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A B S T R A C T

Background: Developmental dyslexia (DD) and persistent developmental stuttering (PDS) are the most repre
sentative written and spoken language disorders, respectively, and both significantly hinder life success. 
Although widespread brain alterations are evident in both DD and PDS, it remains unclear to what extent these 
two language disorders share common neural substrates.
Methods: A systematic review and meta-analysis of task-based functional magnetic resonance imaging (fMRI) and 
voxel-based morphometry (VBM) studies of PDS and DD were conducted to explore the shared functional and 
anatomical alterations across these disorders.
Results: The results of fMRI studies indicated shared hypoactivation in the left inferior temporal gyrus and 
inferior parietal gyrus across PDS and DD compared to healthy controls. When examined separately for children 
and adults, we found that child participants exhibited reduced activation in the left inferior temporal gyrus, 
inferior parietal gyrus, precentral gyrus, middle temporal gyrus, and inferior frontal gyrus, possibly reflecting the 
universal causes of written and spoken language disorders. In contrast, adult participants exhibited hyper
activation in the right precentral gyrus and left cingulate motor cortex, possibly reflecting common compensa
tory mechanisms. Anatomically, the analysis of VBM studies revealed decreased gray matter volume in the left 
inferior frontal gyrus across DD and PDS, which was exclusively observed in children. Finally, meta-analytic 
connectivity modeling and brain-behavior correlation analyses were conducted to explore functional connec
tivity patterns and related cognitive functions of the brain regions commonly involved in DD and PDS.
Conclusions: This study identified concordances in brain abnormalities across DD and PDS, suggesting common 
neural substrates for written and spoken language disorders and providing new insights into the transdiagnostic 
neural signatures of language disorders.

Introduction

Language is fundamental to success in modern literary society. 
However, some individuals suffer from various language disorders. 
Persistent developmental stuttering (PDS) and developmental dyslexia 
(DD) are two prevalent neurodevelopmental disorders of language that 
have been highly studied. PDS is a typical spoken language disorder 
characterized by involuntary repetitions and prolongations of syllables, 
particularly during connected speech (Brown et al., 2005; Büchel & 
Sommer, 2004; Tager-Flusberg & Cooper, 1999). In contrast, DD is a 

representative written language disorder characterized by difficulties in 
acquiring proficient reading and spelling skills, despite adequate in
struction, intelligence and intact sensory abilities (Goswami, 2015; Lyon 
et al., 2003; Peterson & Pennington, 2012). Despite extensive investi
gation, the etiology of PDS and DD remains unclear.

Magnetic resonance imaging (MRI) serves as a powerful neuro
imaging tool for investigating the neural correlates of language disor
ders. Over the past decades, functional MRI (fMRI) and structural MRI 
(sMRI) studies have revealed abnormalities in brain function and 
structure associated with various types of language disorders. With 
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respect to PDS, task-based MRI studies have demonstrated functional 
disruption within multiple language and motor regions when perform
ing speech and non-speech tasks, involving the left primary motor and 
premotor cortex, inferior frontal gyrus (IFG), middle frontal gyrus 
(MFG), precentral gyrus/postcentral gyrus (preCG/postCG), left sup
plementary motor area (SMA), bilateral superior temporal gyrus (STG) 
and middle temporal gyrus (MTG), basal ganglia, cingulate motor area, 
and the cerebellum (Brown et al., 2005; Garnett et al., 2019, 2018; Liu 
et al., 2014; Shojaeilangari et al., 2021; Watkins et al., 2008; Yang, 
2009; Yang et al., 2016). For individuals with DD, numerous task-based 
fMRI studies have demonstrated atypical functional activation when 
performing linguistic and non-linguistic tasks in the left IFG, MFG, 
PreCG/PostCG, inferior parietal lobule (IPL), MTG, fusiform gyrus, 
cingulate cortex, and cerebellum (Hancock et al., 2017; Li & Bi, 2022; 
Richlan et al., 2011, 2010; Yan et al., 2021; Yang et al., 2022).

