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SPACe: an open-source, single-cell analysis of
Cell Painting data

Fabio Stossi1,2 , Pankaj K. Singh2,3, Michela Marini 2,4, Kazem Safari2,3,
Adam T. Szafran1,2, Alejandra Rivera Tostado1,2, Christopher D. Candler 1,
Maureen G. Mancini1,2, Elina A. Mosa1,2, Michael J. Bolt1,2, Demetrio Labate2,4 &
Michael A. Mancini 1,2,3

Phenotypic profiling by high throughput microscopy, including Cell Painting,
has become a leading tool for screening large sets of perturbations in cellular
models. To efficiently analyze this big data, available open-source software
requires computational resources usually not available tomost laboratories. In
addition, the cell-to-cell variation of responses within a population, while
collected and analyzed, is usually averaged and unused. We introduce SPACe
(Swift Phenotypic Analysis of Cells), an open-source platform for analysis of
single-cell image-based morphological profiles produced by Cell Painting. We
highlight several advantages of SPACe, including processing speed, accuracy
in mechanism of action recognition, reproducibility across biological repli-
cates, applicability to multiple models, sensitivity to variable cell-to-cell
responses, and biological interpretability to explain image-based features. We
illustrate SPACe in a defined screening campaign of cell metabolism small-
molecule inhibitors tested in seven cell lines to highlight the importance of
analyzing perturbations across models.

Measuring biological complexity of physiological and pathological
states fromsingle cells towhole organisms is the basis for developing
models and analytical methods that result in new knowledgemoving
toward new interventions. Arguably, one of the most successful
attempts in measuring cell states, characterizing biological path-
ways, and testing thousands of small-molecules for drug develop-
ment has been the application of Cell Painting (CP) or its multiple
variants1–7. CP combines several fluorescent dyes to illuminate cel-
lular structures, allowing for an inexpensive, high content (HC), high-
throughput (HT) microscopy-based assay that is scalable to whole
genome knock-out/overexpression and large small-molecule inhi-
bitor libraries8–12. Information extraction from CP images involves
two main steps: firstly, identifying regions of interest (e.g., cellular
substructures) and extracting relevant features, typically done using
open-source (e.g., CellProfiler13,14) or commercial software; secondly,
performing feature reduction and representation1,15–17 to facilitate

further downstream analyses such as clustering and classification.
Due to its biological and analytical relevance, single-cell data in HT
imaging-based campaigns are now widely used both for data quality
control and for hit identification associated with various treatments
based upon clear phenotypic differences6,18–23. Nonetheless, while CP
approaches have entered the mainstream for phenotypic screening,
there is still a very active research effort to enhance robustness,
processing speed, and sensitivity to best capture cell population
heterogeneity. As AI-driven strategies have become more prevalent
for high-dimensional and large-scale data analysis, integration of
such strategies into CP and its variants has stimulated a major
interest due to the promise of higher accuracy, faster processing
times and the potential for fusingmultimodal data18,19. However, with
the continual advancement of HT microscopes and laboratory
automation, and resultant large datasets, a key roadblock appears to
be how to analyze data efficiently, in a timely manner, and the
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availability of massive computational resources needed to carry out
such analyses.

To address these outstanding challenges, we developed an open-
source, Python-based, easy-to-deploy, single-cell image analysis plat-
form named SPACe (Swift Phenotypic Analysis of Cells), that tackles
object segmentation, quality control, feature extraction and analysis of
large image datasets collected from HC/HT imaging campaigns while
requiring significantly less computational resources with respect to
existingmethods. In fact, SPACe can process large datasets commonly
used in HT imaging-based campaigns approximately ten times faster
than CellProfiler using a standard personal computer, without per-
formance loss in downstream analysis (e.g., mechanism of action –

MoA - recognition accuracy).
The SPACe platform includes additional properties that were

designed to ensure reproducibility and the ability to improve inter-
pretability of downstream analysis of extracted features. Specifically,
SPACe includes a state-of-the-art approach for cell segmentation, the
ability to segment multiple subcellular compartments and the appli-
cation of a directional EarthMover’s Distance (signed EMD) to quantify
differences in single-cell feature distributions. We recall that most of
existing cell screening analytical platforms, while extracting informa-
tion from individual cells, ultimately utilize only per-well or per treat-
ment central tendency values like mean or median for downstream
analysis. A notable exception is the work from Pearson et al.18, that
demonstrated the potential advantage of interrogating single-cell
information by analyzing the statistical distribution of data within
cellular populations. While the traditional per-well average approach
has proven to be successful and sufficient for hit calling from single
endpoint assays in large-scale screening campaigns, it ignores
the inherent phenotypic heterogeneity in a cell population and the
fact that many biological responses do not follow a normal
distribution6,19,23.

While the SPACe platform is applicable to virtually any screening
campaign using various instruments, we focus here on analyzing
images captured with JUMP Consortium-vetted high-throughput
widefield and spinning disk confocal microscopes.

Results
Development of a single-cell-based image analysis pipe-
line – SPACe
The traditional way of analyzing CP images relies on either the open-
source CellProfiler1,13 or commercial software (i.e., Columbus and
others). For the larger datasets typically associatedwith screening, it is
recommended to run these solutions on distributed computing
resources (i.e., CPU clusters), Cloud computing, or powerful work-
stations. However, many labs around the world considering using CP
may not have access to such resources. To overcome this limitation,
we developed SPACe (Fig. 1A, B), an open-source, user-friendly Python-
based analysis pipeline that can efficiently analyze CP images using a
standard desktop PC equipped with a consumer grade graphics pro-
cessing unit (GPU). SPACe was measured to be approximately 10×
faster than the open-source CellProfiler pipeline (Fig. 1C), and is pro-
vided to the community on GitHub (https://github.com/dlabate/
SPACe) as a downloadable version for local installation, customiza-
tion, and possible linkage to additional user-definedmodules. We also
include a Google Colab version of the code (https://github.com/
dlabate/SPACe/blob/main/SPACe_colab.ipynb), designed for testing
the software under different hyperparameter settings.

As part of streamlining the CP approach, we decided to not
include amodule for illumination correction due to the fact that this
can be performed as a preprocessing step following established
methods2,24,25. We have often found that instrument-associated
image correction is sufficient to remove illumination errors. In the
case of experiments performed in this study, we relied upon the
Yokogawa CV8000 software to correct non-uniform illumination,

pixel misalignment between cameras, and fluorescence channel
crosstalk.

After loading images (Step 1), the SPACe pipeline automatically
defines nuclear (“Nucleus”) and cell (“Cell”) segmentation boundaries
using the popular AI-based Cellpose package and its pretrained gen-
eralist model(s)26,27 (Step 2). Although Cellpose can automatically
determine segmentation hyperparameters on a per image basis, for
more consistent and faster performance, users should indicate the
expected nuclear and cell diameters in terms of number of pixels,
which is often cell model specific. To facilitate this task in SPACe, we
implemented a preview function that allows the user to test selected
fields of view (FOVs) making sure that the segmentation is accurate
before analyzing the entire dataset. Following nuclear and cell regions
identification, an adaptive Otsu & MaxEntropy thresholding routine is
applied to identify nucleoli (“Nucleoli”) andmitochondria (“Mito”, Step
3). A separate cytoplasmic region (“Cyto”) is defined by subtracting
each nuclear region from each cell region. An example of segmented
objects is shown in Fig. 1B.

