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Proteogenomic analysis reveals non-small
cell lung cancer subtypes predicting
chromosome instability, and tumor
microenvironment
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Non-small cell lung cancer (NSCLC) is histologically classified into lung ade-
nocarcinoma (LUAD) and lung squamous cell carcinoma (LSCC). However,
some tumors are histologically ambiguous and other pathophysiological fea-
tures or microenvironmental factors may be more prominent. Here we report
integrative multiomics analyses using data for 229 patients from a Korean
NSCLCcohort and462patients frompreviousmultiomics studies. Histological
examination reveals fivemolecular subtypes, one of which is a NSCLC subtype
with PI3K-Akt pathway upregulation, showing a high proportion of metastasis
and poor survival outcomes regardless of any specific NSCLC histology. Pro-
liferative subtypes are present in LUAD and LSCC, which show strong asso-
ciations with whole genome doubling (WGD) events. Comprehensive
characterization of the immune microenvironment reveals various immune
cell compositions and neoantigen loads across molecular subtypes, which
predicting different prognoses. Immunological subtypes exhibit a hot tumor-
enriched state and a higher efficacy of adjuvant therapy.

Lung cancer is a major health concern worldwide, accounting for 18%
of global cancer-related deaths1. Surgical resection, with or without
postoperative adjuvant therapy, is currently the first-line treatment for
locally advanced or early-stage lung cancers2. In advanced cases,
genomics-based targeted therapies and immunotherapies using
immune checkpoint inhibitors provide promising treatment options3,
often in addition to chemotherapy. Although the mortality rates
associated with lung cancer are continuously decreasing with

appropriate surgical and medical treatment4, the 5-year survival rates
for localized, regional, and metastatic non-small cell lung cancer
(NSCLC) remain unsatisfactory (64%, 37%, and 8%, respectively),
mainly due to recurrence after treatment5. Therefore, tailoring treat-
ments based on patient stratification according to molecular char-
acteristics is of increasing interest to improve patient survival.

High-throughput omics approaches have facilitated the classifi-
cation of NSCLC molecular subtypes and candidate molecular targets

Received: 2 November 2023

Accepted: 6 November 2024

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: kimkp@khu.ac.kr

Nature Communications |        (2024) 15:10164 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2546-1981
http://orcid.org/0000-0003-2546-1981
http://orcid.org/0000-0003-2546-1981
http://orcid.org/0000-0003-2546-1981
http://orcid.org/0000-0003-2546-1981
http://orcid.org/0000-0003-3600-1868
http://orcid.org/0000-0003-3600-1868
http://orcid.org/0000-0003-3600-1868
http://orcid.org/0000-0003-3600-1868
http://orcid.org/0000-0003-3600-1868
http://orcid.org/0000-0002-4221-3421
http://orcid.org/0000-0002-4221-3421
http://orcid.org/0000-0002-4221-3421
http://orcid.org/0000-0002-4221-3421
http://orcid.org/0000-0002-4221-3421
http://orcid.org/0000-0003-0483-9543
http://orcid.org/0000-0003-0483-9543
http://orcid.org/0000-0003-0483-9543
http://orcid.org/0000-0003-0483-9543
http://orcid.org/0000-0003-0483-9543
http://orcid.org/0000-0003-2241-6536
http://orcid.org/0000-0003-2241-6536
http://orcid.org/0000-0003-2241-6536
http://orcid.org/0000-0003-2241-6536
http://orcid.org/0000-0003-2241-6536
http://orcid.org/0000-0001-9184-7087
http://orcid.org/0000-0001-9184-7087
http://orcid.org/0000-0001-9184-7087
http://orcid.org/0000-0001-9184-7087
http://orcid.org/0000-0001-9184-7087
http://orcid.org/0000-0001-7317-5360
http://orcid.org/0000-0001-7317-5360
http://orcid.org/0000-0001-7317-5360
http://orcid.org/0000-0001-7317-5360
http://orcid.org/0000-0001-7317-5360
http://orcid.org/0000-0003-3655-9749
http://orcid.org/0000-0003-3655-9749
http://orcid.org/0000-0003-3655-9749
http://orcid.org/0000-0003-3655-9749
http://orcid.org/0000-0003-3655-9749
http://orcid.org/0000-0002-5159-2048
http://orcid.org/0000-0002-5159-2048
http://orcid.org/0000-0002-5159-2048
http://orcid.org/0000-0002-5159-2048
http://orcid.org/0000-0002-5159-2048
http://orcid.org/0000-0001-8239-4362
http://orcid.org/0000-0001-8239-4362
http://orcid.org/0000-0001-8239-4362
http://orcid.org/0000-0001-8239-4362
http://orcid.org/0000-0001-8239-4362
http://orcid.org/0000-0001-8839-6297
http://orcid.org/0000-0001-8839-6297
http://orcid.org/0000-0001-8839-6297
http://orcid.org/0000-0001-8839-6297
http://orcid.org/0000-0001-8839-6297
http://orcid.org/0000-0003-0095-3787
http://orcid.org/0000-0003-0095-3787
http://orcid.org/0000-0003-0095-3787
http://orcid.org/0000-0003-0095-3787
http://orcid.org/0000-0003-0095-3787
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54434-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54434-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54434-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-54434-4&domain=pdf
mailto:kimkp@khu.ac.kr
www.nature.com/naturecommunications


as well as prognostic or predictive biomarkers for lung cancer
treatment6. Initially, The Cancer Genome Atlas Research Network
identified the molecular pathways of lung cancer and classified lung
squamous cell carcinoma (LSCC) into classical, basal, secretory, and
primitive subtypes7, and lung adenocarcinoma (LUAD) into terminal
respiratory unit, proximal inflammatory, and proximal proliferative
subtypes8. Recently, proteomic and proteogenomic approaches9–14

have been introduced to identify novel subtypes and their druggable
targets.

Although these efforts have advanced our understanding of can-
cer biology, the clinical implementation of these findings in high-
throughput approaches remains challenging15,16. First, many proteo-
genomic studies have focused on a single subtype of NSCLC (such as
LUAD or LSCC), but the approach excludes cases in which the patho-
logical classification is ambiguous and/or discrepant17,18, which even-
tually leads to the formation of study cohort that may not be
representative of real NSCLC population. Second, the sensitive pre-
diction of postoperative survival beyond those achieved using con-
ventional prognostic factors is a prerequisite for personalized surgical
oncology treatment. Further characterization of causative biomarkers
associatedwith prognosismay identify crucial treatment targets19, and
requires a multiomics-based analysis of well-annotated clinical data.
Finally, mostmultiomics data have been generated from resected lung
cancer tissues, and adjuvant chemotherapy after surgery is theprimary
treatment for locally advanced lung cancer. Adjuvant chemotherapy
largely relies on platinum doublet and platinum-based chemother-
apeutic regimens20 in addition to a cytotoxic agent (e.g., pemetrexed,
gemcitabine, vinorelbine, or paclitaxel). Although this approach has
improved patient survival21, few studies22 have investigated the mole-
cular basis of the response to postoperative adjuvant treatment, and
consensus biomarkers for predicting treatment efficacy have not yet
been identified.

In this study, we conducted a comprehensive multiomics analysis
to define the molecular subtypes of NSCLC using a Korean NSCLC
discovery cohort of 229 patients and a replication cohort of 462
NSCLC patients from previous multiomics studies. Our aim was to
expand the scope of histological subtyping and identify molecular
subtypes of NSCLC with potential prognostic and therapeutic impli-
cations. We further characterized the subtypes by integrating a large-
scale single-cell RNA sequencing dataset23 of NSCLC and evaluated
their cellular specificity and histopathological relevance. In addition,
our study included an extensive histological review of patient data for
tumor-infiltrating lymphocytes (TILs), identified potential neoantigens
and cryptic peptides characterizing the immune microenvironment,
and noted the varying efficacy of adjuvant therapies between sub-
types. Overall, our study represents a considerable advance in the field
of NSCLC research and has important implications for precision
medicine and personalized therapies.

Results
Identification of subtypes in NSCLC patients by multiomics
The multiomics analysis utilized a retrospective cohort of 229 Korean
patients diagnosedwith NSCLC at AsanMedical Center in Seoul, Korea
(Supplementary Data 1a). Tumor samples withmatched normal tissues
or blood samples were collected via surgery between 2010 and 2019.
Patient demographics, disease parameters (including histology and
tumor-node-metastasis [TNM] staging), survival, and treatment
response indicated good coverage of disease severity and patient
population. Histologically, the tumor samples included 139 adeno-
carcinomas (LUADs, 61%), 63 squamous cell lung carcinomas (LSCCs,
27%), and 27 tumors of other types (12%) (Fig. 1a, Supplementary
Data 1a). LUAD cases were almost equally distributed between the
sexes (66 males and 74 females), whereas LSCC cases were found
mostly among males (97%, n = 61), which was previously shown in
other Korean LSCC cohort24. Self-reported smoking status indicated

that 61% of the patients had a smoking history, with a higher pre-
valence of smoking in males and patients with LSCC. The TNM-based
stages ranged from IA1 to IVA, with approximately 40% of the patients
having late-stage disease (IIIA, n = 75; IIIB, n = 9; IVA, n = 11; Fig. 1a).
Approximately half of the patients had lymph node metastases (51%,
n = 116) at the time of pathological diagnosis after surgery. Adjuvant
therapy, including chemotherapy (CTx) or radiation therapy (RTx),
was administered to 48% of the patients (110/229 patients; 59 CTx, 16
RTx, and 35 CTx and RTx) according to the NCCN guidelines. Tumor
recurrence was observed in 54% of the patients who received adjuvant
therapy, and the recurrence rate was similar across treatments (CTx,
56%, 33/59; RTx, 50%, 8/16; CTx and RTx, 54%, 19/35) (Fig. 1a) and
histological diagnoses (53%, AD, 72/137; 44%, SC, 27/62) (Supplemen-
tary Fig. 1a).

We generated genomic, transcriptomic, proteomic, phospho-
proteomic, and acetylproteomic datasets from the samples. A geno-
mic dataset was generated by whole-exome sequencing (WES) of 228
normal adjacent tissue (NAT)-matched tumors and one tumor-only
sample with a read depth sufficient for variant discovery (tumor:
~300X,NAT: ~100X).We observed 33,301 somatic smallmutations that
contained single nucleotide variants (SNVs) and indels (on average, 145
per sample), 470,836 copy-number alterations encompassing ampli-
fication, gain, heterozygous deletion, and homozygous deletion (on
average, 2056 per sample) and a 2.7 tumor mutation burden (TMB)
score in 229 tumors. For transcriptomic analysis, we performed bulk
RNA-seq for 205 tumors and 85 matched NATs for deep coverage
(approximately 120M reads per sample), enabling gene expression
quantification and alternative splicing isoform discovery. We acquired
60,688 transcripts and selected 20,088 transcripts, based on low-
count genes across samples, for subsequent analysis. For proteomic
analysis using tandem mass tag (TMT)-based isobaric labeling, pro-
teomic data were collected from 229 tumor samples and 26 matched
NATs. A total of 10,788 proteins, 40,738 phosphosites, and 5975
acetylation sites were observed in at least 30% of the samples and
quantified as a log2 ratio to the common reference (CR) sam-
ple (Fig. 1b).

For multiomics analysis, we integrated proteomic, phosphopro-
teomic, and acetylproteomic data and conducted non-negative matrix
factorization (NMF) clustering to identify multiomics subtypes in the
229NSCLC samples.We identifiedfivemultiomics subtypes:metabolic
(Subtype 1), alveolar-like (Subtype 2), proliferative (Subtype 3),
hypoxic (Subtype 4), and immunogenic (Subtype 5) (Fig. 1c), char-
acterized based on genetic mutations, clinical phenotypes, and mole-
cular pathways (Fig. 1d, e, Supplementary Data 1b–d).

Subtype 1 was composed mainly of LUAD females (64%, 35/55)
with EGFR and TP53 mutations, as well as a high frequency of whole
genome doubling (WGD) events (i.e., phenomena in which more than
half of the chromosomes are gained; Fig. 1c), suggesting a chromo-
somally unstable co-driven subtype. Significant enrichment ofCDKN2A
copy number loss in Subtype 1 (OR: 3.63, P = 2.35 × 10−2, Fisher’s exact
test) also supports the observation (Fig. 1d). Subtype 2 mainly com-
prised patients with LUAD (71%, 32/45) with EGFRmutations (49%, 22/
45) and without WGD events (Fig. 1c), suggesting a chromosomally
stable oncogene-driven subtype. These samples showed a significantly
lower frequency of TP53mutations (6%; odds ratio [OR]: 0.04, P = 3.1 ×
10−9, Fisher’s exact test; Fig. 1d) and much lower tumor mutational
burden (TMB) than samples representing other subtypes (Subtype
2 =0.9 variants per Mb, others = 3.2 variants per Mb; P = 3.6 × 10−10,
Wilcoxon ranked sum test) (Supplementary Fig. 1b, c). Despite the
upregulation of the EGFR pathway in both subtypes, molecular path-
ways were specifically enriched for each cluster. Subtype 1 exhibited
significant upregulation of proteins involved in oxidative phosphor-
ylation (adjusted P = 1.7 × 10−6, Wilcoxon rank-sum test),mitochondrial
matrix (adjusted P = 8.1 × 10−9, Wilcoxon rank-sum test), and cellular
respiration (adjusted P = 4.2 × 10−5, Wilcoxon rank-sum test), indicating
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Fig. 1 | Identification of multiomics subtypes in Korean NSCLC patients.
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an association with metabolic pathways. Conversely, Subtype 2 was
characterized by a significant upregulation of phosphorylation in the
IL-33 (adjusted P = 1.8 × 10−15, Wilcoxon rank-sum test) and Notch
pathways (adjusted P = 2.4 × 10−16, Wilcoxon rank-sum test) (Fig. 1e),
implicating these molecular features in early tumorigenesis and early-
stage disease.

Subtype 3 was significantly associated withWGD events (OR: 13.5,
P = 4.6× 10−10, Fisher’s exact test), TP53 (OR: 13.5,P = 4.6 × 10−10, Fisher’s
exact test) and PIK3CA mutations (OR: 3.89, P = 3.16 × 10−2, Fisher’s
exact test), and was more prevalent in patients with LSCC (65%, 34/52
patients), in males (83%, 43/52 patients), and smokers (85%, 44/52
patients) (Fig. 1d). Subtype 3 exhibited a highly proliferative pheno-
type, as evidenced by significant enrichment in cell cycle-related
pathways, including E2F/MYC target (adjusted P = 4.7 × 10−22, 1.3 × 10−20,
Wilcoxon rank-sum test), G2M checkpoint (adjusted P = 2.4 × 10−23,
Wilcoxon rank-sum test), and cyclin-dependent kinase (CDK) target
pathways (adjusted P = 5.3 × 10−24, Wilcoxon rank-sum test) (Fig. 1e).
Thus, this subtype can be defined as a chromosomally unstable tumor
suppressor-deficient proliferative subtype.

Subtype 4was not associatedwith any specific histological type of
NSCLC but was significantly enriched for metastasis (OR: 3.0, P = 5.6 ×
10−3, Fisher’s exact test). We found that phosphorylated sites in this
subtypewere upregulated in hypoxia (adjusted P = 2.3 × 10−4,Wilcoxon
rank-sum test), PI3K-Akt (adjusted P = 4.7 × 10−3, Wilcoxon rank-sum
test), and neutrophil degranulation (adjusted P = 1.7 × 10−4, Wilcoxon
rank-sum test) pathways, and proteins were also enriched for neu-
trophil degranulation (adjusted P = 4.6 × 10−6,Wilcoxon rank-sum test),
suggesting a potential role in the promotion of tumor migration,
invasion, and metabolism in tumor metastasis. Therefore, Subtype 4
can be considered as a chromosomally stable mesenchymal subtype.