Voxel-based morphometry (VBM) is a frequently used method for 
examining the anatomical alterations associated with different 
language-related disorders (Jovicich et al., 2013). With respect to PDS, 
prior VBM studies have identified altered gray matter volume (GMV) in 
the left IFG and bilateral temporal regions (Beal et al., 2013; Chang 
et al., 2008). For individuals with DD, prior studies have demonstrated 
the alterations of GMV in the IFG, supramarginal gyrus (SMG), superior 
temporal gyrus/sulcus, inferior temporal gyrus (ITG) and cerebellum 
(Eckert et al., 2016; Linkersdoerfer et al., 2012; Ramus et al., 2018; 
Richlan et al., 2013). Overall, the widespread brain alterations identi
fied in PDS and DD highlight the complex etiology of these 
language-related disorders.

These neuroimaging studies discussed above have delineated a 
complex map of functional and structural abnormalities in the brain 
associated with DD and PDS. However, a fundamental question that 
remains unresolved is to what extent there are shared brain markers 
underlying these two language disorders. This is a critical inquiry, as it 
deepens our understanding of the neurobiological underpinnings of both 
DD and PDS. Specifically, by identifying the shared brain markers of PDS 
and DD, we can uncover intrinsic and stable brain mechanisms that 
underlie these language-related conditions, irrespective of the diverse 
manifestations of their phenotypes. Furthermore, investigating the 
shared neural basis has the potential to become a key target for future 
diagnostic efforts and therapeutic interventions for these distinct lan
guage disorders.

Despite their categorization into distinct groups, theoretical hy
potheses and empirical findings suggest the existence of a common 
neural mechanism underlying these two disorders (Algaidi et al., 2023; 
Ardila et al., 1994; Elsherif et al., 2021). From a theoretical perspective, 
the procedural deficit hypothesis offers an explanatory framework for 
explaining the cause of various language disorders (Ullman et al., 2020; 
Ullman & Pierpont, 2005). According to this hypothesis, different types 
of language disorders may share procedural processing abnormalities, 
specifically involving deficits in functions that depend on cortico-basal 
ganglion-thalamocortical circuits (Krishnan et al., 2016; Ullman et al., 
2020). The procedural deficit hypothesis is further supported by the 
findings of a recent meta-analysis, which elucidate the basal ganglia as 
the neuroanatomical signature of developmental language disorder 
(Ullman et al., 2024). Additionally, the phonological deficit hypothesis 
can account for both DD and PDS. Phonological deficits have been 
established as the core factor of DD (Bishop & Snowling, 2004; Catts 
et al., 2005; Ramus, 2003; Ramus et al., 2013; Snowling, 2001). Simi
larly, phonological impairments are also observed in individuals with 
PDS, such as the developmental shift in phonological encoding from 
holistic to incremental processing (Byrd et al., 2007), and reduced 
phonological memory (Elsherif et al., 2021). These phonological deficits 
may be attributable to functional and structural abnormalities in the 
auditory cortex, as revealed in both DD (Gertsovski & Ahissar, 2022; 
Jaffe-Dax et al., 2018; Kuhl et al., 2020) and PDS (Beal et al., 2010; 
Connally et al., 2018). Second, some fMRI studies on healthy individuals 
discovered common neural activity for processing spoken and written 

languages, engaging distributed brain regions within a 
frontal-parietal-temporal language network, including the IFG (Broca’s 
area) (Sahin et al., 2009), and the left occipitotemporal areas (visual 
word form area, VWFA) (Longcamp et al., 2019; Qin et al., 2021). 
Additionally, a growing body of genetic studies has pinpointed a com
mon genetic architecture contributing to susceptibility to both spoken 
and written language impairments, including genes such as forkhead 
box P2 (FOXP2), contactin-associated protein-like 2 (CNTNAP2), and 
C-MAF inducing protein (CMIP) (Graham & Fisher, 2013; Newbury 
et al., 2010; Paracchini, 2011; Whitehouse et al., 2011). These shared 
genetic mutations may modulate the alterations of core brain circuits of 
language development. However, developmental and environmental 
variables are likely to interact with genetic factors to shape brain 
dysfunction, ultimately leading to different phenotypes of language 
disorders. Finally, researchers have started to adopt a transdiagnostic 
perspective in examining neurodevelopmental and psychiatric condi
tions, rather than focusing solely on disorder-specific mechanisms (Astle 
et al., 2022; Koomar & Michaelson, 2020). Studies in psychiatric dis
orders have revealed common anatomical alterations across a wide 
range of psychiatric conditions (Goodkind et al., 2015; Wise et al., 
2017), suggesting that these disorders may be underpinned by shared 
brain markers. It is expected that, similar to findings in the field of 
psychiatric research, shared brain markers may also exist across 
different types of language disorders.