SPACe extracts more than 400 curated features from each object
mask including intensity, morphology, and textural measurements
(Step 4) that are described in Supplementary Table 1. Again, experi-
enced users can alter/add/subtract the set of extracted features as
needed. As we describe in detail below (Supplementary Figs. 2 and 3),
we demonstrate that the number of features extracted by SPACe is
sufficient to capture phenotypic changes in Mechanism of Action
(MoA) datasets produced by the JUMP consortium.

A version of our previously published19 quality control (QC)
pipeline for high-throughput single-cell datawas added in SPACe (Step
4); this step leverages the analysis of the empirical probability dis-
tribution of single-cell features in control samples (i.e., DMSO treated)
to identify and discard outlier wells and to generate a reference dis-
tribution for each feature, defined as themedian empirical distribution
of all remainingDMSOwells. This referencedistribution is then used to
quantify the effect of perturbations based on the Earth Mover’s Dis-
tance (EMD), a metric that quantifies the dissimilarity between prob-
ability distributions and has been shown to work well for phenotypic
screens18. Additional details, including data normalization, can be
found in the “Methods” section. Here we adopt a directional variant of
the EMD (signed EMD), where we assign a positive sign to the EMD if
the median has increased with respect to DMSO, and a negative sign if
the median has decreased. The SPACe pipeline ultimately provides
users with the saved object masks, single-cell raw data, and a CSV file
containing the signed EMD values plus the well-averaged mean and
median values for each feature (“distance maps” – Step 5); all of which
can be further analyzed using preferred software packages as sug-
gested in several publications1,15–17. Filtering wells with a low number of
detected objects can also be used as an additional QC metric to avoid
analyzing the distribution of single-cell data from wells with an insuf-
ficient number of data points. In our previous study19, albeit not using
CP, we estimated that a minimum of ∼1000 cells are needed to
properly reconstruct a faithful distribution from single-cell data.

Comparing SPACe with CellProfiler using JUMP Consortium
reference datasets
As one of the goals of SPACe is to be useful to a large community of
researchers with potentially limited computational resources, we
compared its performance to CellProfiler using a highly diverse CP
experiment by downloading seven reference datasets provided by the
JUMP consortium. These JUMP MoA datasets (BR00115125-31) contain
90 unique treatments with 47 annotated mechanisms of action (MoA)
along with negative control DMSO wells1. Using a standard PC, of the
type available to most research labs (Intel i7 13700 CPU, NVIDIA 3070
GPU, 32GB memory), the average processing time per plate was
almost 10× lower using SPACE (8.5 ± 0.5 h) compared to CellProfiler
running the pipeline recommended by the JUMP consortium
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(80.2 ± 5.3 h) (Fig. 1C). The primary contribution to this difference is
the extraction of a reduced, curated set of features within SPACe and
its implementation of the Pyradiomics library to extract texture fea-
tures using GPU acceleration. As a result of this, the primary

contributor to processing time for SPACe is the ROI segmentation of
using thepretrained cNNmodels inCellpose,whereas forCellProfiler it
is the extraction of texture features. When using the percent repli-
cating and percent matching1 calculations that define the correlation

Fig. 1 | SPACeworkflowand performance on JUMPMOA reference datasets. AA
graphical depiction of the steps included in the SPACe pipeline. B Example of four
SPACe segmented objects (out of thousands of images) in CP-stained U-2 OS cells,
please note that the fifth compartment (cytoplasm) is obtained by subtraction of
the nuclear mask from the cell mask. Scale bar: 5 µm. C Processing time for JUMP
MoA reference datasets using either CellProfiler or SPACe, each symbol represents

running time for a plate of the reference dataset, with also the mean± standard
deviation overlayed. D Assessment of percent replicating (top) and percent
matching (bottom) basedonpopulationmean (CellProfiler, SPACe) or EMD (SPACe
only). Assessment of analysis feature percent replicating (E) or percent matching
(F) by the mechanisms of actions present in the JUMP reference datasets. Source
data are provided as a Source Data file.
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of extracted features between replicate wells and those with different
treatments, but matching annotated MoAs, there was no significant
differencebetween SPACe andCellProfiler generatedoutputs (Fig. 1D),
with the largest determinant in performance being the source dataset.
However,whenpercent replicatingwas ranked for eachdataset, SPACe
mean well-values ranked significantly better (Supplementary
Fig. 1A, B). In percentmatching, both SPACe andCellProfilermeanwell-
values ranked significantly better than SPACe EMD values (Supple-
mentary Fig. 1C-D). When examined by individual MoAs, the trend in
percent replicating and percent matching were similar between ana-
lysis methods (Fig. 1E, F). Although no difference was statistically sig-
nificant, there were examples (e.g., GSK, Bcr-Abl kinase, Aurora kinase,
mTOR) where one method appeared to outperform the other, likely
reflecting differences in the underlying segmentation and texture
feature extraction approaches used.

One of the key differences between CellProfiler and SPACe is the
reduced number of features extracted (∼4000 versus ∼400). To
understand the uniqueness of the features collected by each method,
Spearman correlation between features across all samples in the JUMP
reference datasets were examined (Supplementary Fig. 2A–C). The
relative frequency of features with correlation values between 0.2 and
0.8 were similar for each method, however, SPACe-extracted feature
sets contain a greater proportion of highly correlated features
(Spearman correlation >0.8) than the CP feature set (Supplementary
Fig. 2E). SPACemeanand EMDfeature sets contain a higher proportion
(24% and 32%, respectively) of ‘unique’ features (defined as a feature
with no correlation) compared to the CellProfiler feature set (16%),
despite the absolute number of unique features being lower (Supple-
mentary Fig. 2D). This suggests that although SPACe collects a smaller
feature set, the feature set contains sufficient diversity to recapitulate
the CellProfiler generated results from the reference datasets, similar
to other published work that reduced the CellProfiler feature set to a
little over 60028.

A concern with collecting a smaller number of features is the
potential inability to accurately capture phenotypes associated with
various MoAs. To address this concern, we generated five random
forest (RF) models for each JUMP reference dataset for each of the
CellProfiler well mean, SPACe well mean, and SPACe EMD feature sets.
Each RF model was trained with half of the treatment replicates, ran-
domly selected for each model replicate. Model performance was
assessed by the ability to correctly predict the MoA of treatment
replicates not selected for training. Across all samples, the feature set
used to train the model did not make a significant difference in the
accuracy of MoA prediction (Supplementary Fig. 3A). When examined
by individual MoA, RF models trained with the different feature sets
showed similar trend in prediction accuracy (Supplementary Fig. 3B).