Subtype 5 showed a significantly elevated proportion of tumor-
infiltrating lymphocyte (TIL)-associated patterns (OR: 3.6, P = 1.2 × 10−2,
Fisher’s exact test; Fig. 1d) and enrichment of immune-related path-
ways, such as TNFα signaling via NF-κB (adjusted P = 1.1 × 10−6, Wil-
coxon rank-sum test, Fig. 1e), suggesting that this subtype was a high-
immune and chromosomally stable tumor-suppressor-driven inflam-
matory subtype.KRASmutationwas significantly enriched in Subtype 5
(OR: 4.51, P = 3.53 × 10−2, Fisher’s exact test) (Supplementary Fig. 1d),
with four cases presenting concurrent TP53mutation. STK11 andKEAP1
mutationswere each identified only in 1 case, although the trendswere
not statistically significant.

A NSCLC subtype associated with poor prognosis and frequent
metastasis
To replicate our subtype classification, we utilized multiomics or
proteomics data from 462 patients with NSCLC obtained from pre-
vious studies, including two LUAD studies by Gillette et al.10 (n = 110)
andXu et al.11 (n = 103), an LSCC study by Satpathy et al.13 (n = 108), and
an NSCLC study by Lehtio et al.14 (n = 141). We compared the top fea-
tures of the NMF subtypes between our cohort and those of other
studies and found significant overlaps (FDR <0.01, Fisher’s exact test):
the terminal respiratory unit subtype of adenocarcinoma (Subtype 1),
inflammatory subtypes (Subtypes 2 and 5), and proliferative subtypes
of LUAD and LSCC (Subtype 3) (Fig. 2a and Supplementary Data 2a). In
contrast, Subtype 4 was distinct, showing enrichment for phosphor-
ylation features associated with the EMT-enriched (LSCC)13 subtype
and acetylation features from the inflammatory subtypes of LUAD and
LSCC (Supplementary Fig. 2a, b). We also performed a combined NMF
analysis for a total of 447 patients with NSCLC by integrating pro-
teome, phosphoproteome, and acetylome datasets from our study
with those from previous studies10,13 (hereafter called the “combined
CPTAC dataset”). We identified five subtypes, referred to as “Com-
bined NMF” (Fig. 2b). The combined NMF showed a highly consistent
pattern with the feature overlap analysis (Fig. 2a and Supplementary
Data 2a) and confirmed that the four subtypes (Subtype 1, 2, 3, 5)

showed a consistency with the previously identified NMF subtypes
(Fig. 2b, Supplementary Fig. 2c and SupplementaryData 2b). Subtype4
did not cluster with any single subtype of LUAD or LSCC in the com-
bined NMF analysis (Fig. 2b). A comparison without the Korean cohort
(“CPTAC NSCLC”), constituting 51% (229/447) of the Combined NMF,
showed 77% of patients maintained their subtype classification when
including the Korean cohort (Fig. 2c). Additionally, Subtype 4 con-
sistently comprised 18.8% (43/229) of the Korean NSCLC cohort and
18.3% (40/218) of the combined CPTAC dataset without histological
types. Collectively, our findings suggest that Subtype 4 represents a
NSCLC subtype that requires further clinical and molecular
characterization.

To examine the molecular characteristics of Subtype 4, we
extracted distinct features (proteins, phosphorylation, or acetylation)
of the subtypes in our NMF clustering analysis (Supplementary
Data 1e). We found that the majority of NMF features present in Sub-
type 4 were phosphorylated sites (96%, 178/186, Supplementary
Data 1e), indicating that phospho-kinase interactions are a major sig-
nature. Therefore, we investigated the kinase activity of this subtype
using phosphoproteomic data. We found significant enrichment of
two kinases, CSNK2A1 (FDR = 2.3 × 10−7) and GSK3B (FDR = 1.9 × 10−2),
which are known to phosphorylate various proteins in the PI3K-AKT
signaling pathway, in Subtype 4 compared to other subtypes (Fig. 2d,
Supplementary Fig. 2d and Supplementary Data 2c). Upon evaluating
the relationship between the activity and expression levels of sig-
nificant kinases (P <0.05), we observed a moderate correlation (Sup-
plementary Fig. 2e). Survival analysis based on feature expression
(Supplementary Data 2d) showed that most of the unfavorable prog-
nostic factors were phosphorylated sites differentially expressed in
Subtype 4 (91%, 104/114) (Supplementary Fig. 2f). Notably, STE20-like
serine/threonine-protein kinase at serine 347 (SLK (S347)), a protein
phosphorylated by CSNK2A1, was significantly upregulated in Subtype
4 (adjusted P = 8.0 × 10−3, Benjamini–Hochberg adjustment, Supple-
mentary Data 3a) and associated with unfavorable prognostic features
(P = 3.0 × 10−6, log-rank test) (Fig. 2e, f). In the combined CPTAC
dataset, we also found increased phosphorylation of SLK (S347) in
Subtype 4 and poor survival outcomes (Fig. 2e, f, Supplementary
Fig. 2g and Supplementary Data 2e). SLK mediates apoptosis down-
stream of the ErbB2 and PI3K pathways25 and is activated in a CSNK2A1-
dependent manner26. Recent studies have reported that high SLK
expression is associated with reduced overall survival inHER2-positive
patients27 and in glioma28. Using both our cohort and the CPTAC
cohort to check the ROC curve, we found that SLK (S347) is an effective
marker for distinguishing Subtype 4 not only in our cohort but also
more effectively in the CPTAC cohort (Supplementary Fig. 2h). Col-
lectively, these results suggest that SLK participates in tumor pro-
gression and couldbea keymarker specific to Subtype4. Furthermore,
Subtype 4 showed a significant upregulation of leucine-rich repeat
flightless-interacting protein 1 at serine 581 (LRRFIP1 (S581)) phos-
phorylation (adjusted P = 1.3 × 10−2, Benjamini–Hochberg adjustment,
Supplementary Data 3a), which was correlated with unfavorable
prognostic features (P = 1.2 × 10−3, log-rank test) (Fig. 2e, f). Similarly, in
the combined CPTAC dataset, elevated phosphorylation of LRRFIP1
(S581) was observed in Subtype 4, which coincided with poor survival
outcomes (Fig. 2e, f, Supplementary Fig. 2g and Supplementary
Data 2e). Notably, LRRFIP1 stimulates the epithelial–mesenchymal
transition (EMT) pathway by modulating the Wnt/β-catenin signaling
pathway29. A recent study30 demonstrated that high LRRFIP1 expres-
sion was associated with reduced overall survival in glioma. These
findings collectively suggest that LRRFIP1 may also contribute to cel-
lular invasion and metastasis and could serve as a key marker specific
to Subtype 4.

Subtype 4 includednumerous prognostic features in theHIF-1 and
PI3K-AKT signaling pathways (Fig. 2g and Supplementary Fig. 2i).
Among these unfavorable features, the significantly upregulated
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ANGPT2 protein is known to increase in a hypoxic environment, which
can promote the release of pro-angiogenic cytokines, such as VEGF,
throughHIF-1 accumulation.Wealsoobserved increased acetylationof
TIMP3 at K65, which is presumably involved in the ANGPT2-induced

hypertensive response. In contrast, CDKN1B, which was significantly
downregulated (adjusted P = 7.1 × 10−11, two-sided t-test, Supplemen-
taryData 3a), was a favorable prognostic feature in our cohort (P = 1.3 ×
10−4, log-rank test, Supplementary Data 2d) and the combined CPTAC
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Fig. 2 | NovelNSCLC subtypeassociatedwithpoor survival. aOverlap of subtype
features between the five NMF subtypes in this study and subtypes identified in
previous NSCLC multiomics studies. Protein enrichment is in the heatmap. Full
rectangle and asterisk indicate significant overlaps (Two-sided fisher’s exact test
adjusted P ≤ 0.05, Benjamini-Hochberg adjustment), faint rectangle indicates
overlaps which pass only nominal P value (Two-sided fisher’s exact test P ≤ 0.05,
two-sided fisher’s exact test adjusted P >0.05), and blank indicates overlaps which
is not significant (two-sided fisher’s exact test P >0.05). b, c Reclassification of
samples from previously defined multiomics subtypes10,13 according to our com-
bined NMF subtypes. The statistical significance of the relationship is visually
represented by the clarity and transparency of the lines (Supplementary Fig. 2c).
d Subtype 4-specific kinase activity scores estimated from phosphoproteomic data
and the kinase-substrate network database (PHONEMeS). The colors of the points
represent the estimated kinase activity scores. The sizes of the points represent the
-log10(FDR) of the kinase activity estimates. There were two significantly upregu-
lated kinases: CSNK2A1 and GSK3B (FDR<0.05). e Expression of poor prognosis
markers containing phosphorylated sites on SLK (S347) and LRRFIP1 (S581) is shown
for our study (Subtype 4, n = 43; others, n = 186) and CPTAC (LUAD (Subtype 4,

n = 26; others, n = 84), LSCC (Subtype 4, n = 15; others, n = 93)). Wilcoxon rank-sum
testwas performed to test thedifferences inexpression. The color of thedots in the
right panel represents the study type in CPTAC. For box-plots, middle line,median:
box edges, 25th and 75th percentiles; whiskers, most extreme points that do not
exceed ±1.5 × IQR. f Cancer-specific overall survival length according to the
expression of poor prognosis markers in our study and the CPTAC dataset (inte-
grated with LUAD and LSCC). The p-value was calculated with the log-rank test.
g Intracellular signaling pathways underlying poor prognosis in Subtype4. Theblue
box represents the main signaling pathways, including the HIF-1, VEGF, PI3K-AKT,
and NF-κB signaling pathways. The red triangular nodes are kinases identified as
significantly upregulated in Subtype 4. The colors of the points represent the
log2FC values obtained through differential expression (DE) analysis of Subtype 4
and the other subtypes. The border style of the point indicates the prognostic
direction of the feature. h Cancer-specific overall survival length between our
subtypes indicating significant changes in survival probability (y-axis) over time (x-
axis). i Survival curves for patients with (n = 35) and without metastasis (n = 8) in
Subtype 4 (n = 43) and ( j) patients without metastasis in each subtype (n = 91). The
p-value was calculated with the log-rank test (h–j).
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dataset (P = 1.6 × 10−2, log-rank test). Given that the loss of CDKN1B
increases the risk of cancer metastasis31, the reduced expression of
CDKN1B implies an advanced phenotype of Subtype 4.

We evaluated the clinical significance of Subtype 4 according to
the survival rates of patients with this subtype. Subtype 4 in theKorean
NSCLC cohort was associated with a significantly poorer survival rate
compared to that in the other subtypes (P = 8.4 × 10−3, log-rank test,
Fig. 2h), possibly influenced by stage distribution. Since Subtype
4 showed the highest rate of metastasis among the five subtypes,
metastasis may have an important impact on the poor survival out-
comes. Interestingly, there was no variation in the survival rates of
patients with and without metastasis in Subtype 4 (P = 9.5 × 10−1, log-
rank test, Fig. 2i), suggesting that metastasis may not be the sole
mechanism leading to poorer survival. When comparing survival rates
among non-metastatic patients of the five subtypes, we observed a
significant disadvantage for patients with Subtype 4 (P = 2.6× 10−2, log-
rank test, Fig. 2j), indicating that other biological factors may con-
tribute to the poor prognosis of this subtype. In contrast, we did not
find any significant difference in overall survival between Subtype 4
and the other subtypes in the combined CPTAC cohort (P = 7.9 × 10−1,
log-rank test, Supplementary Fig. 2j), indicating the effect of differ-
ences in ethnicity and treatment records.

Cellular landscape of the five subtypes of NSCLC
Exploring the tumor microenvironment is crucial for understanding
the mechanisms underlying cancer progression and for developing
effective therapeutic strategies to target not only cancer cells but also
the surrounding microenvironment. We assessed the tumor micro-
environment of the five NSCLC subtypes based on cell type specificity
through a comparative analysis of subtype-specific genes with a range
of cell type-specific genes using an integrated single-cell RNA (scRNA)
sequencing dataset23 of NSCLC patients. First, we computed the dif-
ferentially expressed genes (DEGs) for each subtype compared to the
NAT samples (SupplementaryData 3b). As expected, we found that the
DEG sets of all five subtypes were significantly upregulated in tumor
cell types (FDR <0.001, permutation; Supplementary Fig. 3a and
Supplementary Data 3c), highlighting the overall degree of tumor-
igenicity of the subtypes.

Next, we identified DEGs for each subtype by comparing all sub-
types (DEGsubtype, e.g., Subtype 1 vs. other subtypes) (Supplementary
Data 3d). In Subtypes 1 and 3, the DEGsubtype was enriched for cell types
related to tumors (FDR <0.01, permutation): Subtype 1 corresponding
to LUAD and LUADmitotic cell types and Subtype 3 corresponding to
LSCC and LSCC mitotic cell types as defined23, suggesting actively
proliferating tumor cell components (Fig. 3a, Supplementary Fig. 3b
and Supplementary Data 3e). In contrast, the DEGsubtype sets of Sub-
types 2, 4, and 5 were enriched in neutrophils. While a high proportion
of NAT-associated neutrophils (NANs) was present in these subtypes
(Supplementary Data 3e), the tumor-associated neutrophil (TAN) cell
types were enriched in Subtypes 4 and 5, with the largest proportion in
Subtype 4. Furthermore, the DEGsubtype set of Subtype 2 appeared to
be enriched for alveolar-type fibroblasts and endothelial cells, imply-
ing that these tumors have stromal components similar to those of the
normal alveolar interstitium (Supplementary Data 3e). Most immune-
related cell types were enriched in the DEGsubtype set of Subtype 5
(Supplementary Data 3e), reflecting a high proportion of TIL patterns.

We correlated these findings with the histopathological features
of the subtypes (Fig. 3b–m). Subtypes 1 and 2were predominantlywell-
to-moderately differentiated adenocarcinomas, in which acinar and
papillary patterns were predominant (Fig. 3c, d). Comparisons of the
histological patterns for LUAD cases showed that the lepidic pattern,
reminiscent of the normal alveolar structure of the lung parenchyma
and a non-invasive component of lung adenocarcinoma32, was more
extensive in Subtype 2 (Fig. 3e), confirming the DEGsubtype findings. In
contrast, Subtype 1 had a higher proportion of high-grade histologic

patterns, including solid, micropapillary, cribriform, and complex
glandular patterns33 compared to those in Subtype 2 (Fig. 3f). Con-
sistent with these observations, Subtype 2 tumors exhibited less fre-
quent lymphovascular invasion (Fig. 3g) and lymph node metastasis
(Fig. 3h). Subtype 3mainly consisted of squamous cell carcinomas and
a subset of solid-predominant adenocarcinomas (Fig. 3c, d). Subtype 3
tumorshad enlarged pleomorphic nuclei with highmitotic activity and
frequent tumor necrosis (Fig. 3i), which was consistent with the
DEGsubtype analysis. In contrast to Subtypes 4 and 5, the stromal com-
ponents of Subtype 3 tumorswere relatively scarce (Fig. 3b–j). Subtype
4 tumors had moderate-to-large amounts of desmoplastic stromal
components with variable amounts of inflammatory cells, whereas
Subtype 5 tumors exhibited high tumor infiltration by immune cell
components in approximately half of the cases (Fig. 3k). Likewise, in
the DEGsubtype analysis, tumors of Subtypes 4 and 5weremore likely to
be accompanied bymoderate-to-high stromal neutrophilic infiltration,
but the proportion of such tumors was not high (Fig. 3l). Collectively,
we obtained representative histological images of the five subtypes
that reflected their histopathological characteristics and clinical
relevance.