Meta-analysis is an effective and efficient approach to synthesize 
results from various language disorders, allowing for quantitative 
exploration of shared brain signatures across different types of disorders. 
This strategy has been widely applied to identify common brain signa
tures of mental illnesses (Madeleine Goodkind et al., 2015; Wise et al., 
2017) and language/speech disorders (Liégeois et al., 2014). Therefore, 
we conducted a meta-analysis to analyze the findings of fMRI and VBM 
studies on DD and PDS. First, we aggregated the two common types of 
language disorders into a unified disorder group to identify the shared 
core brain regions displaying functional or anatomical alterations. Our 
rationale was to uncover potential shared brain regions for language 
dysfunction across different age groups and language modalities. Sub
sequently, acknowledging the influence of neurodevelopment, we per
formed secondary analyses by categorizing the participants into child 
and adult groups. Finally, we characterized the functional connectivity 
profiles and cognitive significance of the shared brain regions that 
exhibit common functional or structural abnormalities across PDS and 
DD, aiming to illuminate how abnormalities in these regions contribute 
to these two types of language disorders. To this end, we conducted two 
complementary analyses using datasets from the BrainMap database 
(www.brainmap.org). First, we employed meta-analytic connectivity 
modeling (MACM), a validated method for identifying brain regions 
co-activated with a given seed region across multiple neuroimaging 
studies (Eickhoff et al., 2011; Robinson et al., 2012), to delineate 
large-scale functional connectivity patterns. Then, we conducted a 
behavioral domain analysis to roughly identify the cognitive functions 
(five main categories: action, cognition, emotion, interoception and 
perception) associated with the shared brain regions (Robinson et al., 
2012).

Methods

Literature search and selection criteria

This study follows the guidelines of the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) (Fig. 1 and eTable 1). 
We searched PubMed and Web of Science for fMRI and VBM studies on 
DD and PDS published between January 1, 1986 and March 31, 2023. 
The key search terms included ((’dyslexia’ OR ’reading disorder’ OR 
’reading impairment’ OR ’reading difficulty’ OR ’reading disability’) OR 
(’stutter’ OR ’stutterer’ OR ’stuttering’)) AND (’fMRI’ OR ’functional 
magnetic resonance imaging’ OR ’neuroimaging’ OR ’functional MRI’ 
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OR ’functional imaging’ OR ’VBM’ OR ’voxel-based morphometry’).
Inclusion criteria comprised studies that: (1) employed fMRI or VBM 

to investigate GMV in individuals with DD or PDS; (2) utilized whole- 
brain analysis; (3) reported group comparisons with healthy age- 
matched controls; (4) provided peak coordinates in Talairach space or 
Montreal Neurological Institute (MNI) space; (5) reported effect sizes (t- 
values and z-values); and (6) were peer-reviewed original papers pub
lished in English. Exclusion criteria encompassed studies that: (1) 
focused solely on region of interest (ROI) analysis; (2) investigated 
resting-state activity; (3) did not report group differences; (4) conducted 
direct group comparisons only between disorders and reading level 
control readers; (5) studied participants at risk for these disorders; (6) 
focused on non-linguistic tasks; (7) were case studies; (8) were meeting, 
review, or meta-analysis papers. In addition, we adopted the criterion of 
including >10 studies for each type of disorder, following recommen
dations for sufficient power in signed differential mapping (SDM) meta- 
analyses (Madeleine Goodkind et al., 2015; Radua & Mataix-Cols, 2009). 
Based on these criteria, 92 fMRI studies (DD: 72; PDS: 20) and 19 VBM 
studies (DD: 16; PDS: 3) were included in the final analysis.

Data extraction

Two independent reviewers (H.R. and YZ. L.) evaluated the titles, 
abstracts, and full-text articles against the inclusion criteria, and con
ducted data extraction using a Microsoft Excel spreadsheet. Any con
flicts or discrepencies were resolved by a third reviewer (Y.Y.).

As depicted in Fig. 1, the present meta-analysis incorporated 118 
experiments (from 111 papers), encompassing 96 fMRI experiments and 
22 VBM experiments (eTable 2 and eTable 3). The following information 
was extracted from the original publications: first author’s name, pub
lication year, writing system, number of participants, mean age of par
ticipants, fMRI task, and significance threshold. Additionally, to 
facilitate voxel-wise meta-analysis, peak coordinates and statistical 
values (t-values and z-values) were extracted.