RFmodels trainedwith SPACe (eitherwellmeanor EMD) featureswere
noted to better predict several MoAs, particularly the DYRK (sig-
nificant, p < 0.05), MEK, LXR, PRMT, and beta-catenin signaling path-
ways. When examined by prediction accuracy rank for each MoA, RF
models trained with SPACe EMD values ranked significantly better
(Supplementary Fig. 3C). When a confusion matrix was examined for
each set of RF models (Supplementary Fig. 3D–F), all incorrect MoA
predictions shared a similar pattern, which was to predict a sample as
inactive vs. active (i.e., “none” category in the graphs). Taken together,
these results indicate that the reduced feature set collected by SPACe,
especially the EMD-based feature set, can capture induced phenotypes
as well as, if not slightly better, than the feature sets generated using
the JUMP consortium CellProfiler pipeline.

Testing selected reference chemicals with the pipeline and their
reproducibility
We used the standard JUMP consortium U-2 OS osteosarcoma cell
line1–3 to investigate reproducibility and interpretability of the results
obtained with SPACe. We chose a selection of potential reference
chemicals (Table 1) that have been previously shown in publications or
by the JUMP consortium to alter the phenotype of U-2 OS cells3,29–31,
including saccharin and sorbitol as negative controls. Cells were trea-
ted for 24 h ahead of the CP protocol, which was performed either
manually or robotically following published reports1–3 and imaged
using a Yokogawa CV8000 high-throughput spinning disk confocal
using the established conditions32. Figure 2A shows representative
color images of the cells treated with the indicated compounds. In
Fig. 2B the signed EMD from the median DMSO control (which has
distance = 0) for each of the >400 features, from three independent
biological replicates (labeled 1,2,3 in parentheses below the treatment
names), is shown as a heatmap for the “reference compound set” with
each of the fluorescence channels separately highlighted. The quanti-
fication of all the data in Fig. 2B is shown in Fig. 2C, where we used
Euclidean distance between the treatment fingerprint (i.e., repre-
sented by changes in all >400 features) for each well (represented as a
circle in the graph), from themedian of DMSOwells of each biological
replicate. Overall, in terms of Euclidean distance, we observed good
concordance between the three independent biological experiments,
and a compoundwith EuclideanDistance>2was considered active as it
was fully separated from theDMSOcontrolwells andwas significant by
non-parametric ANOVA, a parameter that we used for the rest of the
study. As expected, the negative controls (saccharin and sorbitol) had
no effect across the feature space. Of the tested reference compounds,
we also failed to detect significant and/or reproducible effects of tet-
randrine, dexamethasone andNVS-PAK1-1. Berberine chloride caused a
redistribution of well-resolved mitochondria, which was evident from

Table 1 | List of potential reference chemicals tested

Chemical Name CAS # Reported Phenotype (3,29,31,34) Source Notes

AMG-900 945595-80-2 JUMP positive control Selleckchem Aurora kinase inhibitor

Berberine Chloride 633-65-8 Redistribution of mitochondria Sigma Target unclear

Ca-074-Me 147859-80-1 Bright ConA staining Sigma Cathepsin B inhibitor

Dexamethasone 50-02-2 JUMP positive control Tocris GR agonist

Etoposide 33419-42-0 Large nucleoli Sigma Topoisomerase II inhibitor

Fenbendazole 43210-67-9 Multi-nucleated cells Sigma Anti-helmintic

NVS-PAK1-1 1783816-74-9 JUMP positive control Tocris PAK1 inhibitor

Oxibendazole 20559-55-1 Multi-nucleated cells Sigma Anti-helmintic

Rotenone 83-79-4 Mitochondrial fission Sigma Complex I inhibitor

Saccharin 81-07-2 Negative control Sigma Artificial sweetener

Sorbitol 50-70-4 Negative control Sigma Sugar alcohol

TC-S-7004 1386979-55-0 JUMP positive control Tocris DYRK1A/1B inhibitor

Tetrandrine 518-34-3 Abundant WGA Sigma Calcium channel blocker
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the images (Fig. 2A31) andwas readilymeasured by changes exclusively
in the MitoTracker channel (Fig. 2B, D). To aid with interpretability of
the results (Fig. 2D),we subdivided the features in categories (basedon
cell compartment and fluorescence channel) and then represented
changed features (defined as EMD>0.15 or <−0.15 in at least two out of
three biological replicates) as a stacked bar graph (blue features are
reduced and red features are increased as compared to DMSO). AMG-

900 and Etoposide showed changes in the nuclear and nucleolar
compartments, which are compatible with their known mechanism of
action (aurora kinase and topoisomerase inhibitors, respectively).
Rotenone affected multiple compartments, including mitochondria.
Similarly, fenbendazole and oxibendazole, two anti-parasitic drugs,
showed changes across all compartments, including visual evidence of
polynucleation, as previously described3. In the case of Ca-074-Me, we
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did not observe the increase in ConA staining intensity that was pre-
viously reported3, but the most reproducible changes were measured
at the level of nuclear and cellular size and shape. TC-S-7004, a
DYRK1A/1B inhibitor30,33, also had a fingerprint that was significantly
different from DMSO, with changes in the SYTO14 and MitoTracker
channels. It is important to note that at the concentration used, the
compounds could have mixed mechanisms of action through off-
target and secondary effect(s), which can be sorted out in follow-up
experiments (i.e., concentration-response, time-response and target
knock-down experiments).

Reproducibility and interpretability: berberine chloride as a
case study
To further analyze the quality of SPACe pipeline outputs, we first
focused on berberine chloride as it showed a unique phenotype that is
immediately evident from visual inspection of the images (e.g., redis-
tribution and size reduction ofmitochondria). In Fig. 3A, the analysis of
thirteen independent biological replicate experiments confirmed high
reproducibility of theberberine-induced, visible phenotype in termsof
themitochondria features changing from the DMSO control. Only one
experiment was somewhat an outlier with additional cellular com-
partments being more affected; however, the top mitochondrial fea-
tures remained similarly altered. We performed berberine chloride
concentration-response experiments (four biological replicates) to
verify if the top changing mitochondrial features were indeed
responding in a concentration-dependent manner. Figure 3B shows
the berberine chloride concentration-response experiments in a
heatmap format, confirming that most responding features indeed
have a concentration dependency, an indication of their biological
specificity likely linked to the mechanism of action of any compound.
We next selected eight features (intensity, texture, plus the ratio
betweenmitochondrialmask and cell mask areas, Fig. 3C), that exhibit
clear concentration dependency, with very similar EC50s, indicating
they are likely related to the berberine chloride mechanism of action,
which remains ill-defined34,35.