Proteogenomic features underlying whole-genome doubling in
NSCLC subtypes
The proliferative subtype is common in NSCLC and is mainly char-
acterized by the upregulation of cell cycle pathways, including E2F
target, G2M checkpoint, and the MYC targets v1 and v2. Previous
proteogenomic study10 reported a proliferative subtype of LUAD, the
dominant proximal-proliferative cluster, which accounts for 27% of
patients with LUAD (30/110 samples; Supplementary Fig. 4a). Similarly,
a proliferative subtype, called the proliferative-primitive cluster,
affects 16% of patients with LSCC (17/108 samples, Supplementary
Fig. 4b). When considering the classical subtype, which also exhibits
upregulation of cell cycle pathways, proliferative subtypes collectively
constituted approximately 44% of patients with LSCC13 (47/
108 samples).

Our multiomics analysis identified Subtype 3 as a proliferative
subtype characterized by a WGD event. In Subtype 3, 75% of the
patients (39/52) exhibitedWGD (Fig. 4a andSupplementaryData 4a, c).
Copy-number signature analysis revealed a significant association
between Subtype 3 and theCN14 signature (OR: 8.4, Fisher’s exact test;
Fig. 4b and Supplementary Fig. 4d), which is indicative of high ploidy
(absolute copy numbers 3 to 8), relatively large segment size
( > 40Mb), and whole-chromosome or chromosome arm-scale losses
prior to a single genome-doubling event. In particular, Subtype
3 showed amplification on chromosome 3q and significant enrichment
for the co-occurrence of SOX2 amplification and TP53 mutations
compared to the other subtypes (OR: 16.4, Fisher’s exact test; Fig. 4c, d
and Supplementary Data 4e, f). Furthermore, Subtype 3 in the com-
bined NMF analysis, which integrated the CPTAC LUAD and LSCC
datasets also showed a high frequency ofWGD (64%, 41/64; Fig. 4a and
Supplementary Data 4b, d) and enrichment of the CN10 (28%, 18/64)
and CN16 signatures (17%, 11/64), which indicated focal and chromo-
somal losses before single- and twice-genome doubling, respectively
(Supplementary Fig. 4c and e). Subtype 3 exhibited a greater TMB
compared to that in the other subtypes in both our (P = 5.7 × 10−11,
Wilcoxon rank-sum test) and previous studies (P = 6.9 × 10−6, Wilcoxon
rank-sum test). Although LSCC is themost commonhistology (67%, 35/
52 in Korean NSCLC and 66%, 42/64 in CPTAC NSCLC), Subtype 3 is an
NSCLC tumor characterized by the presence of WGD events due to
copy number alterations and cell cycle pathway enrichment.

Consistent with previous studies, Subtype 3 showed upregulation
of proteins, PTMs, and kinases in cell cycle pathways (Fig. 4e, f, Sup-
plementary Fig. 4f, g and Supplementary Data 3a, 4g–j). The key pro-
teins and PTMs involved in this subtype included SRSF1 (proteins S199
and K179), SRSF2 (T25 and S26), and XPO1 (protein K693). SRSF1 and
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SRSF2, both proto-oncogenes,modulate the splicing patterns of tumor
suppressor genes, kinases, and kinase receptors into their oncogenic
isoforms, thereby promoting cell cycle activity34. XPO1 was upregu-
lated at both the protein and acetylated protein levels in this subtype
(Fig. 4g). Overexpression of XPO1 has been observed in many
malignancies35 and its inhibition could potentially reduce cell pro-
liferation and promote cell cycle arrest in proliferative subtypes. To
assess this hypothesis,we selected tumor organoids from theorganoid
biobank of SG Medical, Inc. (Seoul, Korea) generated from WGD-
positive LUAD and LSCC patients and WGD-negative controls. After
treating the organoids with selinexor, a targeted XPO1 inhibitor, we
found higher drug sensitivity in WGD-positive LSCC organoids than in
other samples (Fig. 4h and Supplementary Data 4k). This finding

suggests that targeting XPO1 with selinexor may be a promising ther-
apeutic approach for patients with LSCC and WGD tumors, which
warrants further investigation into its potential clinical applications.

To a lesser extent, Subtype 1 also included patients with WGD
(51%, 28/55patients; Fig. 4a). Subtype 1was significantly enriched in the
CN15 signature (OR: 4.8, Fisher’s exact test; Fig. 4b), evenly distributed
ploidy (absolute copy number from 2 to more than 9), and a segment
size of 1 to 10Mb. This subtype was predominantly found in patients
with LUAD and was associated with co-occurring mutations in EGFR
and tumor suppressor genes (TP53 or CDKN2A) (OR: 5.3, Fisher’s exact
test; Fig. 4d), implying that subtype 1 is LUAD-prevalent and WGD is
activated through LUAD-specific tumor evolution events. In the com-
bined NMF analysis, we validated the proportion of WGD-positive

Fig. 3 | Landscape of cell type-specific subtype characteristics. a UMAP plot of
single-cell types specific to Subtypes 1 to 5, using eachDEGsubtype. The color of each
point represents the module score of each cell; the more relevant the module is to
the cell type, the higher the score and the redder the color. UMAP information was
obtained from the original study23. b Representative histologic images of the sub-
types. The tumor cell (T) and stromal (S) components are separately labeled. Note
the irregularly fused tumor glands in subtype 1 tumor compared to those in sub-
type 2 tumors composed of small, uniform tumor cells lying within the elastic
stroma similar to the normal alveolar wall. Dense stromal inflammatory cell infil-
tration in Subtype 5 tumors. Scale bars for b = 100 μm. c Proportions of samples
with different pathologicdiagnoseswithin each subtype. LUADwaspredominant in
Subtypes 1 and 2, whereas LSCC was predominant in Subtype 3. d–f Histologic
patterns of LUADs in each subtype. The predominant patterns of Subtype 1 and 2
LUADs were most commonly acinar or papillary but were quite heterogeneous (d).
The proportion of the lepidic pattern, considered to indicate noninvasive LUAD,
was enriched mostly in Subtype 2 LUADs, suggesting that Subtype 2 is most like
early LUAD (Subtype 1, n = 55; Subtype 2, n = 34, Subtype 3, n = 10; Subtype 4,
n = 26; Subtype 5, n = 20) (e). Consistently, the proportion of high-grade histologic

patterns (including solid, micropapillary, cribriform, and complex glandular pat-
terns) was lowest in Subtype 2 LUADs. The high-grade histologic pattern was more
extensive in Subtype 1 than in Subtype 2, but these subtypes were remarkably
heterogeneous compared to Subtype 3–5 LUADs, which were mostly composed of
high-grade histologic patterns (Subtype 1, n = 55; Subtype 2, n = 34, Subtype 3,
n = 10; Subtype 4, n = 24; Subtype 5, n = 20) (f). For box-plots, middle line, median:
box edges, 25th and 75th percentiles; whiskers, most extreme points that do not
exceed ±1.5 × IQR.g–I Lymphovascular invasion (g), lymphnodemetastasis (h), and
tumor necrosis (i) were less common in Subtype 2 tumors, which also implies that
Subtype 2 tumors are in a clinically early, nonprogressed stage. j Microscopically,
the stromal component wasmore extensive in Subtype 2, 4, and 5 tumors (Subtype
1, n = 55; Subtype 2, n = 43, Subtype 3, n = 52; Subtype 4, n = 43; Subtype 5, n = 34).
For box-plots, middle line, median: box edges, 25th and 75th percentiles; whiskers,
most extreme points that do not exceed ±1.5 × IQR. k–l Tumor-infiltrating lym-
phocytes (k) and stromal neutrophilic infiltration (l) were most extensive in Sub-
type 5 tumors. The p-value was calculated using the chi-square test (c, d, g–I, k, and
l) the Kruskal-Wallis test (e, f, and j).m Summary of the histopathologic char-
acteristics of the NSCLC subtypes.
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patients (46%, 19/41 patients; Fig. 4a) and the enrichment of the WGD-
related signature CN16 in Subtype 1 from previous LUAD and LSCC
studies (34%, 14/41 patients; Supplementary Fig. 4c).

WGD characterizes two major subtypes of NSCLC but seems to
harbor different driver genes and underlying pathways for each sub-
type (Fig. 4i and Supplementary Data 4l). Subtype 1 was characterized

by a high rate of in-frame deletion and copy number gain in EGFR, with
a high mutational burden on tumor suppressor genes. Significantly
upregulated kinases in Subtype 1 included RPS6KA3, which mediates
cell growth signaling initiated by EGFR activation, CDK1, CDK2, and
CDK4, indicating an accelerated cell cycle (FDR <0.1) (Supplementary
Fig. 4h and Supplementary Data 4m). Additionally, CDK12 and PIK3C3,
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which are related to DNA repair and autophagy, respectively, were
significantly upregulated (FDR <0.1). Since increased cell proliferation
induces hypoxia and nutrient depletion36, these kinases may be acti-
vated in response to WGD to promote the cell’s adaptation to the
nutrient-deprived environment and stabilize the genome, ultimately
leading to cell survival. Similarly, together with CDK1, CDK2, and CDK4,
kinases related to theDNAdamage and nutrient deprivation responses
were activated in Subtype 3 LSCC samples (Supplementary Fig. 4i and
Supplementary Data 4m). However, the putative driver mutations of
WGD in Subtype 3 are TP53mutations and copy number amplification
on chromosome 3q, where many cell cycle genes reside, including
SOX2, ATR, STAG1, GSK3B, TFDP2, and MCM2. Since LUSC tumors tend
to have copy number gain in the 3q arm37, Subtype 3 may have bene-
fited froma 3q gain afterWGD, thus having a higherWGD fraction than
Subtype 1 samples. In addition, unlike Subtype 1,CHEK1 and EEF2Kplay
important roles after undergoing WGD. EEF2K is known to inactivate
EEF2 by phosphorylation under dietary restriction, which in turn con-
tributes to cell survival38. Overall, these results show that Subtypes 1
and 3 represent proliferative subtypes that have undergone WGD in
LUAD and LSCC tumors, respectively, and that selinexor may be an
effective treatment for patients with Subtype 3 will requires further
validation study.

Heterogeneous immune landscapes in NSCLC
Understanding the tumor immunemicroenvironment (TIME) is crucial
in themolecular characterization of cancer subtypes39,40. To profile the
TIME in patients with NSCLC, two clustering analyses based on cell
type41 and pathways42 were performed, with enrichment scores infer-
red from curated gene signatures. We identified three major immune
clusters, namely, hot-tumor-enriched (HTE), cold-tumor-enriched
(CTE), and NAT-enriched, across 205 tumors and 85 NATs (Fig. 5a
and Supplementary Data 5a). HTE and CTE immune clusters over-
lapped considerably between the cell type- and pathway-based clus-
ters (Supplementary Fig. 5a and Supplementary Data 5b). HTE tumors
were mainly enriched in CD8+ and CD4 +T cells, regulatory T (Treg)
cells, B cells, natural killer (NK) cells, neutrophils, dendritic cells (DCs),
monocytes, and macrophages at the cell-type level, compared to CTE
tumors. In the pathway-based clustering results, the HTE cluster
showed a greater activation of immune-related pathways than the CTE
cluster. Because the cell-type enrichment score was inferred based on
curated gene signatures, we confirmed the cell-type specificity of the
immune clusters using scRNA-seq data frommultiple NSCLC studies23.
From the top-300 DEGs in the HTE (DEGHTE) and CTE (DEGCTE) clus-
ters, we investigated the enrichment of each DEG in scRNA-seq data.
The DEGHTE set was enriched in CD8+ and CD4 +T cells, regulatory

T cells, B cells, NK cells, neutrophils, DCs, monocytes, and macro-
phages, whereas the DEGCTE set was primarily enriched in epithelial
cells, including LUAD and LSCC tumor cells (Fig. 5b, top, and Supple-
mentary Data 5c). Additionally, the DEGs of each cell type inferred
from the gene signatures were enriched in the corresponding cell
types in the scRNA-seq data (Supplementary Fig. 5b). The cell-type
enrichment score was also highly correlated with the level of TILs
(Fig. 5b, bottom, and Supplementary Data 5d). These results indicate
that the single-cell and immunohistochemical analyses achieved good
immune clustering based on the cell type score.

To analyze the prognostic value of the immune landscape in
patients with NSCLC, each immune cell enrichment score, along with
the immune cluster, was tested against overall and relapse-free patient
survival rates (Fig. 5c, Supplementary Fig. 5c and Supplementary
Data 5e). HTE status was themost favorable factor for patient survival,
and high enrichment of CD8+ and CD4 +T cells, B cells, and NK cells
were positively correlated with a good prognosis, in contrast to the
enrichment of epithelial cells or neutrophils, which had negative cor-
relations. None of the immune-related pathway-based enrichment
scores were significantly associated with patient survival, although
most showed a positive association with prolonged survival (Supple-
mentary Fig. 5d). HTE tumors with high enrichment of CD8+ and
CD4 + T cells and immune-related pathways are known to be asso-
ciated with favorable prognoses43. Additionally, Previous studies10,13

reported that Tregs were enriched in HTE tumors, but had an immu-
nosuppressive effect and were associated with poor prognosis. We
found a concordant trend of Treg enrichment in HTE tumors
(Fig. 5a, b); patients with Treg-enriched HTE had worse survival rates
than those with low Treg levels (Supplementary Fig. 5e and Supple-
mentary Data 5f).

Further analysis of the immune clusters was performed based on
their cell-type composition,which showed significant correlationswith
patient survival. We performed a pathway enrichment analysis com-
paring the HTE and CTE immune clusters using multiomics features
(Supplementary Fig. 5f and Supplementary Data 5g). A set of immune-
related and EMT signaling pathways was enriched in HTE tumors,
whereas cell cycle-related pathways and glycolysis were enriched in
CTE tumors. Specifically, some metabolic pathways and oxidative
phosphorylation were enriched in CTE tumors at the phosphoprotein
level but were enriched in HTE tumors at the acetylated-protein level.
Many of these results are consistent with the findings of previous lung
cancer multiomics studies10,13.