Meta-analysis procedure

We conducted a voxel-wise meta-analysis using SDM-PSI version 
6.21 (Albajes-Eizagirre et al., 2019)(see http://www.sdmproject.com). 
In contrast to activation likelihood estimation (ALE) or multilevel peak 
kernel density analysis (MKDA), SDM reconstructs positive and negative 
effects within the same statistical maps, preventing a voxel from 
appearing in opposite directions, and thereby providing a more accurate 
representation of the results (Radua et al., 2012). This approach has 
been widely employed in previous meta-analyses (Li & Bi, 2022; Pollard 
et al., 2023; Ranzini et al., 2022). Pre-processing followed the default 
settings of SDM, using a 20 mm full-width half-maximum (FWHM) 
anisotropic Gaussian kernel (α = 1.00) and 2 mm voxel size (Radua 
et al., 2014). The results of the meta-analysis were thresholded at a peak 
height of mean effect size SDM-Z = 1, with an uncorrected p-value of 
0.005 at the voxel level, and a minimum of 10 voxels at the cluster level 
(Radua et al., 2012), in accordance with common practices in prior 
meta-analyses (Li et al., 2023; Zhang et al., 2022). Funnel plots and 
Egger’s tests were used to examine the potential publication bias of each 
identified peak. Asymmetry in the plots or a p-value < 0.05 indicates 
significant publication bias. The inter-study heterogeneity of each 
cluster was measured by the I2 index, which represents the proportion of 
total variation due to the study heterogeneity (Higgins & Thompson, 
2002). An I2 value greater than 50 % typically indicates substantial 
heterogeneity.

For both fMRI and VBM data, the initial meta-analysis incorporated 
the type of language disorders as a covariate. To exclude the potential 
impact of language differences on the neural correlates of the two 
developmental disorders, especially between alphabetic languages and 
non-alphabetic languages (Li & Bi, 2022), we restricted analysis only to 
studies with participants who spoke alphabetic languages and replicated 
the initial meta-analysis. Next, considering neurodevelopment, we 
conducted separate meta-analyses for the child (under 14 years old) and 
adult (over 14 years old) subgroups (note that functional data for chil
dren exclusively pertain to DD; refer to eTable 2 for details).

Fig. 1. Flow diagram of study selection. 
Abbreviation: DD: developmental dyslexia; PDS: persistent developmental stuttering; fMRI: functional magnetic resonance imaging; VBM: voxel-based 
morphometry.
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To gain deeper insights into the functional significance of the shared 
brain regions across DD and PDS, we conducted two complementary 
analyses using a dataset of healthy participants. MACM was employed to 
assess the brain co-activation patterns of a seed region across numerous 
data-driven neuroimaging experiments (Cortese et al., 2016; Eickhoff 
et al., 2011; Laird et al., 2009b). The co-activation analysis utilized the 
BrainMap database (www.brainmap.org), and GingerALE (version 
3.0.2) was used to identify regions of significant convergence. The initial 
step of MACM involves ensuring that all experiments in the BrainMap 
database contain at least one activation focus within the ROI region 
(Laird et al., 2009a). Then, a quantitative analysis of the foci in these 
retrieved experiments was performed using the ALE algorithm. The ALE 
algorithm tested for spatial convergence of neuroimaging findings 
against a null distribution of random spatial association of experiments, 
evaluating clusters where convergence exceeded chance expectations 
(Eickhoff et al., 2012, 2016; Mueller et al., 2018). Therefore, the pres
ence of significant convergence in regions other than the highest 
convergence of the ROIs indicates consistent co-activation across the 
experiments. The p-values were thresholded at a cluster-level family-
wise error (cFWE) of p = 0.05 with 1000 permutations (Eickhoff et al., 

2016).
For MACM analysis, four ROIs derived from the SDM meta-analysis 

were extracted: the left ITG (MNI coordinates: − 48, − 56, − 16), MTG 
(MNI coordinates: − 56, − 54, 0), inferior parietal gyrus (IPG, MNI co
ordinates: − 56, − 48, 38), and SMG (MNI coordinates: − 56, − 50, 30) 
(refer to Results 3.2 for details). All ROIs are 10 mm boxes centered at 
the peak MNI coordinates. The ROI of the left ITG included 179 exper
iments (3242 subjects, 2648 foci), the ROI of the left MTG included 82 
experiments (1473 subjects, 1184 foci), the ROI of the left IPG included 
75 experiments (1787 subjects, 1176 foci) and the ROI of the left SMG 
included 71 experiments (1592 subjects, 895 foci).