To determine if the response to berberine chloride was universal
so that it could be employed as a true reference compound for all CP
experiments, we treated 18 human cell lines for 24 h (Fig. 3D). 14 out of
18 cell lines showed a strong mitochondrial phenotype, while three
more had a partial responsiveness to berberine chloride, reinforcing
the assumption that themechanismof action of this chemical is largely
universal and visually affects primarily mitochondria. Moreover, it is
interesting to point out that berberinewas non-toxic in all the cell lines
tested. PC-3, a prostate cancer cell line, was the only clear outlier for
unknown reasons, with bladder cell lines UM-UC-3 and 5637 also
having a muted and a more diverse fingerprint. The consistent
response allowed us to extract a “berberine chloride consensus fin-
gerprint” that is visible as aggregate results in a stacked bar plot sub-
divided by feature classes and cellular compartments (Fig. 3E). A list of
the selected features that constitute such a fingerprint is available in
Supplementary Table 2. Collectively, the fingerprint signature allowed
us to add interpretability to this treatment as the selected features can
be visually linked to the images. For example, the intensity of the
MitoTracker channel in the cell compartment is reduced as is the ratio

of mitochondria-to-cell area, while several distinct mitochondrial tex-
ture features are changing both within the cell and mitochondria
compartments.

Cell Painting in breast cancer cell lines: analysis of a small panel
of chemicals reveals both cell-type specific and broad effects
To further explore the potential of SPACe for analysis of cell lines
outside the canonical U-2 OS and A549 models often used in CP, we
tested a set of breast cancer models representing different tumor
subtypes (luminal, Her2, and triple negative), by treating them for 24 h
with a small set of 28 diverse chemicals, including thosedeemed active
in Fig. 2C. Figure 4A shows the Euclidean distance of each compound
from DMSO across multiple experiments and cell lines, represented as
a heatmap. Overall, 19 out of 28 compounds were found to be active
(Euclidean distance >2, 68%) in at least one cell line; however, only 8
out of 28 (29%) were active in at least five cell lines. These included the
Akt inhibitor MK-2206, berberine chloride, fenbendazole, oxibenda-
zole, rotenone, TC-S-7004, actinomycin D, and latrunculin B; all of
which have been used as references before or have established strong
responses and mechanism of action. Interestingly, we had no com-
pound that showed specificity for U-2 OS, however, a few were only
active in one breast cancer cell line, including BYL-719 (PI3K inhibitor,
BT-474), DCA – deoxycholic acid (bile acid, SK-BR-3), ETP45658 (PI3K
inhibitor, BT-474), FR180294 (ERK1/2 inhibitor, MDA-MB-231), and
metoclopramide (dopamine receptor antagonist, MDA-MB-231). A
more detailed inspection of the phenotypic changes revealed that the
two PI3K inhibitors had a very similar overall profile in BT-474, indi-
cating a likely class (and perhaps cell line) specific phenotypic readout
(Fig. 4B). In contrast, the two MDA-MB-231 specific compounds
modulatedmultiple compartments and channels, being nucleolus and
actin for metoclopramide, mitochondria and concanavalin A/SYTO14
for FR180294.

We then selected seven of the best responders and tested them
across all 18 cell lines (Fig. 4C) to determine their universality and
attempt to identify their response fingerprint, akin to what we showed
for berberine chloride in Fig. 3E. Overall, all compounds elicited a
response in at least 10 cell lines, but none affected all 18, indicating that
it is unlikely to identify compounds that would act in a universal
manner and can be used as controls across all experimental models.
This complicates the analysis, prediction, and MoA interpretation for
compounds when based uniquely on phenotypic screening in a single-
cell model. We attempted to add interpretability by selecting only
features that were changing in at least 5 cell lines, as very few to none
significantly changed across all models, hoping to mitigate the off-
target effects that can be seen at µM concentrations. Figure 4D shows
the interpretation using stacked bar graphs for all seven compounds,
except for berberine chloride that was already presented in Fig. 3E.
Actinomycin D showed major changes in the nucleolus (Fig. 4E),
compatible with its activity as a general inhibitor of RNA polymerases
and gene transcription, and actin cytoskeleton, which can represent
signs of toxicity, even though we were still able to collect information
from more than 1000 cells/experiment. For AMG-900, only a few
features were consistent across cell lines, and these revolved around
cell and nuclear size/shape and DAPI texture features, which is

Fig. 2 | Testing a set of potential reference compoundswith SPACe.U-2 OSwere
treated for 24 h with the indicated compounds at 10 µM ahead of the CP protocol.
Representative 20× color images from the same experiment out of three inde-
pendent biological replicates are shown in (A). Scale bar is 10 µm. B Heatmap
showing the signed EMD (Earth Mover’s Distance) from DMSO controls of the
indicated compounds from three independent biological replicates (labeled in
parentheses below the name of the compounds as 1,2,3). Each channel is separated
to show the changes by fluorescent dye. N/A represents shape features and ratios
(i.e., nuclear size/cell size). C Euclidean distance is used as a measure to compare
the features fingerprint of each compound from the median DMSO control. This is

measured for each well (represented as a hollow circle in the graph) treated with
the indicated compound in three independent biological replicates, shown toge-
ther in the graph. Overlayed in red the mean± standard deviation is represented. *
is p <0.05 using non-parametric ANOVA (Kruskal–Wallis) compared to DMSO
group.D Stacked bar graphs representing the fraction of changed features (in blue
if they are reduced or red if they are increased, gray means no change) in the
defined groups for each treatment. The chosen threshold for significance was EMD
distance <−0.15 or >0.15 (see “Methods” section for description). Source data are
provided as a Source Data file.
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compatiblewith its knownmechanismof action inmitosis as anAurora
kinase inhibitor. MK-2206 is a specific Akt inhibitor that can be an
autophagy activator36 and themain features that appear to be linked to
this phenotype include reduction in nuclearDAPI signal and changes in
texture features for SYTO14, MitoTracker, and WGA/phalloidin that
can be visually interpreted as the formation of autophagolysosomes in
the cytoplasm (Fig. 4E).

Fenbendazole and oxibendazole are anti-parasitic drugs that have
been shown to act through multiple mechanisms including micro-
tubule destabilization, G2/M arrest, and apoptosis37,38. Both drugs
produced complex CP profiles modifying all the compartments in
various ways, most notably higher SYTO14 intensity in the nucleolus
and reduced MitoTracker signal in mitochondria. These observations
highlight the utility of including these subcellular compartmentmasks

Fig. 3 | Berberine chloride as an example of a reference compoundwith a clear,
interpretable phenotype. A Feature response reproducibility. Thirteen indepen-
dent experimentswere conductedwithU-2OScells treatedwithberberine chloride
(10 µM) for 24h, features were extracted with SPACe and signed Earth Mover’s
Distance (signed EMD) is represented as a heatmap. B Signed EMD heatmap
showing all the extracted features after a berberine chloride concentration-
response (75 nM to 10 µM) at the 24h time point.CAverage ± standard deviation of
the top, non-redundant eight features changing after berberine chloride treatment,