The differences between HTE and CTE immune clusters may be
better elucidated by examining their respective regulators. To identify
putative regulators of patient immune landscapes, we analyzed RNA

Fig. 4 | Proteogenomic features underlying whole-genome doubling (WGD) in
NSCLC subtypes. a Barplot showing WGD fraction in each multiomics subtype
from our study and CPTAC NSCLC patients. b Overlap of copy number signatures
for thefivemultiomics subtypes,with the colors indicating the odds ratio fromone-
sided Fisher’s exact test. The COSMIC v3 signature and etiology for each signature
are indicated on the y-axis. *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001 (one-
sided Fisher’s exact test). c Top 10 most significantly enriched copy number var-
iations (CNVs) in Subtype 3 (FDR<0.1). The y-axis indicates the cytoband and the
x-axis shows the log10-scaled FDR from linear regressions comparing Subtype 3 and
other samples.d Enriched co-mutations in each subtype in both our and theCPTAC
cohorts. EGFRmutation,missensemutation, in-frame deletion, frameshift deletion,
and amplifications were counted. For TP53 and CDKN2A, amplifications were
excluded, and for SOX2, only amplifications were counted. *P <0.05, **P <0.01,
***P <0.001, ****P <0.0001 (one-sided Fisher’s exact test). e Protein-level gene set
enrichment analysis (GSEA) revealing upregulated and downregulated pathways in
Subtype 3 of both cohorts. The x- and y-axis are enrichment scores (ES) from the
current study and CPTACNSCLCdata, respectively. Labeledpathways are the top-5
upregulated pathways in Subtype 3. The Molecular Signatures Database (MSigDB)
hallmark gene set v7.4 was used for GSEA. f Subtype 3-specific kinase activity

scores. The sizes of the points indicate -log10(FDR) from kinase activity estimation.
Significantly up- and downregulated kinases are labeled (FDR <0.05). g Elevated
protein expression of XPO1 in Subtype 3 is shown for our study (Subtype 1, n = 55;
Subtype2,n = 45; Subtype3,n = 52; Subtype4,n = 43; Subtype 5,n = 34) andCPTAC
LSCC (Subtype 1, n = 11; Subtype 2, n = 19; Subtype 3, n = 42; Subtype 4, n = 15;
Subtype 5, n = 21). Kruskal-Wallis test was performed to test the differences in
expression. WGD status is marked by red dots and the y-axis shows log2 protein
expression levels. For box-plots, middle line, median; box edges, 25th and 75th

percentiles; whiskers,most extremepoints that donot exceed± 1.5 × IQR.h Sample
information (top), drug response curve (middle), and IC50 (bottom) for selinexor
(XPO1 inhibitor) for lung organoids highlighting a higher sensitivity in WGD-
positive LSCC organoids. Three technical replicates were tested in each organoid
sample. For IC50 barplot, dots indicate each replicate, and error bars indicate
average ± 1 standard deviation. iWGD-related pathway underlying Subtype 1 LUAD
tumors and Subtype 3 LSCC tumors. Significantly upregulated kinases are high-
lighted with red triangles (FDR <0.05) and mutations are shown in purple boxes.
Kinase activity scores are estimated fromphosphoprotein expression. The log2 fold
changes from DE analyses are indicated by the color in each box. For the phos-
phoproteome, only features with FDR less than 0.1 are displayed.
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and protein expression data and inferred protein regulatory activity
according to the systematical influence of a protein in the transcription
of relevant targets44. We performed a regression analysis of gene
expression or activity and enrichment scores for cell type or immune
clusters. We found that the majority of immunomodulators, which
mainly comprised cancer cell ligands and immune cell receptors, were
positively correlated with HTE tumors andmost immune cells, but not
epithelial cells45 (Supplementary Fig. 5g and Supplementary Data 5h).

Notably, the expression and activity of VEGF-A were negatively corre-
lated with HTE tumors, which contrasts the patterns observed with
other immunomodulators. VEGF-Awas negatively associated with TILs
and has potential implications for cancer risk46,47. Specifically, 10
immunomodulators showed significant correlations with immune
cluster status, with a consistent correlation direction not only in our
cohort, but also in other lung cancermultiomics studies10,13 (Fig. 5d and
Supplementary Data 5i).
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Weprofiled the associations between the immunomodulators and
known driver mutations to determine the putative mechanism(s)
underlying changes in immunomodulators. Because Subtype 5 is
immunogenic, we only considered the most activated or repressed
immunomodulators to identify the potential regulatory mechanisms
that distinguish it from the other subtypes. Ultimately, the three
immunomodulators showed significant correlations with mutations in
one of the eight driver genes, with consistent patterns observed in
other multiomics NSCLC cohorts10,13, although these correlations were
not statistically significant (Fig. 5e and Supplementary Data 5j). Among
these immunomodulators, the SMARCA4 mutation was positively
correlated with the expression of SLAMF7 at both the RNA and protein
levels, and positively correlated with HTE status in both our study
cohort and the independent cohort10 (Fig. 5f, Supplementary Fig. 5h,
and Supplementary Data 5k). Based on these results, SMARCA4 is a
potential regulator of the immunomodulator SLAMF7, which is asso-
ciated with HTE status.

We further analyzed the distribution of the immune landscape
among the multiomics subtypes (Fig. 5g, left, and Supplementary
Data 5l). The expression of HTE feature genes (DEGHTE) was highest in
Subtype 5, which had immunogenic characteristics. This subtype also
showed the highest activation of CD8+ and CD4 +T cells, Treg cells, B
cells, NK cells, neutrophils, and macrophage marker genes. Neu-
trophils and Tregs, which are associated with a poor prognosis in all
patients and specifically in THE patients, respectively (Fig. 5c and
Supplementary Fig. 5e), were also found to be enriched in Subtype 5.
This enrichment may be linked to the intermediate survival char-
acteristics observed in this subtype, despite Subtype 5 exhibiting the
strongest THE tumor signal. Moreover, the highest frequencies of
SMARCA4 mutations and SLAMF7 overexpression were observed in
Subtype 5 (Fig. 5g, right). We confirmed that the distribution of cell
types within the immune cluster and their correlation with the mul-
tiomics subtype were consistent in the integrated cohort combining
our cohort with those of recentmultiomics studies10,13 (Supplementary
Fig. 5i and Supplementary Data 5m). Our results showed that HTE
tumors were positively associated with better prognosis in patients
with NSCLC. These tumors were enriched in immunogenic Subtype 5,
which was also positively associated with mutations in the putative
regulator SMARCA4, which targets SLAMF7, an immunomodulator.

Multiomics profiling of neoantigens and immune clusters
Neoantigens are tumor-specific antigens generated by tumor cells and
are key factors affecting the immune landscape of cancer patients48.

Therefore, we predicted neoantigens in our NSCLC cohort using a
multiomics dataset. Neoantigens derived from somatic mutations in
the coding regions were predicted using WES data and confirmed by
MS analysis to determine whether they were expressed as peptides of
the “confirmed neoantigen candidates.” Furthermore, we identified
peptides derived from non-coding and non-annotated transcripts that
were distinct from the canonical neoantigens. Among them, we
selected “cryptic MHC class I-associated peptides (MAPs),”whichwere
described as noncanonical peptides predicted to bind to MHC class I
molecules in a previous study49–51. We identified “confirmed cryptic
MAPs” based on a previously determined expression threshold52. We
inferred 85,430 neoantigen candidates and 775 cryptic MAPs (Sup-
plementary Fig. 6a) and annotated theorigin of the crypticMAPsbased
on the matched transcripts (Supplementary Fig. 6b and Supplemen-
tary Data 6a). Non-annotated isoforms, pseudogenes, and untrans-
lated regions (UTRs) accounted for 90.97% of the sources of cryptic
MAPs, which is consistent with previous studies53–58.

We tested the associations of the neoantigen candidates, con-
firmed neoantigen candidates, cryptic MAPs, and confirmed cryptic
MAPs with patient survival (Fig. 6a and Supplementary Data 6b).
Interestingly, only confirmed cryptic MAPs showed a strong positive
correlation with improved survival, although the number of cryptic
MAPs was notably low across patients (Supplementary Fig. 6c and
Supplementary Data 6b). We also found 12 confirmed cryptic MAPs in
more than three patients, called them recurrent crypticMAPs, someof
which were derived from the same gene of origin (Supplementary
Fig. 6d and Supplementary Data 6c). Furthermore, the presence of
recurrent cryptic MAPs was significantly correlated with prolonged
survival (Fig. 6b and Supplementary Data 6b), indicating the prog-
nostic value of cryptic MAPs in patients with NSCLC.

We also investigated the association between cryptic MAPs,
immune clusters, and cell-type enrichment. Cryptic MAPs were posi-
tively correlated with most immune cell types, including HTE status,
although some correlations were weak or insignificant (Fig. 6c and
Supplementary Data 6b). In our cohort, patient prognosis was eval-
uated after stratification according to immune cluster criteria and
cryptic MAP load. Patients with high cryptic MAP load and HTE status
showed the longest survival, whereas those with low cryptic MAP load
and CTE status showed the worst survival (Fig. 6d and Supplementary
Data 6b).

We determined the association between the integrated immune
landscape and multiomics subtypes by evaluating the distributions of
the multiomics subtypes based on the combined status of the cryptic

Fig. 5 | Landscapes of immune clusters and cell types across NSCLC subtypes
and cohorts. a Immune subtyping based on cell type and pathway enrichment
scores. Cell type-based clustering was performed with 205 tumor and 85 normal
adjacent to the tumor (NAT) samples, andpathway-based clusteringwas performed
using only tumor samples. The tumor-infiltrating lymphocyte (TIL) pattern, clinical
histology (diagnostics, DX), multiomics subtype, tumor stage, and tissue informa-
tion are described. IC, immune cluster. b (top) DEGHTE and DEGCTE were used to
generate the UMAP plot of scRNA-seq data. A two-sided t-test was conducted to
assess the statistical significance of the differences in gene expression. The color of
eachpoint represents themodule score of each cell; higher scores are shown in red.
UMAP information was obtained from multiple NSCLC studies23. (bottom) The
correlations of 10 cell types and immune clusters with the pattern of TILs were
analyzed. The sizes and colors of the circles indicate the statistical significance and
correlation coefficient of the correlations, respectively. Thehorizontal blackdotted
line indicates P =0.05. cHazard ratios for overall survival (OS, left) and relapse-free
survival (RFS, right) related to various cell types in the cell type-based immune
cluster. A hazard ratio lower than zero (blue box) indicates that the hot-tumor-
enriched (HTE) status or a high cell type score was associated with prolonged
survival. Error bars (gray lines) represent mean ± 95% confidence interval (CI). Red
text indicates statistical significance in the survival analysis by the log-rankMantel‒
Cox test (n = 174). d Correlations of the RNA expression, protein expression, and
protein activity of 10 immunomodulators with immune cluster status for our

cohort as well as other lung cancer multiomics cohorts10,13. Correlation coefficients
and p-values were obtained from a generalized linear model (GLM). e Correlations
between the expression or activity of immunomodulators and the status of driver
mutations in our cohort and the Satpathy andGillette cohorts. The top associations
between immunomodulators and known driver genes are described. f The left
boxplot shows the RNA and protein expression of SLAMF7 in samples (n = 205)with
wild-type or mutant SMARCA4 (n = 205); the right boxplot shows the RNA and
protein expression of SLAMF7 in HTE and cold-tumor-enriched (CTE) samples
(n = 174). The two-sided t-test was performed to test the differences in expression.
The box represents the 25th and 75th percentiles, the central mark denotes the
median, and the whiskers extend to the most extreme points within ±1.5 × IQR.
g (left) Box (top) and balloon (bottom) plots showing the mean expression of
marker genesofHTE and 10 cell types across themultiomics subtypes (n = 174). The
marker genes were defined as the top−300 and −30 most overexpressed genes in
HTE samples and highly cell type-enriched samples, respectively. (right) The bar
(top) andbox (middle andbottom)plots show themutation frequency of SMARCA4
and RNA/protein expression of SLAMF7 across multiomics subtypes (n = 174),
respectively. The Kruskal‒Wallis test was performed to assess the differences
among themultiomics subtypes. The box represents the 25th and 75th percentiles,
the centralmark denotes themedian, and thewhiskers extend to themost extreme
points within ±1.5 × IQR.
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MAP load and immune clusters. Multiomics Subtype 5 was most enri-
ched in the low cryptic MAP load and HTE groups (Fig. 6e and Sup-
plementary Data 6d). Interestingly, a similar survival trend and
multiomics subtype distribution were obtained when the immune
cluster was replaced with antigen processing, presentation machinery
(APM), and TIL pattern (Supplementary Fig. 6e–g and Supplementary
Data 6e, f), which was proposed as a critical factor for evaluating the

immune-activating potential with neoantigens14. Notably, patients with
Subtype 5, who showedmoderate survival, had a low crypticMAP load
with HTE and activated APM. This is consistent with the large pro-
portion of TILs observed in single-cell and histopathological analyses
(Fig. 3a–k). Patients with Subtype 5 also showed high activity of the
TNF-α-pathway via NF-κB in addition to APM. Consequently, the
moderate survival associated with this subtype appeared to be linked
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was derived by comparing the curves with the log-rank Mantel‒Cox test.
c Correlations between the number of cryptic MAPs and enrichment scores of 10
cell types and the immune cluster. Correlation coefficients were calculated by a
linear regression model with the covariates of sample batches and histological
diagnosis. The size of the dots indicates the degree of the -log10-scaled p-value, and
the color of the dots represents the strength of the correlation coefficient. The

bold-lined dots indicate statistical significance. d Kaplan‒Meier curve showing the
survival patterns of four groups of patients (n = 174) stratified by cryptic MAP load
and immune cluster. The p-value was obtained by comparing curves between the
two groups with the largest difference in the log-rank Mantel‒Cox test.
e Enrichment analysis of the four groups described in Fig. 4d for the multiomics
subtypes. The x- and y-axis indicate enrichment and statistical significance calcu-
lated using a two-sided Fisher’s exact test with the Benjamini‒Hochberg adjust-
ment, respectively. The size of eachdot indicates the level of significance. f Features
of patients withmultiomics Subtype 5 disease who had a low crypticMAP loadwith
an HTE status, activated APM, and activated NF-κB pathway. g Kaplan–Meier curve
of recurrence-free survival according to treatment status (chemotherapy [CTx] or
chemoradiation therapy [CRTx]) in patients categorized by multiomics subtype.
The p-value was derived by comparing the curves with the log-rank Mantel‒
Cox test.
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to a low load of cryptic MAPs and high enrichment of immunosup-
pressive Tregs and neutrophils despite having an active immune
landscape with HTE status (Fig. 6f and Supplementary Data 1a).
Remarkably, the use of adjuvant chemotherapy or chemoradiation
therapy substantially enhanced the survival of patients with Subtype 5
tumors (Fig. 6g). In contrast, no substantial improvement in survival
was observed in patients with other subtypes who underwent adjuvant
chemotherapy or chemoradiation therapy. Subtype 5 also demon-
strated the most favorable prognosis compared to other subtypes in
the overall population treated with adjuvant chemotherapy, despite
themarginal statistical significance (data not shown). This underscores
that subtype 5 could be associatedwith a clinical benefit from adjuvant
chemotherapy. These results imply that understanding patient prog-
nosis and multiomics subtypes requires a multifactorial consideration
of the TIME. Furthermore, the distribution of HLA alleles before and
after the binding prediction was consistent with previous reports on
the Korean population or lung cancer studies59–62, thereby corrobor-
ating the reliability of our results (Supplementary Fig. 6h–j).

Discussion
In this study, we conducted a comprehensive multiomics analysis of
229 patients from a Korean NSCLC cohort and identified five NSCLC
subtypes enriched for WGD, oncogenes, metastasis, and the
immunemicroenvironment. The phosphoproteome dataset was the
most informative for subtype identification, contributing 80% (911
out of 1,134) of the features, while global proteome and acetylome
data also played crucial roles in decoding signaling pathways across
the identified subtypes. By extending our analysis to integrate
multiomics data from 462 patients with NSCLC, we validated our
subtype classification, confirming its alignment with previously
established multiomics subtypes. Utilizing an extensive single-
institute clinical dataset allowed us to delineate detailed histo-
pathological beyond histologic subtype and clinical relevance of
ourmultiomics subtypes, such as prevalent alterations of targetable
oncogenic drivers, histologic grade of LUAD, metastatic potential,
and tumor immune response, and finally complement previous
findings on the underlying biology of NSCLC.