The functional properties of each ROI were further examined based 
on the behavioral domain metadata categories available for each neu
roimaging experiment in the BrainMap database. Behavioral domains 
include the main categories of cognition, action, perception, emotion, 
and interoception, along with their related subcategories (see http://br 
ainmap.org/scribe/ for the complete BrainMap taxonomy) (Laird et al., 
2009a). First, neuroimaging experiments in the BrainMap database that 
contained at least one activation focus within the ROI were extracted. 
Then, neuroimaging experiments were analyzed to determine the 

Fig. 2. Regional activation abnormalities associated with the disorder group. 
Panel A shows regional activation abnormalities associated with individuals with DD and PDS. Panel B shows activation abnormalities associated with adults with 
disorders. Panel C shows activation abnormalities associated with children with disorders. Regions that survived with the statistical threshold set at p〈 0.005, a cluster 
extent of 10 voxels and the peak SDM-Z 〉 1. Coordinates reported in Montreal Neurological Institute space. 
Abbreviation: DD: developmental dyslexia; PDS: persistent developmental stuttering.
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frequency of the behavioral domain of each ROI relative to the domain’s 
likelihood across the entire BrainMap database (Eickhoff et al., 2011).

Results

Included studies and characteristics

A total of 118 experiments were incorporated into the present meta- 
analysis, comprising 96 fMRI experiments (from 92 studies) and 22 VBM 
experiments (from 19 studies). Among the fMRI experiments, 54 
involved children (N = 977 for disorders, N = 949 for controls; mean age 
= 11 years) and 42 involved adults (N = 592 for disorders, N = 652 for 
controls; mean age = 27 years).

Among the VBM experiments, 16 involved children (N = 398 for 
disorders, N = 373 for controls; mean age = 11 years) and 6 involved 
adults (N = 81 for disorders, N = 82 for controls; mean age = 29 years). 
Detailed information for each study is provided in eTable 2 and eTable 3.

Regional activation abnormalities across PDS and DD

Taking PDS and DD as a whole, the results showed significant 
hypoactivation compared to controls in the left ITG, extending to the left 
SMG, IPG, and MTG (Fig. 2A and Table 1). No significant clusters of 
hyperactivation were found. Funnel plots (eFigure 1A) and Egger’s test 
(Z = 0.57, p = 0.57) of the significant peak showed no significant 
publication bias. Low between-study heterogeneity was found for the 

significant peak (I2 = 17.01 %).
When only participants with alphabetic languages were included, the 

main results were replicated (see eFigure 2 and eTable 4).

Regional activation abnormalities in children and adults with DD and PDS

To address the potential impact of neurodevelopment, we conducted 
separate analyses for children and adults. Distinct patterns of regional 
activation deficits emerged across age groups. In adults, notable 
hyperactivation was identified in the right PreCG and left median 
cingulate cortex (MCC)/SMA (Fig. 2B and Table 1), whereas no signif
icant clusters of hypoactivation were observed. Funnel plots 
(eFigure 1B&C) and Egger’s test (Z = 0.41 and 0.26, p = 0.68 and 0.80 
for the right PreCG and left MCC peak respectively) showed no signifi
cant publication bias. Low between-study heterogeneity was found for 
the significant peaks (I2 = 4.97 % and 2.01 % for the right PreCG and left 
MCC, respectively).

In children with DD or PDS, significant hypoactivation manifested in 
the left ITG, IPG, PreCG, MTG, and IFG (Fig. 2C and Table 1), whereas no 
significant clusters of hyperactivation were identified. For three of these 
clusters (left ITG, MTG, and IFG), funnel plots (eFigure 1D&E&F) and 
Egger’s test (Z = − 1.88, − 0.35, and − 1.73, p = 0.06, 0.73 and 0.08 for 
the left ITG, MTG and IFG peak respectively) indicated no significant 
publication bias. For two of these clusters (the left IPG and PreCG), 
funnel plots (eFigure 1G&H) and Egger’s test (Z = − 2.05 and − 3.73, p =
0.04 and p < 0.001 for the left IPG and PreCG peak respectively) showed 

Table 1 
Coordinates of altered activation in the disorder group.