with EC50 indicated, from the experiments in (A).D Eighteen cell lines were treated
with berberine chloride 10 µM for 24 h and the signed EMD of all features is
represented as a heatmap. E Stacked bar graph showing a berberine chloride
“consensus fingerprint” of the changing features across cell lines. Increased fea-
tures are in red, decreased in blue, and unchanged in gray. N/A represents shape
features and ratios (i.e., nuclear size/cell size). Source data are provided as a Source
Data file.
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Fig. 4 | Testing SPACe on a set of breast cancer models. A Cell lines were treated
with 28 chemicals for 24 h and then analyzed with SPACe. The heatmap shows the
Euclidean distance of each compound from the DMSO wells of each cell line.
B Stackedbar graphs showing the interpretability profile of four cell line specific hit
chemicals with increased features in red, decreased in blue, and unchanged in gray.
C Eighteen cell lines were treated with the indicated compounds for 24h and then
Euclidean distance was calculated and represented as a heatmap. D Stacked bar

graphs showing tentative “consensus fingerprints” of the changing features across
a minimum of five cell lines, with increased features in red, decreased in blue, and
unchanged in gray. E Selected images (zoom in from 20×/1.0 images) from one out
of three independent biological replicates to showcase specific phenotypic chan-
ges caused by the indicated compounds in highlighted channels/compartments.
Scale bar: 10 µm. Source data are provided as a Source Data file.
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in SPACe. Inspecting the images clearly shows that both compounds
cause multi-nucleated cells and dying cells, confirming their main
mechanism of action (e.g., cell division and cell death, Fig. 4E). Finally,
rotenone, a natural isoflavone, is a strong inhibitor of mitochondrial
complex I, which is reflected by the alterations observed in selected
MitoTracker features. Interestingly, rotenone appears to cause
broader changes also affecting the nucleolus and actin cytoskeleton,
likely due to off-target effects.

Cellular metabolism screening library
To expand our understanding of the universe of phenotypic changes
across models, we treated seven cancer cell lines with different origins
(U-2 OS - bone, Hep G2 - liver, 5637 - bladder, PANC-1 - pancreas, PC-3 -
prostate, MDA-MB-231 - breast, and A549 - lung) in duplicate plates
with the Cayman Chemical Cellular Metabolism Screening Library
containing 160 small-molecule modulators of diverse targets and
metabolic pathways. First, we analyzed the responses to the library by
identifying toxic compounds. In Fig. 5A, treatments that caused a
reduction in cell number by >50% in at least one cell line, as compared
to DMSO control, are shown in a heatmap format. This is a relevant
step as recent work from Dahlin et al., identified a set of compounds
that interfere with CP screening through cell injury39. A note here is
that the screeningwas performed solely inU-2OS cells andwill need to
be validated in other models. Overall, about a third of the library
showed some toxicity in at least one cell line. Ten compoundswere the
most toxic across all models (auranofin, SF1670, plumbagin, PR-619,
CB-5083, PFK158, eeyarestatin-1, digitoxin, paclitaxel, and TG101348)
and should be tested at lower concentrations to measure changes at
non-toxic levels, as some of them show potentially very interesting
phenotypes in the surviving cells. For example, PR-619 and eeyar-
estatin-1, inU-2OS and across cell lines, respectively, showcytoplasmic
vacuolization and redistribution of mitochondria; plumbagin, in
PANC-1 cells, also affects mitochondria plus on cell shape/size; while
TG101348, in PANC-1 and Hep G2, causes large changes in the WGA/
actin, MitoTracker and some morphological features (Supplementary
Fig. 5). Examples of compounds that showed some cell-type selective
toxicity were gemcitabine (PC-3, nucleoside analog), copanlisib (5637,
PI3K), mycophenolic acid (5637, inosine-5′-monophosphate dehy-
drogenase), and NCT-503 (Hep G2, PHGDH). Of note, when consider-
ing the most toxic compounds we found, only paclitaxel and
plumbagin are in the cellular injury list39, together with gemcitabine,
which was cell line specific.

In Fig. 5Bwepresent the 31 hit compounds from the library screen
in a heatmap, defined as treatments with Euclidean distance >2 cutoff
in at least one cell line, and in both replicate plates, after filtering out
the abovementioned toxic chemicals. Compounds with discordant
replicates or with obvious imaging artifacts were also excluded after
manual inspection. To improve accuracy and interpretability, it is
important to note that every multiwell plate was run with several
internal controls (DMSO, actinomycin D, MK-2206, and berberine
chloride). Additionally, actinomycin D and rotenone were present as
components of the library itself and served as additional quality con-
trol treatments as active compounds, and as such were excluded
from Fig. 5B.

Perhaps interestingly, only seven compounds in the screen
showed effects in a single-cell line: HQNO (PC-3), mycophenolic acid
(5637), olaparib (A549), GDC-0068 (MDA-MB-231), dipyridamole (U-2
OS), spautin-1 (MDA-MB-231), and NK 252 (Hep G2); further validating
the importance of screening across a wide range of cellular models.
Seven compounds showed various phenotypes across four or more
cell lines, despite having a somewhat reduced cell number in specific
models (top cluster in Fig. 5B). These were the PIKfyve inhibitor YM-
201636, the VPS34 inhibitor Vps34-IN1, the mitochondrial uncouplers
FCCP and rottlerin, the IRE1 inhibitor toyocamycin, the Hsp90 inhi-
bitor 17-DMAG, and the antimalarial mefloquine. Visual

representations of the phenotypes induced by these compounds are
shown for U-2 OS and PANC-1 cells in Fig. 5C, while their interpret-
ability plots are shown in Fig. 5D. In the case of all these compounds, it
was much harder to identify a common fingerprint between cell lines,
which was especially true for Vps34-IN1, where only 25 features were
common between three out of seven cell lines. However, in individual
cell lines, visually, YM-201636 and Vps34-IN1 responses looked rea-
sonably similar (U-2 OS cells are shown in Fig. 5C), and indeed we
found a set of features that matched these two treatments; for exam-
ple, increased intensity of the concanavalin A and MitoTracker in the
cell mask, reduction in nuclear perimeter and various changes of
MitoTracker textural features. Also, the twomitochondrial uncouplers,
rottlerin and FCCP, had severalmatching features in themitochondrial
compartment (e.g., increase intensity and mitochondria/cell
area ratio).

Discussion
Over the last few years, the leading approaches to HT genetic and
chemical screens have shifted from classical single-endpoint cell free
assays to unbiased multi-endpoint imaging approaches that are based
on phenotypic profiling of intact cells. The success of the latter
approach stemmed from the development of CP protocols that allow
for economical and fast characterization of a cell state by illuminating
specific cellular components. This strategy, coupled with automated
image analysis and machine learning, has been proven to be very
effective in measuring phenotypic changes upon a large variety of
perturbations, including small-molecules, knock-down and
overexpression.