We identified a NSCLC subtype, Subtype 4, which was associated
with a high frequency of metastasis and poor outcomes, independent
of the NSCLC histological type. This subtype contained a large pro-
portion of desmoplastic stromal components, suggesting that pre-
dominant tumor invasion and metastasis contribute to its aggressive
behavior. Increased phosphorylation in hypoxia and activation of the
PI3K-Akt signaling pathway were key characteristics of this subtype. In
particular, the upregulation of SLK and LRRFIP1 phosphorylation pre-
dicted poor survival outcomes and has been consistently observed in
otherNSCLCmultiomics studies. Further researchon these eventsmay
identify targets for therapeutic intervention and enhance our under-
standing of poor outcomes in NSCLC.

Characterizing NSCLC according to multiomics subtypes has
important implications for personalized treatment strategies. Our
study revealed that Subtype 3, characterized by high levels of chro-
mosomal instability and XPO1 expression, represents a highly pro-
liferative NSCLC subtype with co-occurring TP53 and cell cycle gene
amplification. Patient-derived organoid experiments indicated that
selinexor, a targeted inhibitor, could be effective against Subtype 3
with WGD. In Subtype 1, WGD only occurred in a limited number of
patients with LUAD (51%, 28/55 patients) and was enriched for co-
occurring mutations in EGFR and tumor suppressor genes. However,
XPO1 expression was not remarkably increased and selinexor did not
show strong efficacy in this subtype, suggesting potential subtype-
specific differences in XPO1 expression and therapeutic response to
XPO1 inhibition. These findings suggest that WGD events are asso-
ciated with tumor evolution via genomic alterations specific to the
subtype, even in WGD-predominant subtype7,63.

We demonstrated that Subtype 5, enriched in the inflammatory
tumor microenvironment, exhibited extraordinary improvements in
survival with conventional adjuvant chemotherapy. This finding
implies that the selection of postoperative adjuvant treatment for
NSCLC could be helpful only for the case with high tumor immune
response. Additionally, patients within this subtype could potentially
benefit from immune checkpoint inhibitor therapy. Identifying sui-
table patients for coventional adjuvant chemotherapy could be facili-
tated by various biomarkers indicating a positive tumor immune
response, including PD-L1 immunostaining, T-cell marker presence,
and the histological nature of the tumor immune microenvironment.
In contrast, adjuvant chemotherapy did not significantly alter the
survival of node-positive patients with Subtypes 1 or 2, which are
enriched in driver oncogene alterations. Given the minimal survival
improvement with cytotoxic chemotherapy in EGFR-mutant LUAD
observed in prior trials64,65, targeted therapies aimed at driver muta-
tions may offer better outcomes for these patients.

Multiomics-based profiling has the potential to enhance our
understanding of the TIME. The HTE signature exhibited significant
activation in Subtype 2, but was repressed in Subtype 4, which is
inconsistent with our histopathological observations. This highlights
the value of multiomics profiling as a complementary tool to histo-
pathological examination in the functional characterization of the
tumor microenvironment. We identified SLAMF7 as an immunomo-
dulator significantly associated with HTE and SMARCA4 mutations in
Subtype 5. Given the efficacy of immune checkpoint inhibitors in
NSCLC patients with SMARCA4mutations66, SLAMF7, and SMARCA4 are
promising molecular targets for enhancing cancer immunotherapy.
Ourmultiomics analyses also revealed crypticMAPs derived fromnon-
coding and non-annotated transcripts, which were subsequently con-
firmed using proteomics. Unlike neoantigen candidates, cryptic MAPs
were significantly correlated with favorable survival and immune cell
enrichment. Thus, experimental validation of MHC-binding prediction
using immunopeptidomics for recurrent cryptic MAPs could facilitate
the development of a cancer vaccine.

Our study provides a comprehensive profile of the multiomics
subtypes of NSCLC, but there are several limitations to consider. First,
we used exome sequencing to infer whole-genome doubling, which
may be less accurate than whole-genome sequencing. Ethnic differ-
encesmay also be present in certain subtypes, particularly in Subtype 1
for EGFR female patients, although some subtypes were consistently
found in both our cohort and the CPTAC cohorts. Additionally, the
confirmation of cryptic MAPs by proteomics is limited owing to the
experimental availability of normal samples. Further studies using
larger normal sample cohorts are needed to confirm these findings. A
prospective cohort study is also needed to test the effectiveness of
drugs, such as selinexor, in the various subtypes. Finally, more com-
prehensive studies are needed to understand the effectiveness of
selinexor in treating the WGD subtype.

Methods
Human subjects with investigation of clinicopathologic features
A total of 229 samples, self-reported as Korean ethnicity, were histo-
logically defined as NSCLC and selected for this study. Tumors and
normal tissues adjacent to the tumor (NAT) were harvested under the
Clinical Proteomic Tumor Analysis Consortium (CPTAC) guidelines
fromAsanMedical Center, Korea, with the approval of the Institutional
Review Board of AsanMedical Center (Approval number: 2019-1210).
In brief, we retrieved the408NSCLCcaseswhose cold ischemic timeof
fresh frozen tumor and NAT tissue sample was less than 15minutes
from the NSCLC cases of the bioresource center of Asan Medical
Center deposited from January 2010 toMarch 2019. To investigate the
impact of proteogenomic findings on post-operative therapy and
metastasis, we preferentially selected 137 NSCLC patients showing
lymph node metastasis at the pathologic examination of resection
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specimens. We further included 113 cases with absent lymph node
metastasis at the time of surgical resection. With the further exclusion
of 21 cases showing inadequate nucleic acid quality metrics, 229
patients were finally enrolled in the study. The clinical information of
the enrolled patients, including age, gender, smoking history, adjuvant
therapy, presence of post-operative recurrence, and treatment his-
tories, was reviewed and documented by the thoracic oncologists
(W.J.J, C.M.C., and J.C.L.). All the histopathologic slides of the resection
specimens removed from the enrolled patients were independently
reviewed by two thoracic pathologists (H.S.H. and S.J.J.) and docu-
mented for pathologic findings such as pathologic diagnosis, grade,
tumor size, pleural invasion, histologic pattern (for non-mucinous
adenocarcinoma, lymphovascular invasion, spreading through alveo-
lar space, and lymph node metastasis. The cases with discrepancy
between the independent assessments were discussed in consensus
meetings. Based on these findings, all enrolled patients were re-staged
according to the 8th lung cancer TNM stage67. In addition, pattern of
tumor-infiltrating lymphocytes (TIL) was reviewed by the pathologists
and classified according to the classification by Saltz et al.68.

Whole exome sequencing
Genomic DNA was isolated from a FFPE (formalin-fixed paraffin
embedded) tumor and normal samples (NATs or blood buffy coat69 if
NATs are not available).We generatedwhole exome sequencing (WES)
libraries using SureSelect V6-Post (Agilent, CA, USA). Pooled libraries
were run on the Illumina NovaSeq to obtain an average of 300x depth
per tumor library and 100xdepthperNATandbloodbuffy coat library.
The raw Illumina BCL (base calls) binaryfiles were converted into Fastq
files using the Illumina package bcl2fastq. Sequencing read data was
checked for quality and adaptor/overrepresented sequence (ORS) by
FastQC (v0.11.9). There was no ORS that could be a quality problem,
and since the adapter sequence was less than 1% in all samples, the
additional trimming process was skipped. Fastq files were aligned to
the human reference GENCODE GRCh38.p13 v32 primary assembly
genome by BWA (v0.7.17). Among the three algorithms of BWA, the
latest BWA-MEM was selected as it is suitable for Illumina sequences
ranging from70bp to 1mbpwith fast and accurate performance. After
alignment, we sorted the BWA process output by coordinates via
Picard SortSam and checked duplicate reads using Picard MarkDupli-
cates (v2.23.1). Two types of duplicated reads, optical duplicates
(incorrectly detected as multiple clusters by the optical sensor of the
sequencing machine) and library duplicates (created during PCR
library preparation), were annotated for downstream analyses. For all
tools requiring interval files, we used V6_S07604514_hs_hg38_
S07604514_Covered.bed provided by Agilent. Because of systematic
errors from the sequencing machine, base quality scores were recali-
brated by the GATK4 BQSR algorithm (v4.1.8.0). The algorithm cal-
culates the average Phred score by assuming the mismatch base is an
error by matching known variants with the data base. We used the
known variants VCF from dbSNP (broad_hg38_v0_Homo_sapiens_
assembly38.dbsnp138.vcf, broad_hg38_v0_Homo_sapiens_assembly38.
known_indels.vcf.gz) and the Mills and 1000G project (broad_-
hg38_v0_Mills_and_1000G_gold_standard.indels.hg38.vcf.gz) from
the GATK4 bucket (https://console.cloud.google.com/storage/
browser/genomics-public-data/resources/broad/hg38/v0/). Then,
the empirical Phred score is calculated using the average Phred score
and then recalibration is performed based on the empirical
Phred score.

Variant calling
We called somatic variants from the recalibrated BAMs using GATK4
Mutect2 (v4.1.8.0). In the Mutect2 pipeline, somatic-
hg38_1000g_pon.hg38.vcf.gz data was used as panel-of-normals and
somatic-hg38_af-only-gnomad.hg38.vcf.gz data was used for germline
variants removal. We performed tumor with paired normal mode to

exclude germline variants. As one tumor sample had no matching
normal sample, the tumor only mode was performed. After calling
somatic variants from GATK4 Mutect2, a read support reference for
the well-known variant sites was created from the tumor recalibrated
BAMs using GATK4GetPileupSummaries. The tool requires a common
somatic mutation sites VCF, so we used the somatic-
hg38_small_exac_common_3.hg38.vcf.gz file created from the gno-
mAD resource from the GATK4 bucket (https://console.cloud.google.
com/storage/browser/genomics-public-data/resources/broad/hg38/
v0/). The GetPileupSummaries table was used in the GATK4 Calcula-
teContamination to calculate the fraction of reads deriving fromcross-
sample contamination. The calculated cross-sample contamination
data were saved as a table for each sample, and tumor segmentation
data by minor allele fraction were additionally collected. The raw
output of Mutect2 was converted into filtered VCF using cross-sample
contamination table and tumor segmentation data by GATK4 Filter-
MutectCalls. The VCFs generated from GATK4 FilterMutectCalls were
converted to annotated VCF and MAF files via GATK4 funcotator. We
used GATK4 4.2.0.0 version solely for the annotation step to use the
latest annotation data source for GATK4 funcotator. The latest pre-
packaged data sources (funcotator_dataSources.v1.7.20200521 s) was
downloaded from the GATK4 bucket (gs://broad-public-datasets/fun-
cotator/). All annotations were performed in CANONICAL transcript-
selection-mode after choosing a custom transcript list. Finally, the
annotated MAF files were merged into one using maftools v2.8.0570.

Germline variants were called from the recalibrated BAMs using
GATK4 HaplotypeCaller (v4.1.8.0). The reference confidence scores
were confirmed in GVCFmode using the option -ERCGVCF, whichwas
a reference model emitted with condensed non-variant blocks. For
variant calls, -G StandardAnnotation and -G AS_StandardAnnotation
annotation optionswere applied. All single sampleGVCFs fromGATK4
HaplotypeCaller were imported into GenomicsDB by GATK4 Geno-
micsDBImport (v4.1.8.0) for joint genotyping. Joint genotyping was
performed using GATK4 GenotypeGVCFs (v4.1.8.0) from the con-
structed GenomicsDB. The produced joint VCF was recalibrated in
variant quality by two steps. The first step was the recalibration of the
SNPs. After calculating the exome specific recalibration score through
GATK4 VariantRecalibrator (v.4.1.8.0), it was applied to the joint VCF
usingGATK4ApplyVQSR (v.4.1.8.0).Weused the training sets from the
HapMap project (broad_hg38_v0_hapmap_3.3.hg38.vcf.gz), Mills and
1000G project (broad_hg38_v0_1000G_omni2.5.hg38.vcf.gz, broad_-
hg38_v0_1000G_phase1.snps.high_confidence.hg38.vcf.gz) and dbSNP
(broad_hg38_v0_Homo_sapiens_assembly38.dbsnp138.vcf) from
GATK4 bucket (https://console.cloud.google.com/storage/browser/
genomics-public-data/resources/broad/hg38/v0/). The second step
was the recalibration of indels. The same tools in the first step were
used and the training sets from Mills and 1000 Genome Project
(broad_hg38_v0_Mills_and_1000G_gold_standard.indels.hg38.vcf.gz)
and the dbSNP genotyping calls (broad_hg38_v0_Homo_sapiens_
assembly38.dbsnp138.vcf). The recalibrated joint VCF was converted
to annotated VCF via the GATK4 funcotator. The 4.2.0.0 version of
GATK4 was again used at the annotation step to utilize the latest
annotation data source for GATK4 funcotator. The latest pre-packaged
data sources (funcotator_dataSources.v1.7.20200521 g) was down-
loaded from the GATK4 bucket (gs://broad-public-datasets/funco-
tator/). All annotations were performed in CANONICAL transcript-
selection-mode.

Identification of copy number alterations
DNA somatic copy number variations (CNVs) were detected using
CNVkit v0.9.871. We labeled the copy number status with the
following criteria: genes with an absolute copy number greater
than or equal to 4 were labeled as “amplification”, and genes
greater than or equal to 2.5 and less than 4 were labeled as “gain”.
Similarly, genes with an absolute copy number from 0.5 to 1.5
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were labeled “heterozygous deletion”, and those less than 0.5
were labeled “homozygous deletion”.

Copy number signature analysis and WGD detection
For copy number signature analysis and WGD detection, we used
FACETS v0.16.072 to identify allele-specific copy number information.
Preprocessed paired tumor-normal BAM files and a VCF file of com-
mon and germline polymorphic sites downloaded from https://www.
ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/ were used as
the input for FACETS. Two samples were dropped out due to quality
problems; therefore, 228 samples in total were used for copy number
signature analysis and WGD detection. We defined samples as ‘WGD-
positive’ if greater than 50% of their autosomal genome had an abso-
lute copy number greater than or equal to two.

Mutational signature analysis was performed using the COSMIC
signature database v373 and R package Sigminer v2.1.574, as previously
described75. Briefly, three copy number features, including total copy
number, segment length, and loss-of-heterozygosity state were
extracted and classified into 48 components that categorize the con-
tinuous values regarding the value range and biological significance.
To decide the number of signature groups (or a factorization rank),
non-negative matrix factorization (NMF) was performed using a
tumor-by-component matrix with 50 runs checking 2 to 12 ranks.
Based on the cophenetic score plot, we determined to use rank seven
for copy number variants. Each signature was nominated by the
COSMIC signature of the highest cosine similarity. Then, by perform-
ing hierarchical clustering, we assigned the samples to one of the
signatures based on the consensus matrix.