Cluster Voxels Local peak X Y Z SDM-Z BA

All DD and PDS
Hypoactivation
Left ITG 2085 Left ITG − 48 − 56 − 16 − 5.17 37
​ ​ Left ITG − 46 − 52 − 18 − 5.08 37
​ ​ Left fusiform gyrus − 42 − 54 − 14 − 4.94 37
​ ​ Left SMG − 56 − 50 30 − 4.00 40
​ ​ Left SMG − 56 − 52 26 − 3.99 40
​ ​ Left IPG − 56 − 48 38 − 3.72 40
​ ​ Left IPG − 56 − 44 38 − 3.71 40
​ ​ Left MTG − 56 − 54 0 − 3.69 21
​ ​ Left MTG − 58 − 46 6 − 3.51 22
Hyperactivation ​ ​ ​ ​ ​ ​ ​
No foci ​ ​ ​ ​ ​ ​ ​
Adults only
Hypoactivation ​ ​ ​ ​ ​ ​ ​
No foci ​ ​ ​ ​ ​ ​ ​
Hyperactivation
Right PreCG 188 Right PreCG 54 2 26 3.26 6
​ ​ Right PreCG 54 6 28 3.15 6
​ ​ Right PreCG 54 6 34 3.02 6
Left MCC 43 Left MCC − 4 20 38 2.68 24
​ ​ Left MCC − 2 14 42 2.67 32
​ ​ Left SMA − 2 12 46 2.66 32
​ ​ Left MCC − 6 20 32 2.61 24
​ ​ Left MCC − 2 20 30 2.59 24
Children only
Hypoactivation
Left ITG 875 Left ITG − 50 − 56 − 16 − 4.15 37
​ ​ Left ITG − 52 − 58 − 12 − 4.04 37
​ ​ Left ITG − 46 − 50 − 24 − 3.71 37
Left IPG 260 Left IPG − 46 − 42 46 − 3.45 40
​ ​ Left IPG − 56 − 40 40 − 2.94 40
​ ​ Left IPG − 56 − 44 38 − 2.91 40
Left PreCG 12 Left PreCG − 50 12 30 − 2.68 44
Left MTG 11 Left MTG − 56 − 54 22 − 2.67 22
Left IFG, opercular part 10 Left IFG, opercular part − 52 10 8 − 2.69 48
Hyperactivation
No foci ​ ​ ​ ​ ​ ​ ​

Regions that survived with the statistical threshold set at p 〈 0.005, a cluster extent of 10 voxels and the peak SDM-Z 〉 1. Coordinates reported in Montreal Neurological 
Institute space.
Abbreviation: BA: Broadman’s area; IFG: inferior frontal gyrus; IPG: inferior parietal gyrus; ITG: inferior temporal gyrus; MCC: median cingulate cortex; MTG: middle 
temporal gyrus; PreCG: precentral gyrus; SMA: supplementary motor area; SMG: supramarginal gyrus.
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significant publication bias, indicating the results may be driven by a 
small subset of studies or by studies with small sample sizes. Low to 
moderate between-study heterogeneity was found for the significant 
peaks (I2 = 32.10 %, 0.46 %, 4.10 %, 7.12 %, and 26.29 % for the left 
ITG, MTG, IFG, IPG, and PreCG peak respectively).

Alterations of gray matter across dd and PDS

No significant clusters were found when DD and PDS were analyzed 
together in the VBM analysis.

When child and adult participants were divided into subgroups, we 
identified a significant reduction of GMV in the left IFG (peak at − 46, 20, 
0; − 42, 22, 0; − 46, 44, − 2) in children (Fig. 3). No significant clusters 
were found in adults. Funnel plots (eFigure 1I) and Egger’s test (Z =
− 1.43, p = 0.15) showed no significant publication bias. Low between- 
study heterogeneity was found for the significant peak (I2 = 9.87 %).