Amajor limitation to a wider adoption and deployment of CP-like
phenotypic screening is the significant computational resources
required to run current image analysis solutions such as CellProfiler
and other commercial applications. To address this challenge, here we
introduce SPACe, an open-source, lightweight, Python-based CP ana-
lysis workflow that differs from most current analysis tools in several
important ways. First, SPACe integrates the use of Cellpose pretrained
AI-based nuclear and cell segmentation models to achieve highly
accurate object segmentation accelerated by widely available GPU-
based processing; moreover, we segment two additional cell com-
partments, i.e., nucleoli and mitochondria, to provide more specific
biological information and improve interpretability of downstream
analysis. Second, SPACe collects a carefully selected set of ∼400
image-based features as compared to the ∼4000 features collected by
CellProfiler, reducing redundancy and data management loads; as we
have shown, this implementation choice did not reduce the down-
stream analysis performance while making data exploration more
efficient. Third, SPACe includes the calculation of directional EMD for
feature analysis, as EMD values have been shown to be superior18 in
capturing diverse responses in a heterogeneous cell population and
can be used for both quality control and hit calling19,21–23, while pro-
viding the canonical per-well statistics of other platforms. The com-
parison betweenmean and EMD that we detail in Supplementary Fig. 1
suggests that central tendency metrics (mean values) are more effec-
tive at capturing the relevant features for MoA classification than
distribution-based metrics (EMD values) when all features contribute
equally, as is the case for ‘Percent Matching’. One possible explanation
is that central tendency metrics can more robustly summarize the
overall characteristics of a well, making them less sensitive to varia-
tions and noise present at the single-cell level/measurements. In the RF
analysis, the ability to predictMoA accuratelymight benefitmore from
the detailed distribution information captured by EMD feature sets
within SPACe. EMD indeed provides a more sensitive measure of the
differences between feature sets, which allows the RF model to effi-
ciently capture phenotypic variations resulting in more accurate MoA
prediction. In addition, in contrast to ‘Percent Matching’, the weight/
contribution of each feature to the prediction can differ in RF models.
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Therefore, the difference in the relative performance of EMD-based
features in ‘PercentMatching’ and RFmodel outcomes suggest there is
likely a subset of EMD-based features that better capture the MoA
phenotype than any subset of mean-based features.

Due to these design properties, the SPACe pipeline can analyze
the large imaging data generated by typical CP phenotypic screens
very efficiently using the computational resources of a standard PC
while maintaining sufficient morphological sensitivity and specificity

Fig. 5 | Screening a cellular metabolism modulators library with SPACe analy-
sis. A Analysis of the library compounds induced toxicity represented as heatmap
where cell count was normalized to DMSO, set as 1; the compounds represented
caused a cell loss of >50% in at least one cell line. B Heatmap and hierarchical
clustering of hits (Euclidean distance >2 in at least one cell line) from the screen

after SPACe analysis. C 20× zoomed in images from screen run number 1 of the
indicated hits shown inU-2 OS and PANC-1 cells. Scale bar: 10 µm.D Interpretability
stacked bar graphs for the compounds shown in (C) with increased features in red,
decreased in blue, and unchanged in gray. Source data are provided as a Source
Data file.
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to train predictive machine learning models for treatment targeted
MoAs that perform as well, or better, than predictive models derived
from much larger feature sets. This confirms the competitivity of our
feature selection process given that MoA prediction is known to be a
very challenging task15,40,41. However, SPACe does not replicate all
feature types extracted by the CellProfiler pipeline used by the JUMP
consortium. In particular, SPACe extracts limited features that capture
the spatial relationship between cells contained in the sample. There-
fore, in more complex samples such as 3D organoids or tissue, we
would recommend modifying the feature set within SPACe to include
this information.

The ability of SPACe to efficiently capture single-cell morpholo-
gical features also explains the potential of this pipeline for providing
biological interpretation of image-based fingerprints. In this study, we
applied SPACe to define phenotypicfingerprints of common reference
compounds, small targeted chemical sets, and a larger chemical library
targeting cellularmetabolism inU-2 OS cells and then expanding up to
18 different cellmodels.We demonstrated that very often, potent well-
defined reference compounds do elicit a phenotypic response across
most (but never all) cell lines. However, we found that changes in the
underlying features are rarely the same, making it very challenging to
generate “universal fingerprints” that could be used to establish uni-
versal reference compounds. In larger screens, most chemicals elicit
cell-type and feature specific effects; with some cell lines being overall
more responsive (i.e., U-2-OS, MDA-MB-231, and 5637). This is not
unexpected due to each cell model representing a unique set of acti-
vated cellular signaling pathways upon which the chemical perturba-
tion may alter. For laboratories initiating large screening campaigns,
we would suggest testing a few cell lines of interest, plus U-2-OS as a
gold standard, with a small number of control chemical and/or che-
micals of interest, including the proposed “nuisance informer set” to
help hit prioritization and triaging39. This is one reason why it is diffi-
cult to train a single prediction model to identify and predict MoA-
specific phenotypes that are accurate across multiple cell models. To
obviate to this problem, plates containing small-molecules with well-
annotatedMoAs canbe used, as indeed it hasbeenprovenuseful in the
past31,39. However, exceptions exist, the most prominent being ber-
berine chloride which affects only the mitochondrial compartment
across almost all models we tested. This finding allowed us to exten-
sively test and conclude that berberine chloride-induced phenotypic
changes and the SPACe-extracted features are indeed highly repro-
ducible across multiple biological replicates performedmonths apart,
and acrossmultiple cellmodels. Furtherwork is needed todetermine if
this phenomenon is specific to berberine chloride and the mitochon-
drial compartment, or if other compartment-specific perturbations
could be identified.

In conclusion, SPACe offers an open-source, user-friendly and
efficient platform for the analysis of single-cells HT andHCphenotypic
screenings. Due to its lightweight implementation, we expect that this
computational software will be particularly beneficial to the large
community of researchers who are interested in exploring CP analysis
but do not have access to large computational resources, e.g., multi-
core computing clusters, required to run current software solutions
(e.g., CellProfiler) to process CP-generated feature data.

Methods
Cell culture and treatments
All cell lines were obtained directly from ATCC or from the BCM cell
culture core (Department of Molecular and Cellular Biology). 5637
cells were grown in RPMI 1640 + 10% FBS; PC-3 and MDA-MB-468 in
DME/F12 + 10% FBS, Hep G2 in DME/F12 + 10% FBS + 1.6% L-gluta-
mine + 1% NEAA, andMCF10A inDME/F12 + 5% horse serum+ 20ng/ml
EGF +0.5 µg/ml hydrocortisone + 100ng/ml cholera toxin + 10 µg/ml
insulin. All other cell lines were grown in DMEM HG PR-free + 10%
FBS + L-glutamine +Na pyruvate + penicillin/streptomycin.

Cells were routinely checked for mycoplasma contamination by
DAPI staining and high magnification imaging42. Cells were plated in
384well optical bottomplates (PerkinElmer cat# 6057302) at a density
of 2000–3000cells/well and allowed to settle at room temperature for
30min prior to being placed in the incubator at 37 °C/5% CO2. After
24 h, without changing media, cells were then treated with the indi-
cated compounds at indicated concentrations for an additional 24 h.
All chemicals were reconstituted in DMSO at a stock concentration of
20mM, which is 2000× of the highest concentration tested, unless
otherwise specified. Information on reference chemicals is in Table 1,
the other indicated compounds were acquired from: BioVision (WYE-
687), Cayman Chemicals (actinomycin D, apigenin, MK-2206), Enzo
Life Sciences (BYL-719), Selleckchem (FR 180204, OF-1, H3B-5942),
Sigma (bexarotene, CDCA, DCA, DBT, fenofibrate, latrunculin B, 5-
Nitro-2-(3-phenylpropylamino) benzoic acid, indeno[1,2,3 cd]pyrene,
zearalenone, metochlopramide), and Tocris (ETP45658, FK866). The
basic protocol requires plating cells in 20 µl of media, treatments are
then added on top in 20 µl of media (final dilution of the chemicals
is 1000×).