RNA-seq data generation and preprocessing
Total mRNA-seq libraries were prepared using Library-TruSeq Stran-
ded Total RNA with Ribo-Zero H/M/R_Gold. Pooled libraries were run
on the Illumina NovaSeq6000 to generate an average of 200 million
reads per library with 100-bp pair-end. The raw Illumina BCL binary
files were converted into Fastq files using the Illumina package
bcl2fastq. The sequenced read data was checked for quality and
adaptor/overrepresented sequence (ORS) by FastQC (v0.11.9). There
was no ORS that could be a quality problem, and since the adapter
sequence was less than 1% in all samples, the additional trimming
process was skipped. Fastq files were aligned to the human
reference GENCODE GRCh38.p13 v32 primary assembly genome
using STAR (v2.7.3a). After alignment, we sorted the output by
coordinates via Picard SortSam and checked duplicate reads
using Picard MarkDuplicates (v2.23.1). The reads that contain Ns
in the cigar string were split using GATK4 SplitNCigarReads.
Regarding systematic errors from the sequencing machine, base
quality scores were recalibrated by the GATK4 BQSR algorithm
(v4.1.8.0). The aligned BAMs from STAR were sorted by coordi-
nates using Samtools Sort (v1.10). The Salmon algorithm (v1.4.0)
was applied to quantify transcript-level expression, and raw read
counts were produced. The output files (quant.sf) produced by
Salmon, quantified transcript-level estimates, were imported to R
using tximport and converted to a gene-level expression matrix.
Then, we estimated the size factors using the “median ratio
method” with the “estimateSizeFactors” function supported by
DESeq2 R packages. With estimated size factors, we normalized
the gene-level read count matrix using the “counts” function in
DESeq2 R packages76, which divides the read counts by the size
factors.

Isoform expression analysis
Isoform scale expression was quantified from transcriptome data
using a pipeline including StringTie77. STAR-aligned BAM without
going through GATK4 SplitNCigarReads in RNA preprocessing was
used. Transcripts of each sample were assembled using StringTie

v2.1.778. The first analyzed outputs were combined into a single
assembly using merge command of StringTie (stringtie –merge),
creating a single merged gtf containing the transcript of the entire
sample. After that, a secondary analysiswas conducted to calculate the
expression in isoform level of each sample based on the merged
transcript assembly using the StringTie Ballgown command (stringtie
-eB). The novel isoform in the StringTie outputs were compared and
annotated using gffcompare v0.11.679. Processed isoform gtfs are
made into a single count matrix using predDE.py, a python script
provided by StringTie.

The abundance or exon usage change between normal and cancer
tissue was analyzed and visualized using IsoformSwitchAnalyzeR
pipeline. IsoformSwitchAnalyzeR v1.17.480 pipeline includes DRIMseq81

to find isoform switch by condition and extract the sequence ofmRNA
or amino acid produced from the isoform. We analyzed predicted
isoforms or ORF lists with additional tools as CPAT82, PFAM83,84,
SignalP85 and IUPred2A86.

Fusion gene analysis
To detect the fusion genes, RNA-seq fastq was aligned, and fusion
calling and filtering were performed. First, RNA-seq reads were map-
ped to theGENCODEGRCh38.p13 v32 primary assembly genomeusing
STAR aligner v2.7.3a87. Unlike previous STARmapping, ‘–chimOutType
WithinBAM’was included in the STAR output to include chimeric read
tobe suitable for use in arriba fusion calling. To increase sensitivity, the
parameters were adjusted as recommended by the author as follows:
– --chimSegmentMin 10
– --chimOutType WithinBAM SoftClip
– --chimJunctionOverhangMin 10
– --chimScoreMin 1
– --chimScoreDropMax 30
– --chimScoreJunctionNonGTAG 0
– --chimScoreSeparation 1
– --alignSJstitchMismatchNmax 5 -1 5 5
– --chimSegmentReadGapMax 3

We found fusion gene by applying Arriba v1.2.088 to the STAR
mappedBAMfile.Mismatcheswerediscoveredby comparing chimeric
reads with reference genome assembly fasta and annotation gtf.
Additionally, fusion genes had bad quality of frequently found healthy
tissues were excluded from the analysis using the hg38 fusion blacklist
provided byArriba. Arriba outputswere labeledwith sample name and
tissue and concatenated with one table.

From theArriba output, fusion geneswith confidenceof “low”was
removed. At this time, the fusion genes appearing in normal tissues
were collected and used as a blacklist for tumor tissue fusion genes. If
the fusion genes found in tumor tissue were included in this blacklist,
they were excluded from the analysis. Furthermore, fusion genes
including known cancer-related genes (ALK, ROS1, RET, and PTK2)89

were annotated as “known fusion” and fusion genes found across
several tumor samples as “recurrent fusion”. They were used for
downstream analysis. After filtering, we visualized the structure and
protein domain of fusion genes using the R script (”draw_fusion.R”)
provided by arriba.

Protein extraction and tryptic digestion
For in-depth proteomic experiments, fifty milligrams of cryopulver-
ized humanNSCLC andNAT samples were homogenized in lysis buffer
at a ratio of about 300μL lysis buffer for every tissue. The lysis buffer
consisted of 5% SDS, 50mM TEAB (pH 7.55, Thermo Fisher Scientific,
USA, 90114), protease inhibitor cocktail (1:100; Thermo Fisher Scien-
tific, USA, 78430), 1 EA of PhosSTOP (Roche, Swiss, 4906845001), and
20μM PUGNAc (Sigma-Aldrich, USA, A7229). Tissue lysis was per-
formed with a couple of probe sonications using the Digital Sonifier
SFX 550(Branson, USA). Sonication time was set at 30 s with a cycle of
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on-time 5 s and an interval of 3 s at 28%. Lysates were centrifuged at
14,500 g at 4 °C for 5min, followed by measuring protein concentra-
tion using the BCA assay (Thermo Fisher Scientific, USA, 23225), and
kept at -80 °C until used for analysis.

Protein lysates were reduced at 95 °C for 10minutes with 20mM
1,4-dithiothreitol (Roche, Swiss, 10708984001), followed by alkylation
with 40mM iodoacetamide (Sigma-Aldrich, USA, I6125) in the dark at
RT for 30minutes. 12% phosphoric acid (Sigma-Aldrich, USA, 695017)
of 1/10 of the sample volume and 7multiple volumes of S-trap binding
buffer (100mM TEAB in 90% MeOH) were added sequentially for
formation of colloidal status. The solution was loaded on an S-Trap™
spin column (Protifi, USA) and centrifuged to 4000 g for 30 s. The
captured protein was washed three times at 4000 g for 30 s with
400μL of binding buffer. For tryptic digestion, 125μL of digestion
buffer (50mM TEAB) containing Pierce Trypsin/Lys-C Mix (Thermo
Fisher Scientific, USA, A41007) (w/w ratio of 1:25) was added and
incubated at 37 °C for 6 h. The digested sample was sequentially cen-
trifuged with 80μL of digestion buffer, 80μL of 0.2% formic acid
(Honeywell, USA, 94318) at 1000 g for 60 s, and 80μL of 0.2% formic
acid in 50% acetonitrile (ACN) at 4000 g for 60 s. Eluted peptides were
dried and stored at −80 °C until the next process. Samples were
desalted using a C18 spin column (Harvard Apparatus, USA) and dried.
A205 application of NanoDrop One (Thermo Fisher Scientific, USA)
was employed for peptide concentration measurements. A baseline
was established using 1 µL of HPLCwater, and dried samples were each
diluted with HPLC water and measured at 1 µL. For the common
reference sample, 10μg aliquots were taken from the sample being
analyzed, pooled together, and used for each TMT batch.

Construction of the common reference pool
In-depth proteomic analyses for this study were organized as TMTpro
16 plex experiments. For comparative quantification between all
samples across experiments, a common reference (CR) sample was
involved at the 134N channel in each 16-plex. The CR is a protein
mixture that contains all samples analyzed in the TMT experiments. All
subsequent procedures, including digestion, were performed along
with other individual samples to minimize variation.

TMTpro 16-plex labeling
Peptides, 250μg per sample (based on peptide level quantification
withNanoDropOne),were labeledwith 16-plex TMTreagents (Thermo
Fisher Scientific, USA, A44520) according to the manufacturer’s pro-
tocol. For eachpeptide aliquot of an individual sample, 1mgof labeling
reagent was used. Dissolve each sample in 50μL of 100mM TEAB (pH
8.5), add 20μL of labeling reagent dissolved in anhydrous acetonitrile,
and incubate for 1 h with shaking. 1.8μg of labeled peptides from each
channelwere takenout and subjected to LC-MS/MSanalysis to confirm
labeling efficiency before pooling. Label efficiency criteria were set as
having a minimum of 95% fully labeled MS/MS spectra in each sample.
To quench the reaction, 5μL of 5% hydroxylamine was added and
incubated for 15minutes. Samples were pooled in each 16-plex
experiment and sequentially desalted with Sep-Pak C18 3 cc Vac Car-
tridge (Waters, USA) and dried.

Mid pH reverse-phase liquid chromatography fractionation
Tominimize sample complexity, samples were fractionated bymid-pH
reversed phase (RP) separation using Shimadzu LC20A (Shimadzu,
Japan) with an analytical column (XBridge Peptide BEH C18 Column;
300Å, 5 µm, 4.6 × 250mm, Waters, USA) and a guard column (Secur-
ityGuard cartridge C18, 4 ×3.0mm, Phenomenex, USA). We performed
the peptide fractionation at a flow rate of 0.5mL/min. Mobile phases A
and Bwere 10mMTEAB and 10mMTEAB in 90% ACN, and the sample
was dissolved in 0.1% formic acid in 90μL. The LC gradient of mobile
phase B was 5% in 8min, 40% in 65min, 44% in 69min, 60% from
74min to 88min, and 5% in 90min.We collected a total of 96 fractions

from 8min, pooling them into 24 non-consecutive fractions every
0.91min. We then concatenated 95% of each fraction into 12 non-
consecutive fractions for post-translational modifications (PTMs)
analysis.

Phosphopeptide enrichment
For the phosphopeptide enrichment, immobilized metal affinity
chromatography (IMAC) was used. 300μL of Ni-NTA agarose bead
slurry (QIAGEN, Germany, 30410) was resuspended in the tube. The
slurry was spun down for 1minute, and the supernatant was removed.
The bead was washed three times with 1mL of HPLC water and then
incubated with 1.2mL of 100mM EDTA (Sigma-Aldrich, USA, E7889)
for 30minutes by end-over-end turning at RT. After three washes with
1mL of HPLC water, the beads were incubated with 1.2mL of 10mM
FeCl3 for 30minutes with end-over-end turning at room temperature.
12 fractions for PTM analysis are reconstituted in 113μL of 0.1% TFA in
50% ACN, and then 337μL of 0.1% TFA in 95% ACN is added sequen-
tially. Beads were resuspended in 140μL of 1:1:1 ACN:MeOH:0.01%
acetic acid solution and 10μL of beadswere aliquoted into 12 tubes for
each fraction. We resuspended the beads in the sample solution to
bind the phosphopeptides, and then gently mixed them for 30min-
utes at room temperature. The supernatant was collected separately
for the next acetyl peptide enrichment step. Beads coupled with
phosphopeptideswere dissolved in 180μLof0.1%TFA in 80%ACNand
desalted using a C18 stage-tip to elute for LC-MS/MS.

Acetylpeptide enrichment
For the acetylpeptide enrichment, the PTMScan® Acetyl-Lysine Motif
[Ac-K] Kit (Cell Signaling Technology, USA, 13416) was used. IMAC
eluentswere concatenated into four fractions anddried. Peptideswere
dissolved in 1.4mL of 1 x IAP buffer, in which 10 x IAP buffer (5.78 g
MOPS-NaOH, 1.461 NaCl, 0.8 g dibasic sodium phosphate, and 0.08 g
monobasic sodium phosphate) were adjusted to pH with acetic acid
( ~ 1.4 to 1.6mL). Agarose beads bound to the acetyl-lysine motif anti-
body were pre-washed a total of 4 times using 1 x IAP buffer under ice
and split into 2 tubeswith equal volume. Thepeptideswere transferred
to a tube and incubated at 4 °C for 3 hours with end-over-end turning.
Each tube was centrifuged (2,000g, 30 sec, 4 °C), and the supernatant
was separated, followed by washing the beads twice with 1mL of ice-
cold PBS and three times with chilled HPLCwater. 100μL of 0.15% TFA
was added to beads coupled with acetyl peptides and then incubated
at RT for 10minutes, gently mixed every 2-3minutes, and then cen-
trifuged to elute. We desalted the eluted acetyl peptides using a C18
stage-tip (IMAC procedure) and dried them after a total of two
elution steps.

LC-MS/MS for proteomics analyses
For global proteomic analyses, the Ultimate 3000 RSLC nano system
(Thermo Fisher Scientific, USA) coupled with the Q Exactive HF-X
hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Sci-
entific, USA) was used. Trap column (Acclaim™ PepMap™ 100 C18 LC
Column, C18, 100 um x 2 cm, 5 μm, Thermo Fisher Scientific, USA) and
analytical column (EASY-Spray™ LC Columns, C18, 75 um x 50cm, 2
μm, Thermo Fisher Scientific, USA), which were heated to 50 °C to
prevent over-pressuring, were equipped with UHPLC separation.
Mobile phase flow rate was 0.3μL/min, and solvents A and B were 97%
water, 3% ACN, 0.1% formic acid, and 90% ACN, 0.1% formic acid,
respectively. The gradient profile of solvent B was 2% in 12min, 8% in
16min, 25% in 140min, 35% in 150min, 85% from 155min to 163min,
and 2% from 165min to 185min. Data-dependent acquisition was
performed at a spray voltage of 1.5 kV. MS1 spectra were measured
with a resolution of 120,000 and amass range of 350 to 1500m/z. The
AGC target of 3e6, maximum injection time of 50ms, and isolation
window of 0.7m/z were set. Top 15 most abundant precursors per
cyclewere selected to triggerMS/MS.MS2 spectraweremeasuredwith
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a resolution of 45,000, 1e5 of the AGC target, 120ms of maximum
injection time, 34% of collision energy, and 110 of the fixed first mass
(m/z). The precursor charge state was 2-5, the intensity threshold was
1e4 and the dynamic exclusion time was 45 s.

For PTM analysis, the Ultimate 3000 RSLC nano system
(Thermo Fisher Scientific, USA) coupled with the Exploris 480
orbitrap mass spectrometer (Thermo Fisher Scientific, USA) was
used. Trap column (Acclaim™ PepMap™ 100 C18 LC Column, C18,
100 um x 2 cm, 5 μm, Thermo Fisher Scientific, USA) and analytical
column (EASY-Spray™ LC Columns, C18, 75 um x 50 cm, 2 μm,
Thermo Fisher Scientific, USA) were equipped with UHPLC separa-
tion. The mobile phase flow rate was 0.3 μL/min, and solvents A and
B were 0.1 % formic acid in water and 0.1 % formic acid in ACN,
respectively. The LC gradient of solvent B was 2% in 14min, 4% in
17 min, 16% in 120min, 25% in 145min, 85% from 150min to 158min,
and 4% from 160min to 185min. Data-dependent acquisition was
performed at a spray voltage of 2.1 kV and the cycle time was set to
3 sec. MS1 spectra weremeasuredwith a resolution of 120,000 and a
mass range of 350 to 1500m/z. The normalized AGC target (%) was
300, and the maximum injection time was 50ms. MS2 spectra were
measured with a resolution of 45,000, 7.5 e4 of AGC target, 120ms
of maximum injection time, 38% of collision energy, and 0.7 m/z of
isolation window. Peptides were selected for a 2-6 precursor charge
state with an intensity threshold of 1e4. Peptides that triggered MS/
MS scans were dynamically excluded from further MS/MS scans for
45 sec, with a +/- 10 ppm mass tolerance.