MACM results

The left ITG exhibited primary co-activation with bilateral frontal- 
parietal regions, including the bilateral MFG/IFG, insula, and inferior/ 
superior parietal lobule (IPL/SPL). Additionally, co-activation extended 
to bilateral occipital-temporal regions, encompassing the bilateral fusi
form gyrus, left middle occipital/temporal gyrus, and right inferior oc
cipital gyrus (Fig. 4A. and eTable 5). The left MTG was predominately 
co-activated with the left MFG, IFG, insula, PreCG, ITG, and right MTG 
(Fig. 4B and eTable 6). The left IPG was mainly co-activated with the 
bilateral SMG, STG, and insula (Fig. 4C and eTable 7). The left SMG 
primarily co-activated with the left MTG, IFG, right IPL, bilateral insula, 
MFG, and right superior frontal gyrus (Fig. 4D and eTable 8).

Across all MACM results, the left insula region (MNI coordinates: 
− 44, 16, 2; 125 voxels) exhibited consistent co-activation with the brain 
regions commonly associated with PDS and DD (Fig. 4E).

Behavioral domain analysis results

The left ITG exhibited higher levels of activity during attention and 

semantic-related tasks (eFigure 3A). The left MTG showed enhanced 
activation, particularly during semantic-related tasks (eFigure 3B). The 
left IPG tended to display greater activity during attention-related tasks 
(eFigure 3C). The left SMG demonstrated increased activation during 
attention and social cognition-related tasks (eFigure 3D).

We also conducted a behavioral domain analysis on the common 
coactivation region of the left insula across the MACM results. The left 
insula tended to be more active during attention and speech tasks 
(eFigure 3E).

Discussion

In this study, we employed a meta-analysis approach to identify 
shared brain signatures associated with PDS and DD, two prevalent 
developmental language disorders. First, by investigating task-related 
fMRI studies, we observed shared hypoactivation in the left ITG 
extending to the IPG when considering PDS and DD as a collective pa
tient group, suggesting the shared function basis of spoken and written 
language impairments. Furthermore, when differentiating between 
children and adults, we found that the child group displayed significant 
hypoactivation in several language regions, including the left ITG, IPG, 
PreCG, MTG, and IFG, reflecting functional deficits in these develop
mental disorders. In contrast, the adult group exhibited hyperactivation 
in the motor cortex, suggesting a compensatory mechanism commonly 
related to language disorders. By investigating VBM studies, we found 
the anatomical alterations in the left IFG exclusively in children with DD 
or PDS, but not in adult participants, suggesting a shared structural basis 
for impairments in both written and spoken language disorders. Finally, 
we conducted a database-based analysis to explore the functional con
nectivity profiles of these shared brain regions and their related be
haviors, aiming to understand how the functional and structural 
alterations contribute to language development disorders. This study, 
for the first time, revealed convergences in the functional and structural 
brain alterations associated with PDS and DD, providing new insights 
into the etiology of developmental language disorders.

Fig. 3. The results of structural atypical regions in children with disorders. 
Results showed a significant hypoactivation cluster of GMV in the left inferior frontal gyrus in children with DD and PDS compared to the control group. Regions that 
survived with the statistical threshold set at p〈 0.005, a cluster extent of 10 voxels and the peak SDM-Z 〉 1. Coordinates reported in Montreal Neurological Institute 
space. 
Abbreviation: DD: developmental dyslexia; GMV: gray matter volume; PDS: persistent developmental stuttering.
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Shared functional hypoactivation across DD and PDS

We first searched shared functional signatures across language types 
by combining DD and PDS into a single patient group. We found sig
nificant hypoactivation in a large cluster centered at the left ITG 
extending to the MTG, suggesting a universal functional disruption 
across the two language disorders. The engagement of the ventral ITG in 
visual orthographic processing, including the VWFA, has been well- 
established in different written systems (Bolger et al., 2005; Martin 
et al., 2016; McCandliss et al., 2003; Price, 2012; Richlan et al., 2011; 
Van der Mark et al., 2009), although its specific role is debated (Price 
et al., 2011). Thus, it is understandable to observe the dysfunction of the 
VWFA in individuals with DD, as it is thought to underlie the impaired 
capacity for orthographic recognition (Siok et al., 2004). On the other 
hand, the involvement of the left ITG in both spoken and written lan
guage processing has been evidenced by lesion studies (Luders et al., 
1991) and noninvasive neuroimaging studies (Demonet et al., 1992). 
Accordingly, the ITG has been considered a hub for integrating auditory 
and conceptual processing (Bonilha et al., 2017). Specifically, posterior 
lateral temporal regions were sensitive to early processing, linking 
auditory words to concepts, whereas anterior temporal regions were 
likely involved in additional and deeper levels of semantic processing 
(Bonilha et al., 2017). The aforementioned evidence is consistent with 
the ventral route of the sound-meaning mapping process (Hickok & 
Poeppel, 2007), which is indispensable to the perception and recogni
tion of speech signals. Overall, the multifunctionality of the left ITG 
contributes to its crucial roles in accounting for both written and spoken 
language disorders. In this sense, our findings favor the hypothesis of 
VWFA as an interaction interface between visual orthographic 

