference or seed voxel. For this analysis,
we first performed a voxel-wise subtraction of the control condition
coherence map from each of the three interference condition coherence
maps for each participant and per time-frequency component. This pro-
duced participant-level whole-brain coherencemaps representing the effect
of interference for each of the Simon, flanker, and multisource conditions.
Interestingly, previous work has demonstrated a “superadditive” effect,
where the neural and behavioral effects of simultaneous interference pre-
sentation (i.e.,multisource) is greater than the sumof the Simon and flanker
interference effects when they were presented in isolation30. Given this, to
investigate the potential for superadditivity of multisource interference on
neural coherence, the voxel-wise coherence values of the Simon and flanker
interference maps were summed to produce a whole-brain map (per par-
ticipant, per neural response), which was then subtracted from the multi-
source coherence map. Finally, to assess the impact of chronological age,
these coherencemaps were subjected to whole-brain voxel-wise correlation
analyses with age as the covariate of interest. Importantly to account for the
confounding effects of power on coherence, both seed and source power
were included in the whole-brain age-correlationmodels as covariates of no
interest73,74. To account for multiple comparisons, an initial significance
threshold of p < 0.0005 was used for the identification of significant clusters
in these whole-brain correlational maps, accompanied with a cluster (k)
threshold of at least 6 contiguous voxels (i.e., >350mm3) basedon the theory
of Gaussian random fields75–77. Connectivity values were extracted from
significant clusters in the whole-brain correlation maps, and any
values ± 2.5 SD from the mean were considered outliers and removed.

Data availability
The data used in this article will be made publicly available through the
COINS framework at the completion of the study (https://coins.
trendscenter.org/).
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