The database search strategy
In addition to canonical peptides, to reliably identify variant, post-
translational modified, and novel peptides in global proteomics, we
used a multi-stage search strategy: 1) the identification of canonical
peptides (primary database search), 2) the identification of variant and
modified peptides by considering 2355 modifications in Unimod, and
3) the identification of novel peptides. For each stage, the FDR was
calculated separately using a target-decoy strategy, and identifications
were obtained at 1% FDR. Only unidentified spectra from the previous
stagewere subjected to the subsequent stage. Details of each stage are
described in the following sections: 1) “The Primary Database Search”,
2) “Identification of Variant and Modified Peptides”, and 3) “Identifi-
cation of Novel Peptides”.

The primary database search
AllMS raw files were analyzed using ProteomeDiscoverer v2.4with the
SequestHT search engine90 against the UniProt human protein data-
base v2021.01 (97,795 entries), combined with 179 common con-
taminant proteins. The search parameters were set to 10 ppm for
precursor mass tolerance, 0.02Da for fragment mass tolerance, fully-
tryptic enzyme specificity allowing for up to 2 missed cleavages, car-
bamidomethylation ( + 57.021 Da) on Cys residues and TMT modifica-
tion ( + 304.207Da) on the peptide N terminus and Lys residues for
staticmodifications, and oxidation ( + 15.995Da) onMet residues,Met-
loss (-131.040Da) on proteinN-terminalMet residues and deamidation
( + 0.984Da) on Asn and Gln residues for dynamic modifications. The
minimum length of a peptide was set at six residues.

For phosphoproteome and acetylproteome, the search para-
meters additionally included phosphorylation ( + 79.966 Da) on Ser,
Thr, and Tyr residues and acetylation ( + 42.016 Da) on the protein N
terminus and Lys residues for dynamic modifications. The TMT
modifications were set as dynamic modifications for acet-
ylproteome, to prevent co-assignment of TMT and acetylation. All
peptide spectrum matches (PSMs) were subsequently rescored by
Percolator91 and validated at an estimated false discovery rate (FDR)
of 1%. For phosphosite and acetylsite localization, ptmRS92 was
used, and modified sites with ptmRS probability greater than 0.95
were regarded as confident.

Identification of variant and modified peptides
Using CustomProDB93, each patient’s germline and somatic mutations
were used to generate variant protein sequences. The variant protein
sequences were merged for each batch and combined with 16,130
UniProt human proteins identified from the primary database search
and 179 common contaminant proteins to generate combined custo-
mized databases.

All MS raw files were converted to MGF files using msconvert
v3.0.1, and the precursor m/z values were replaced with the recali-
brated values by Proteome Discoverer in the primary database search
(this recalibrated MS2 spectra were used in all subsequent searches).
The unidentified MS2 spectra from the primary database search were
searched against the combined customized databases using MODplus
v1.0294. The search parameters were set to 10 ppm for precursor mass
tolerance, 0.01 Da for-fragment mass tolerance, semi-tryptic enzyme
specificity allowing for up to 2 missed cleavages, -1 to +2 for 13 C iso-
tope error, carbamidomethylation ( + 57.021Da) on Cys residues and
TMT modification ( + 304.207Da) on the peptide N terminus and Lys
residues for staticmodifications. Allmodifications inUnimoddatabase
v2020.10 (2355 entries) including all amino acid substitutions were
considered for dynamic modification (multiply modified peptides
were allowed within the modified mass range of -150 to +350Da). All
PSMs were validated at an estimated FDR of 1% using MODplus FDR
toolkit.

To identify neoantigen candidates, the proteomics-supported
somatic mutations were filtered by examining the intensity of TMT
reporter ion matched to the patient for whom the somatic mutation
was called (the corresponding reporter ion intensity must account for
at least 20% of the total intensity of all reporter ions). The immuno-
genicity of filtered somaticmutations was also evaluated by predicting
binding affinity to human leukocyte antigen (HLA)-I molecules.

Identification of novel peptides
All unidentified MS2 spectra from the primary and subsequent variant
database searcheswere analyzed to identify novel peptides originating
from pseudogenes, long noncoding RNAs (lncRNAs), untranslated
regions (UTRs), and novel isoforms (including fusion genes). For
pseudogenes, lncRNAs, and UTRs whose RNA transcripts’ FPKMs are
greater than 0, the RNA sequences were selected from the GENCODE
transcript fasta files v32, and their three frame translations were gen-
erated for each patient, except for UTRs, whose translations were
generated by the UTR sequence database construction method55,
which assumes that alternative cognate and near-cognate start codons
and translational readthrough in the stop codons can result in abnor-
mal translation. These noncoding peptide sequences weremerged for
eachbatch andmatched toMS2 spectra byMS-GF+v2021.0995with the
following search parameters: 10 ppm for precursor mass tolerance,
tryptic enzyme specificity allowing up to 2 missed cleavages (also
permitting non-enzymatic terminals), no 13 C isotope error allowed,
carbamidomethylation ( + 57.021 Da) on Cys residues and TMT mod-
ification ( + 304.207Da)on thepeptideN terminus andLys residues for
static modifications, oxidation ( + 15.995Da) on Met residues and
deamidation ( + 0.984Da) on Asn and Gln residues for dynamic mod-
ifications, and TMTprotocol. Theminimum length of a peptidewas set
at 8 residues. All PSMs were validated at an estimated FDR of 1%.

The novel transcripts, including fusion genes, were predicted by
StringTie v2.1.7 (class code =, c, k, m, n, and j)78,96 and Arriba v1.2.088,
respectively, and their three frame translations were generated to
compose the novel protein isoform sequences for each patient. The
novel isoform sequences were merged for each batch and matched to
MS2 spectra using Comet v2021.02.097 with the following parameters:
10 ppm for precursor mass tolerance, semi-tryptic enzyme specificity
allowing up to two missed cleavages, no isotope error allowed, car-
bamidomethylation ( + 57.021 Da) on Cys residues and TMT modifica-
tion ( + 304.207Da) on the peptide N terminus and Lys residues for
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static modifications, and oxidation ( + 15.995Da) on Met residues and
deamidation ( + 0.984Da) on Asn and Gln residues for dynamic mod-
ifications. The minimum length of a peptide was set at 8 residues. All
PSMs were subsequently rescored by Percolator and validated at an
estimated FDR of 1%.

We rejected PSMs conflicting with both MS-GF+ and Comet (i.e.,
identical spectra but different peptides assigned). The remaining
novel peptides were searched using BLAST98 and filtered out if there
were peptide sequence matches in the Uniprot (v2022.03, 226,999
entries), RefSeq (v2022.09, 130,184 entries) and/or Gencode (v41,
110,224 entries) human protein sequences, allowing no more than a
single amino acid substitution. We also removed the frameshift
peptides to concentrate solely on novel peptides derived from
noncoding regions and novel isoforms. Finally, we used peptides
supported by at least one RNA-Seq read and a quantifiable PSM to
retrieve unique peptides at the gene level. In total, we obtained and
used 1045 novel sequences for further analysis.

Quantification of Protein, Phosphosite and Acetylsite
Peptide abundanceswerenormalized tohave the same total amountof
peptide abundances betweenTMTchannel values in the samebatchby
Proteome Discoverer v2.4 with the SequestHT search engine90 against
the UniProt human protein database v2021.01 (97,795 entries), com-
bined with 179 common contaminant proteins. The co-isolation
threshold 50% and the average reporter S/N threshold 10% were
used to filter out quantification values of low quality. For global pro-
teome quantification, proteins with at least one unique and/or razor
peptides were exported, and normalization between batches was
achieved by dividing each TMT channel value by that of the common
reference (CR) channel in the samebatch. The log2 ratio valuewasused
for the subsequent quantification analysis.

The quantification of phosphosites and acetylsites was performed
using the same method: the sum of peptide abundances containing
each modification site was calculated to represent modification site
abundance, and each TMT channel value was normalized using the
same method as the global proteome data. After applying two-
component normalization of TMT ratios for each proteomics
dataset99, the log2 ratio value was used for the subsequent quantifi-
cation analysis.

We selected features that have less than30%missing values across
all tumors for the global proteomics, phosphoproteomics, and acet-
ylproteomics dataset using preprocessed normalized log2 ratio values.
After then, we performed k-nearest neighbor imputation (k = 5) for
missing values using the impute R package (https://doi.org/10.18129/
B9.bioc.impute) for the subsequent quantification analysis.

NMF clustering analysis for multiomics subtypes
To identify patient subtypes, we performed non-negative matrix fac-
torization (NMF) analysis on global proteins and PTM sites as
instructed in previous CPTAC studies10,13. We concatenated pre-
processed imputated global proteomics, phosphoproteomics, and
acetylproteomics dataset into a single matrix. Then, we excluded fea-
tures with the lowest standard deviation (bottom 5th percentile), fol-
lowed by scale and z-score transformation. Using the NMF
R-package100, we performed the NMF analysis for factorization ranks
from2 to 10using the standardNMFalgorithm fromBrunet et al.101 and
2000 max iterations for convergence and repeated 50 times to com-
pute clustering statistics. We determined the optimal factorization
rank k, representing the number of clusters, from the rank with the
maximal cophenetic correlation coefficient value and its drastic
decrease. With the optimal factorization rank k, we sought to robust
clusters from the NMF analysis using 200 runs and 5000 max itera-
tions. From decomposed NMF matrices, we assigned samples to NMF
clusters corresponding to the optimal factorization rank k and

obtained features specific to each cluster according to the row-wise
feature score102. We defined a “core sample” for those having a cluster
membership score ≥ 0.5 as described previously10,13.

CombinedNMF andComparison of NMF subtypes with previous
NSCLC subtypes
To assess the concurrence between our subtypes and lung cancer
subtypes defined through recent multi-omics studies, we conducted
NMF analysis by integrating our study cohort with previous CPTAC
study cohort,which contains LUAD10 andLSCC13. Prior to runningNMF,
each study was subjected to pre-processing using the methodology
outlined in the “NMF clustering analysis for multiomics subtypes”
section. Features pertaining to proteomics, phosphoproteomics, and
acetylproteomics datasets were examined, and only those identified as
commonly present in all three studies were selected and concatenated
into a single matrix for NMF clustering. Using the NMF R-package, we
sought to robust cluster from the NMF analysis using 200 runs and
5000 max iterations with rank 5. We analyzed the subtypes derived
fromNMFdecompositionmatrices for each individual studywithin the
study cohort samples of LUAD and LSCC and compared themwith the
subtypes identified in the combined NMF results.

To validate the robustness of our subtype classification in a recent
NSCLC study10,11,13,14 comprising 462 patients, we conducted a com-
parative analysis of subtype features across multiomics datasets
included in each individual study. To identify the features associated
with the subtypes of each study, we performed re-clustering of NMF
features using the omics datasets and parameters employed in prior
studies and selected features utilizing the “Max” method102. Gillette
study was conducted with RNA, global-, phospho- and acetyl-
proteomics datasets for NMF, and used 4 ranks, 200 runs and 5000
max iterations. Satpathy study was conducted with CNV, RNA, global-,
phospho-, and acetyl-proteomics dataset for NMF and used 5 ranks,
500 runs, and 5000 max iterations. Also, Lehtio study was conducted
with only global proteomics dataset for NMF, and used 6 ranks, 100
runs, and 5000max iterations. For Xu’s (2020) study, the up-regulated
protein list for each subtype as presented was utilized as a subtype-
specific features. To confirm a statistically significant relationship, an
odds ratio and p value were calculated by conducting a Fisher’s exact
test in R between each study cluster’s features.

Gene set enrichment analysis
To obtain characteristic analysis information corresponding to NMF
subtype based on the expression data of multi-omics of tumor sam-
ples, we performed PTM signature Enrichment Analysis (PTM-SEA103)
for phosphoprotoemics dataset and R package GSVA104 for global-,
phospho- and acetyl protoemic datasets.

For GSVA, pathways from hallmark, KEGG, Reactome, GO and
Wikipathway databases which were downloaded from MSigDB were
considered and we used only pathways which contains more than 200
genes and lower than 1000 genes in each pathway.

database: “h.all.v2023.1.Hs.symbols.gmt.txt”, “c2.cp.kegg.v2023.
1.Hs.symbols.gmt.txt”, “c2.cp.reactome.v2023.1.Hs.symbols.gmt.txt”,
“c2.cp.wikipathways.v2023.1.Hs.symbols.gmt.txt”, “c5.go.v2023.1.Hs.
symbols.gmt.txt”

For PTM-SEA, flank amino acid sequence (+/- 7 aa) was added to
PTM data as primary identifier and used. We computed normalized
enrichment scores (NES) of gene sets. We used the implementation
which contains PTM-SEA available on GitHub (https://github.com/
broadinstitue/ssGSEA2.0) using the command interface R-script
(ssgsea-cli.R) using the following parameters:

database:”ptm.sig.db.all.flanking.human.v1.9.0.gmt”
sample. norm. Type: “rank”
output. score. Type = “NES”
nperm = 100
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For identifying NMF subtype feature pathway, we select Hallmark
pathway gene sets (MSigDB), which summarize specific cancer-related
biological states or processes for ssGSEA and PTMsignatures database
(PTMsigDB) containing a list of modification site-specific signatures.

Identification of differentially enriched copy number variations
Gene-level copy numbers detected by CNVkit were converted to
cytoband-level by calculating the mean copy numbers in each cyto-
band. Then we used a linear regressionmodel to identify differentially
enriched copy number variations in eachNMF Subtype. To control the
effect of the pathological diagnosis classification (DX), we set DX as a
covariate.

Cytoband � level copy numbers = β0 + β1 � Subtypeð Þ+ β2 � DXð Þ+ ε

β0 and β1 indicate the intercept and the log2FC value, respectively.
Cytobands with an adjusted p-value (calculated using
Benjamini–Hochberg method) less than 0.05 were selected as
significant CNVs.

Identification of differentially expressed genes (DEGs)
To identify differentially expressedgenes between conditions, weused
“DESeq” function provided by DESeq2 R packages76. Quantified
transcript-level estimates from Salmon were imported to R using
“tximport” andwere converted to a gene-level expressionmatrix. With
this gene-level expression matrix, DESeqDataSet was generated using
“DESeqDataSetFromTximport” function. Then, differential expression
analysis based on the negative binomial distribution was performed
using “DESeq” function. Notably, we conducted the DEG analysis using
the formula below.

design = � Group + DX + rna:batch

In this model, Group represent the conditions under comparison.
DX is the name of the pathological diagnosis classification, including
LUADor LSCC. Batch information for RNA (rna.batch) was also used as
a covariate in DEG analysis to remove batch effects from DEG analysis.
The adjusted p-value was calculated using the Benjamini-Hochberg
method, and an adjusted p-value less than 0.05 was used as a criterion
for differentially expressed genes.

Identification of differentially expressed proteins, phosphor-
ylation, and acetylation (DEP)
We identified differentially expressed proteins, phosphorylation, and
acetylation using linear regression models as below.

Y = β0 +β1 � ðGroupÞ+β2 � DXð Þ+β2 � Batchð Þ+ ε

yi is a vector of dependent variables that represents the expres-
sion values of each proteomic feature. Group is a vector of indepen-
dent variables that represents the state we are trying to compare.DX is
the name of the pathological diagnosis classification, and Batch is a
TMT channel number that represents batch information. β0 is inter-
cept, β1 is beta coefficient for Group variables, and represents the
log2FC value. The linear regression’s calculated p-value tests the null
hypothesis that the coefficient is equal to zero, indicating no differ-
ence between groups. The adjusted p-value was calculated using
Benjamini–Hochberg method, and an adjusted p-value less than 0.05
was used as a criterion for differentially expressed proteins, phos-
phorylation, and acetylation.