The cellular metabolism screening library (Cayman Chemical, cat
#33705, batch #0609421) contains 160 known modulators of meta-
bolic pathways. The library was arrayed in the test plates using a Lab-
cyte Echo 550 acoustic liquid handler at the Texas A&M Institute of
Bioscience and Technology, together with DMSO, berberine chloride,
actinomycinD, andMK-2206,whichwereused as reference treatments
(negative and positive). A few untreated wells were also included to
confirm the control DMSO concentration was non-toxic and did not
affect extracted features. Every compound in the library was used at
10 µM for 24h of treatment before following the Cell Painting protocol
described below.

Cell Painting (CP) processing and imaging
Following the JUMP consortium CP protocol1, multiwell plates were
processed eithermanually or robotically (BeckmanCoulter Biomek i5).
As a reminder, the CP dyes include: DAPI/Hoechst 33342 (DNA/
nucleus), Concanavalin A -AF488 (ER), SYTO14 (RNA, nucleolus),
Phalloidin-AF568 (F-actin), WGA-AF555 (cytoplasm, Golgi), and Mito-
Tracker DeepRed (mitochondria). In practice, 20 µl of MitoTracker
(3000×)was added to live cells for 30min and incubated at 37 °C. 20 µl
of fixative (16% EM grade formaldehyde in PBS – final concentration in
the well is 4%) was then added for 15min at room temperature before
proceeding with application of the fluorescent dyes. Slight changes
were needed for robotic processing, specifically, the treatment media
was removed, 20 µl of MitoTracker (1000×) was added and, after
30min, 20 µl of fixative (8% EM grade formaldehyde in PBS, final
concentration is 4%) was added.

Plates were imaged inside a three-day window on a Yokogawa
CV8000 high-throughput spinning disk confocal microscope with
sequential imaging of the five CP channels and appropriate laser/
emissionfilter combinations as described in refs. 1,32. SpecificallyDAPI
was excited with 405 nm laser and collected with a 445/45 filter, ConA
with 488 nm laser and collected with a 525/50 filter, SYTO14 with a
488 nm laser and collectedwith 600/37 filter, actin/WGAwith a 561 nm
laser and collected with 600/37 filter, and, mitotracker was excited
with 647 nm laser and collected with 676/29 filter. Imaging was per-
formed with a 20×W/1.0 objective, and a short z-stack (3× z planes,
1 µmapart)was captured to correct forunevenplates. Imageswerefirst
processed using Yokogawa software to correct non-uniform illumina-
tion, pixel misalignment between cameras and fluorescence channel
crosstalk. Max intensity projections were saved as 16 bit TIFFS for
automated image analysis. A minimum of nine fields of view were
collected from each well in an experimental campaign. With these
parameters, a single 384well plate could be imaged in 3–5 hdepending
on exposure time and number of FOVs with a file size of ∼120Gb. For
campaigns with 4 or more plates, imaging was automated using a
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BioAssemblyBot 400 robot (Advanced Solutions), a fully integrated
plate-loading solution synchronized with the Yokogawa CV8000.

SPACe image analysis pipeline details
For downloading and installing SPACe, the follow this link has all the
instructions: https://github.com/dlabate/SPACe. Note, for the correct
deployment of SPACe, the plate mapmust be properly formatted (see
example downloadable at the GitHub link called platemap_templa-
te.xlsx inside the SPACe folder). SPACe was tested on images captured
from a Yokogawa CV8000 HT spinning disk confocal, an ImageXpress
MicroXLSwidefieldHTmicroscope and aYokogawaCQ1 spinning disk
confocal. SPACe includes the following steps (Fig. 1A):

Step 1 – load images and select hyperparameters (preview). After
loading the images, the preview function allows users to optimize the
hyperparameters linked to identifying the nuclear and cell mask. A
Google Colab notebook (https://github.com/dlabate/SPACe/blob/
main/SPACe_colab.ipynb) is available for users to preview sample
images and set besthyperparameters for segmentationusingCellpose.
Hyperparameters include minimum diameter size for nucleus and
cytoplasm(default parameters: 100pixels forboth),minimumnumber
of nucleus, cytoplasm, mitochondria, and nucleoli (default para-
meters: 600, 700, 40, 200, respectively), minimum and maximum of
nucleoli size (default parameters 0.005 and 0.3 control lower and
upper threshold). Image intensities are rescaled before segmentation
to ensure uniform processing across all image channels. Despite the
highprecision achieved byCellpose segmentation, it is a goodpractice
for users to use the SPACe output masks to inspect the segmentation
performance in samples in which a dramatic change in extracted
profile is detected, especially those with large changes in nuclear or
cell area. Treatment-specific changes in cell morphology or dye
labeling quality may result in systemic Cellpose segmentation errors
not present in samples used for initial set-up and preview and may
indicate a need for further Cellpose parameter optimization.

Step 2-3 – segmentation. This step detects each cell and, within each
detected cell, identifies cytoplasm, nuclei, nucleoli, andmitochondria.
It also ensures that each cellular subcompartment is assigned to the
corresponding cell with the same label. We apply the generalist
learning-based segmentation algorithm Cellpose v2.226,27 to the DAPI
and ConA channels to generate nuclear, cell, and cytoplasm masks.
Cellpose requires a user-defined hyperparameter that estimates
expected cell and nuclear diameters in pixels, that should be opti-
mized in Step 1 using the preview function. Following this segmenta-
tion step, we apply label matching to ensure that each segmented
nucleus and cytoplasm is assigned to the corresponding cell with the
same label. This routine corrects potential errors introduced by Cell-
pose that might mistakenly detect multiple nuclei per cytoplasm, or a
cytoplasm without nucleus. Next, we apply another custom-designed
segmentation routine based on Otsu and MaxEntropy thresholding to
segment nucleoli (using the SYTO14 channel, within the nucleusmask)
and mitochondria (using the MitoTracker channel, within the cyto-
plasmic mask), followed by another label matching step.

Step 4 - feature extraction and quality control. This step computes
single-cell features (shape, intensity, and texture) using the five masks
described above (cell, cytoplasm, nuclear, nucleolar, and mitochon-
dria) and images from the five acquired channels. We selected ∼400
features that are widely used while paying special attention to features
that are biologically interpretable. A complete list is included in Sup-
plementary Table 1. In SPACe, the texture features are based on the
well-established Pyrodiomics library43. SPACe calculates texture fea-
tures across all distances and angles in theGLCMbased on objects that
are rescaled to 20 × 20 pixels and image intensities rescaled to 8
grayscale levels basedonminimumandmaximumobject intensity. For

each texture feature (contrast, dissimilarity, homogeneity, energy,
correlation), SPACe generates a set of values corresponding to the
various distance-angle combinations. SPACe then computes statistical
descriptors—percentiles, mean, standard deviation (SD), and mean
absolute deviation (MAD)—from these sets of values for each texture
feature. The output is a vector that includes these statistical descrip-
tors for each texture feature, essentially forming a 4D arraywhere each
dimension represents a texture feature and its corresponding statis-
tical descriptors.

TheQC routine is designed to establish a reliable ground truth for
single-cell distributions in control samples (e.g., DMSO). The idea
stems from our prior publication19 that demonstrated the value of
distribution analysis as a quality control step for high-throughput
microscopy assays and subsequent single-cell analyses. The QC step
establishes a reference distribution for the DMSO negative control
wells (eliminating outliers because of low object count or aberrant
phenotypic profile). The reference distribution is defined as the med-
ian of the DMSO distribution in each experiment calculated from the
distributions of each of the DMSOwells. The same QC step can also be
applied to each set of replicate treatment wells, if appropriate, to
discard outlier wells (i.e., wells with missing/low number of cells, arti-
facts, no or super response). Please note that the lower threshold of
cell numbers to discard wells can be altered by the user, which might
be useful under conditions of cytostatic compounds when the initial
starting cell count is low or in situations where compounds might
change cell adhesion.

Step 5 – Directional Earth Mover’s Distance (signed EMD). For each
well and feature, this step computes the EMD to the measured refer-
ence distribution. Before computing the EMD, features were normal-
ized independently per plate by removing the top and bottom 2% and
standardized in the interval [−1.1] using the Python command
robustscale in scikit-learn. A sign (plus orminus) is next assigned to the
EMD to indicate the direction of the response as compared to the
reference distribution, plus sign indicates that the median value has
increased with respect to DMSO and negative sign to indicate that it
has decreased. The reference distribution is the median DMSO dis-
tribution calculated from the DMSO distributions across all DMSO
wells in each experiment.

SPACe output
The results are available in a set of folders that contain intermediate
steps (i.e., masks from each compartment – Step 2 & Step 3 folders),
single-cell data (Step 4), and distance maps (Step 5). The distance
map.csvfile contains the signedEMDvalues for each analyzedwell plus
per-well mean and median values.

Analysis of JUMP MoA reference datasets
Seven JUMP MoA reference datasets (BR00115125-31) were down-
loaded from the JUMP Cell Painting gallery (https://registry.opendata.
aws/cellpainting-gallery/). For analysis time calculations, all datasets
were processed using CellProfiler version 4 (http://www.cellprofiler.
org) and SPACe using a desktop PC equipped with a 16-core Intel i7
13700CPU,NVIDIA3070GPU, and 32GBmemory. CellProfiler analysis
utilized the segmentation and feature extraction pipelines provided by
the JUMP consortium (https://github.com/broadinstitute/imaging-
platform-pipelines/tree/master/JUMP_production). The illumination
correction and quality control pipelines were excluded since equiva-
lent operations are not present in SPACe.

Calculation of percent replicating and percent matching
Percent replicating and percent matching was evaluated as previously
described1. In practice, single-cell data was aggregated at the per-well
level by calculating the mean or EMD (SPACe only) value for each
feature. All features were then normalized based upon plate Z-score.
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Using normalized values, we generated a null distribution of 20,000
random non-matching pair-wise correlations (Spearman) for each
dataset. Using a threshold based on the 95% percentile of the null
distribution, the percentage of replicating or matching well pairs with
a correlation above this threshold was determined to calculate the
percent replicating and percent matching values for each dataset and/
or MoA. All calculations were completed using Biovia Pipeline Pilot
(version 18.0) software.

Generation of random forest (RF) MOA prediction models
Data formodel generation consisted of mean- or EMD-aggregated and
plate Z-score normalized well-values generated using either CellPro-
filer’s CPA pipeline or SPACe from six JUMP MOA reference datasets.
No data cleaning or handling of missing values was required. For each
dataset, a total of 5 replicate RF models were generated and tested for
a total of 30 models for each analysis method. For each model, repli-
cate treated wells were evenly and randomly assigned for training or
testing purposes. A RF model to predict MOAs was initialized with the
following hyperparameters: 500 total trees, maximum depth of 50
trees, no minimum samples per leaf, and maximum features per tree
set at the square root of total features. The RFmodel was trained using
treatment replicate samples assigned to the training group. Each
decision tree in the forest was constructed using the Baggingmethod,
short for Bootstrap Aggregation. For each tree, a bootstrap sample of
the original data is taken, and this sample is used to grow the tree. For
model development, bootstrap sample is a dataset of the same size as
the original one, but in which the same data record can be included
multiple times. Excluding duplicates, a bootstrap sample on average
contains about 63% of the original data records. Data excluded from
the sample are called out-of-bag (OOB) data and used in model vali-
dationduring tree construction. At each split in a tree, a randomsubset
of features was considered for splitting. The Gini impurity criterion
was used to measure the quality of splits. The trees were grown until
they reached maximum depth or when the minimum number of
samples per leaf (=1) was met. The trained RF model was then used to
make MoA predictions of samples assigned to the testing group.
Model performance was evaluated by the percent of correct predic-
tions (accuracy) and a confusion matrix was generated. Models were
generated using Pipeline Pilot and the R RF library.

Statistical analysis
All experiments were performed aminimum of three times (biological
replicates) with aminimum of 4 wells/treatment (technical replicates),
except for the Cell Metabolism screen where only two wells/treatment
were used. In screening campaigns, 32 DMSO wells are used, while in
other cases a minimum of 8 wells are used.

To compare fingerprints, Euclidean distance was measured
between signed EMDs of all features in the treatment wells and the
median DMSO control wells. Euclidean distance is a standard method
used to measure the distance between two points in a multi-
dimensional space and has been employed from gene expression
analysis to image-based morphological profiling2,5,16,44,45. Groups were
compared with non-parametric Kruskal–Wallis test. Heatmaps and
clustering were generated using Orange Data Mining v.3.36, graphs
were made in GraphPad.

Interpretation plots
The stacked bar graphs were prepared as follows: features were
grouped into classes based on compartment and channel, then, for
each treatment, features with EMD>0.15 and EMD< −0.15 were
assigned to the class of “changing features” (the threshold was based
on the reproducibility analysis of berberine chloride treatment as
shown in Fig. 3). Number of changing features were then transformed
into a fraction by dividing over the total number of features (hence,
sum= 1) and labeled as up (EMD>0.15, red in the figures), down

(EMD< −0.15, blue in the figures), or unchanging features (gray in the
figures).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data generated for the figures in this study are provided in the
Source Data file. A set of images to run the code is provided within the
GitHub repository linked to the SPACe pipeline. Additional images can
be requested directly to the corresponding author. Source data are
provided with this paper.

Code availability
The code is available in GitHub (https://github.com/dlabate/SPACe)
and was deposited in Zenodo (https://doi.org/10.5281/zenodo.
13821484).
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