Survival analysis
To compare the survival probability across our five NMF subtypes, we
measured overall survival (OS) length (Supplementary Data 1a), the
time from the date of tumor resection surgery to the time of NSCLC-

induced death, for 229 patients. With NSCLC-death, we performed a
survival analysis based on Kaplan–Meier estimation. In the
Kaplan–Meier estimation model, NSCLC-death was used as an indi-
cator of the ending time of the OS length. It is labeled as a right-
censored observation in the case of patients with no deaths, which
causes NSCLC at the end of the study. For patients who have died but
whose causeof death is notNSCLC, we canuse partial information that
they survived beyond a certain point, but the exact date of NSCLC-
death is uncertain.

The Kaplan-Meier estimation was used tomeasure survival curves
for each subtype. The Kaplan-Meier survival curve is defined as the
probability of surviving for each length of time after tumor resection
surgery while considering time at many small intervals. For each time
interval, survival probability is calculated as the number of patients
who survived divided by the number of patients at risk. Patients who
have died, dropped out, or moved out are not counted as “patients at
risk”. The total probability of survival until that time interval is a
cumulative probability, calculated based on the law of multiplication
of probability by multiplying all the probabilities of survival at all time
intervals until a certain point105. We used the log-rank test to statisti-
cally test the null hypothesis that there is no difference between the
survival curves of each subtype. For the log-rank test, the total number
of observed events in each subtype, i.e., O1 and O2 was used, and the
expected number of events in each group, i.e., E1 and E2, was calcu-
lated. The total number of expected events is calculated as the sum of
the expected number of events at the time of each event in any of the
subtype, bringing all subtypes together. The expected number of
events at the time of each event is the result of multiplying the total
number of patients surviving at the timeof events in all subtypes by the
risk of events at time105. Log-rank test statistic is calculated as below.

Log � rank test statistic =
O1 � E1

� �2

E1
+

O2 � E2

� �2

E2

Since there are five subtypes in total, the pooled p value is cal-
culated and shown in Fig. 2g. We perform pairwise comparison
between Subtypes to decidewhich Subtypes represent poorprognosis
subtype of NSCLC and adjusted p-value was calculated using the
Benjamini–Hochberg procedure.

To identify the molecular features that result in survival prob-
ability differences, we also performed feature-wise survival analyses
comparing survival curves between group of patients with top 50%
expression and bottom 50% expression for each protein and PTM
features based on Kaplan-Meier estimation. The prognostic direction,
which shows whether the prognosis is favorable or unfavorable, was
determined by the sign of coefficient from Cox proportional-hazard
(CPH) model not from Kaplan-Meier model. Since in many cases, the
survival probability does not reach 0.5, it was difficult to compare the
median survival time that can be used as an indicator of prognostic
direction in the Kaplan–Meier model. CPH model was used for uni-
variate analysis and categorical analysis. h(t) is hazard function deter-
mined by the univariate, high- or low expression group. h0 is called the
baseline hazard. It corresponds to the value of the hazard if x1 is equal
to zero. The coefficient b1 measure the impact of univariate and tells us
prognostic direction by sign. x1 is categorical variable, low- or high
expression group. When sign of the coefficient b1 for high expression
group is positive, its feature classified as unfavorable prognostic fea-
tures and vice versa.

h tð Þ=h0 tð Þ× expðb1x1Þ

For significance, a log-rank test was used, and the nominal p-
value < 0.001 was used as a criterion for survival-associated features.
The results of the feature-wise survival analysis are listed in
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Supplementary Data 2d. We selected the top 1% of features by statis-
tical significance for survival-associated features.

Kinase activity estimation based on phosphoproteomic data
To understand the Subtype-specific kinase activities, we used decoupleR
R package to infer kinase activity from the results of differentially
expressedphosphorylation (DEPP) using prior knowledge network, such
as databases for kinase/phosphatase and substrate interactions106. We
used prior knowledge network provided by PHONEMeS107. Also, we set
minimum size of regulons to 5, and provided 1000 deregulated phos-
phorylation (each 500 phosphorylation for up-, down-regulated). There
are a variety of methods to infer kinase activities and we used multi-
variate linear model (MLM)-based method as below:

Y =βX +ψ

where the dependent variable Y represents the t-statistic measure-
ments of phosphorylation from the results of the differentially
expressed phosphorylation analysis, and the independent variable X
is the connectivity matrix representing the associations with kinases.
Xij equals 1 when phosphosite i is a known substrate of the kinase j, 0
otherwise.Ψ represents the normally distributed error of the fit and β
represents the scores of the kinase activity108. In decoupleR packages
in R, we used “run_mlm” function to estimate kinase activity. P-value
wasobtained fromamultivariate linearmodel and the adjustedp-value
was calculated using the Benjamini–Hochberg adjustment.

Single-cell specific subtype distribution
To assess the tumor microenvironment in five NSCLC subtypes by
comparing subtype-specific genes with a diverse set of cell type-
specific genes, using the dataset ‘local_extended.rds’ obtained from
https://luca.icbi.at. Subtype-specific gene sets were generated based
on the results of differential gene expression analysis (DEGs), including
only genes with significantly increased fold change and a significant
adjusted p-value (<0.05).

For the tumor versus tumor comparison, we considered only the
cell type-specific genes originating from ‘tumor_primary’ cells. Con-
versely, for the tumor versus normal adjacent tissue (NAT) compar-
ison, we used a subset of cell type-specific genes from both
‘tumor_primary’ and ‘normal_adjacent’ cells.

Clustering analysis for immune microenvironment
We used transcriptome data of NSCLC patients to define the subtypes
of tumor immunemicroenvironment. Twoclustering approacheswere
used, which were based on the enrichment score of cell types41 and
immune-related pathways42. The cell type-based clustering was per-
formed with 205 tumors and 85 normal samples. The enrichment
scores of 64 cell types were inferred by Xcell41, which performed gene
set enrichment analysis based on the curated gene signatures for each
cell type. The inferred cell enrichment scores were then normalized as
z-score and consensus clustering was performed using R package
CancerSubtypes109. After the consensus clustering, the partitioning
aroundmedoids (PAM) algorithmwasused todivide the three clusters.
We first assigned a NAT-enriched cluster among the three clusters
when itwasmainlymatched tonormal samples. After that, the immune
score calculated by Xcell was used to determine the HTE and CTE
immune clusters, so that the cluster with the higher immune score was
defined as having an HTE tumor. We also performed pathway-based
clustering with 205 tumor samples. For that, GSVA was performed
across the patients based on seven curated immune-related pathways.
The enrichment scores of the pathways were normalized as z-scores,
and k-means clustering was performed based on the z-scores to
identify two immune clusters. The cluster having a higher pathway
enrichment score was defined as HTE tumor.

Survival and regression analysis with immune cluster and
cell types
The enrichment score of cell type and the status of the immune cluster
across the patients were tested for their correlation with a set of clin-
ical and molecular features. The pattern of TILs was examined by
regression analysis usingMASSpackage andGLMpackageofR.Overall
survival and relapse-free survivalwere tested for their correlationswith
cell types and immune clusters by Cox proportional hazards regres-
sion analysis using CoxPHFitter package of Python. All analyses were
performed with clinical histology and sample batches as covariates.

Identifying putative regulators associated with immune
landscape
To identify putative regulators associated with immune landscape, we
first inferred protein activity using transcriptome data of the patients.
For the protein activity, we obtained regulon networks of lung cancer
from ARACNe package110 of R and calculated protein activity of each
patient using viper tool44 that inferred how each protein regulates its
target genes based the regulon network. The positive value of protein
activity indicates that the protein positively regulates its target genes
to be overexpressed, and the negative value indicates vice versa. We
then calculated the correlation between the protein activity of
immunomodulators and the enrichment score of cells, or the status of
the immune cluster. The RNA and protein expression of the same
immunomodulators was also analyzed for their associations with the
immune landscapes. To corroborate the putative regulation of the
immune landscape, we further analyzed whether a specific driver
mutation was involved in the association between immunomodulators
and immune cells or immune clusters. The curated driver mutations
were derived from Oncovar111, DriverDBv3112, Intogen113, and mutation
catalogue from Martínez-Jiménez et al.114.

Immune landscape analysis with the integrated cohort
To test the reproducibility of our analysis about the immune landscape
across NSCLC patients, we used two independent NSCLC cohorts of
Satpathy et al.13 and Gillette et al.10. The z-score normalization was per-
formed for the enrichment scores of 64 cell types in each cohort that had
202 (Satpathy et al.), 211 (Gillette et al.), and 290 (our cohort) patients.
Thenormalized enrichment scores of cell typeswere then integrated into
a single cohort and performed consensus clustering. PAM algorithmwas
used to make three clusters and they were mapped to NAT, HTE, and
CTE, respectively, according to the method used in our original cohort.

Neoantigen and cryptic peptide prediction
We predicted different types of neoantigens and cryptic peptides
according to their origin and validation (Supplementary Fig. 6a).
Firstly, canonical neoantigens were predicted from the mutated pep-
tides that had a length between 9mer and 12mer amino acids including
somatic mutations. The binding affinity of the mutated peptides was
predicted using MHCflurry115 and NetMHCpan116 for the patient HLAs
that were identified by OptiType117. Only the mutated peptides to be
predicted as binding to the patient HLAs were defined as the potential
neoantigen. Among the neoantigen candidates, we further defined
“confirmed neoantigens” when they had evidence of MS experiments
(see the section “Identification of variant andmodified peptides”). The
remaining two types were defined by non-canonical peptides that
originated from unconventional translation of pseudogenes, lncRNAs,
UTRs, or novel isoform transcripts (Refer to section “Identification of
novel peptides”). We identified novel isoform transcripts that were
expressed only in tumor samples when theymatched normal samples.
The mean expression of normal samples was used when the tumor
sample did notmatch normal.We treated a degree of FPKMbelow 1 as
indicating no expression. Only the novel peptides that occurred in
more than two tumor samples and not in at least one normal sample
were predicted as “cryptic peptides” using the same methodology for
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neoantigen candidates in thepredictionof binding toHLAs.We further
determined “confirmed cryptic peptide” when the cryptic peptides
also showed substantial expression (FPKM>= 1) in the tumor samples
as described in the previous study118.

Analysis of multi-omics subtype distribution according to the
cryptic peptide load and immune landscape status
We analyzed the distribution of the patients of each multi-omics sub-
type across the status of cryptic peptide load and immune landscape.
Two features were chosen as the surrogates of the immune landscape,
which were the status of the immune cluster (HTE/CTE) and the anti-
gen processing and presentation machinery (APM). The patients were
first separated into two groups that had a high and low number of
cryptic peptides. They were also divided into two other groups: HTE
andCTE, or high APMand lowAPM.The status of APMwas determined
based on the pathway enrichment score of “Antigen_Processing_
and_Presentation” in KEGG pathway119. We created four categories
based on the status of cryptic peptide load and immune landscape,
and the degree of over-representation for each multi-omics subtype
was calculated by a two-sided Fisher’s exact test.

Patient-derived lung tumoroid culture
Patient-derived lung tumoroid culture and drug screening were per-
formedby SGMedical, Inc. (Seoul, Korea) and conducted as previously
described120. Briefly, tissues were kept in a cold Hank’s balanced salt
solution (HBSS) with antibiotics (Gibco, OK, USA) and on ice after
dissection. Samples were washed three times with cold HBSS with
antibiotics and sectioned with sterile blades. Sectioned samples were
incubated with 0.001% DNase (Sigma-Aldrich, MO, USA), 1mg/ml
collagenase (Roche, IN, USA), 200 U/ml penicillin, and 200mg/ml
streptomycin in DMEM/F12 medium (Gibco, OK, USA) at 37 °C for 1 h
with intermittent agitation. After incubation, the suspensions were
repeatedly triturated by pipetting and passed through 40-μm cell
strainers (BD Falcon, CA, USA). The strained cells were centrifuged at
112 × g for 3min, and the pellet was resuspended in lung tumoroid
culture media (DMEM/F12 supplemented with 20 ng/ml of bFGF
(Invitrogen, CA, USA), 50ng/ml human EGF (Invitrogen), N2 (Invitro-
gen), B27 (Invitrogen), 10μM ROCK inhibitor (Enzo Life Sciences, NY,
USA), and 1% penicillin/streptomycin (Gibco, OK, USA). The suspen-
sion was mixed with matrigel and seeded onto 6-well plates. Culture
media were replaced every 4 days.

Drug screening
Lung tumoroids culturedwere harvested anddissociated using TrypLE
Express (Gibco, OK, USA). The dissociated lung tumoroids were dilu-
ted in a lung tumoroid culture media-matrigel mixture and seeded
onto 384-well plates (250 cells per well). After lung tumoroid genera-
tion, 8 concentrations of Selinexor (Selleckchem, TX, USA) and vehi-
cles (DMSO) as a negative controlwere added in triplicate. After 6days,
quantification of cell viability was done by adding 10μl of CellTiter-Glo
3D (Promega) to each well according to the manufacturer’s instruc-
tions on a Varioskan LUX Multimode Microplate Reader (Thermo
Fisher Scientific, MA, USA). The determination of IC50 values was
conducted using GraphPad Prism.

CPTAC NSCLC data download and preprocessing
Clinical data, MAF file, and gene-level CNV data are downloaded from
the supplementary tables provided by previous studies10,13. Segment-
level CNV data is downloaded from the GDC data portal (https://portal.
gdc.cancer.gov), and global proteome, phosphoproteome, acet-
ylproteome, and clinical data, including survival information, were
downloaded from LinkedOmics (http://www.linkedomics.org). For
global, phospho-, and acetyl-proteomics data, we performed the
imputation in the sameway as in our cohort. Briefly, features withmore
than 30% missing values across all tumors were discarded, and k-NN

imputation using k = 5 was performed. We conducted all downstream
analyses using these data in the samemanner aswe didwith our cohort.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Genomic and transcriptomic raw data generated in this study are
available in EGA under restricted access under the study ID
EGAS50000000592 and Dataset ID EGAD50000000844. Data will be
made available following a data access agreement, and there are no
restrictions onwhowill be granted access. Requestswill be assessedby
the data access committee, and further information can be requested
from Dr Kwang Pyo Kim (kimkp@khu.ac.kr). Additionally, these data
were also available in the Korean Nucleotide Archive (KoNA, https://
kobic.re.kr/kona) with the accession ID KAP210028. Raw mass
spectrometry-based global, phosphoproteome, and acetylome data
were deposited in the ProteomeXchange Consortium (accession
number: PXD053969, PXD053921, PXD053903) via the jPOST partner
repository (accession number: JPST003210, JPST003211,
JPST003212)121.

All histologic details and sample annotations can be accessed
from Supplementary Data 1a. Processed and normalized gene
expression data file is provided in Supplementary Data 7 and the
proteomic data files are provided in K-BDS with the accession IDs
KAP240387, KAP240391, and KAP240392.

Code availability
No custom code was used or developed for the analyses presented in
this study. Standard workflows and open-source R packages and soft-
ware were used (Methods). The codes used for the analyses included in
our manuscript were uploaded to GitHub repository with instructions
for users: https://github.com/joonan-lab/PDIAMOND-NSCLC.
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