information and high-level language (Price et al., 2011), rather than a 
pure region for housing visual word forms (Dehaene & Cohen, 2011).

Alternatively, beyond its role in language functions, the VWFA has 
recently been found to play a key role in attention. It is assumed to tune 
and amplify a range of visual stimuli, preparing them for use by other 
brain systems (Kay & Yeatman, 2017). Notably, reading and speaking 
tasks involve cognitive resources recruiting frontal and temporal regions 
(Peelle et al., 2004; Price, 2012). Thus, dysfunction of the VWFA may 
result in different manifestations of language disorders by affecting 
attention. Consistent with this perspective, we found coactivation be
tween the left ITG and the left frontal-parietal attentional network in the 
MACM analysis.

In addition, we found diminished activation in dorsal parietal re
gions across DD and PDS, including IPG and SMG, suggesting that these 
regions may serve as a shared functional basis of different language 
disorders. Multiple fMRI studies have demonstrated the engagement of 
the left IPG in auditory-motor integration in speech perception or pro
duction, which is thought to facilitate the translation of speech repre
sentation from the STG to motor representations in the frontal lobe 
(Buchsbaum et al., 2001; Guenther, 2006; Hickok, 2012; Hickok et al., 
2003; Wikman & Rinne, 2019). Additionally, the IPG has been reported 
to support the visual-motor integration process by coordinating visual 
information with motor execution processes (Batista et al., 1999; Ker
tzman et al., 1997; Ogawa & Inui, 2009; Sakata et al., 1995; Yuan & 
Brown, 2015). Collectively, these studies underscore the pivotal role of 
this parietal region in mediating sensory input and motor output, which 
may contribute to the normal development of language function. Thus, 
it is not surprising that individuals with language disorders exhibit 
dysfunction in the left IPG, as they often manifest sensory-motor 

Fig. 4. Interconnected brain network of common hypoactivation regions. 
Note: MACM results display brain regions that are coactivated with the left ITG (A), MTG (B), IPG (C) and SMG (D) in task-based activation studies of healthy 
participants from the BrainMap database, as well as a conjunction (E) across all 4 MACM maps. Coordinates reported in Montreal Neurological Institute space. 
Abbreviation: IPG: inferior parietal gyrus; ITG: inferior temporal gyrus; MACM: meta-analytic connectivity modeling; MTG: middle temporal gyrus; SMG: supra
marginal gyrus.
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integration and learning deficits. Specifically, individuals with PDS 
frequently show auditory-motor processing deficits (Assaneoet al., 
2022; Cai et al., 2012; Terband et al., 2014; Watkins, 2011), while those 
with DD often show visual-motor processing deficits (Khatib et al., 2022; 
Qian & Bi, 2014),

Alternatively, like the VWFA, the IPG/SMG has been posited as a 
core region of the attention network (Corbetta & Shulman, 2002, 2011). 
Moreover, our behavioral-domain analysis indicated that this region is 
related to attention. Consequently, our findings illuminate the neural 
basis of the frequently observed attention problems in language disor
ders in behavioral studies (Crottaz-Herbette et al., 2004; Davachi et al., 
2001; Noterdaeme & Amorosa, 1999; Petersen et al., 2013; Sciberras 
et al., 2014).

To further explore the functional significance of the shared regions 
and their relation to developmental language disorders (DD and PDS), 
we examined the functional connectivity patterns of these regions using 
MACM. In our analysis of ventral temporal and dorsal parietal ROIs, we 
observed consistent coactivation of the left insula. The insula has been 
conceptualized as a key hub connecting Broca’s area, the superior 
temporal and inferior parietal cortex, linking the different codes of 
auditory perception (of the heard word), visual representation (of the 
written word), and articulatory sequence (of the spoken word) and 
converting between them (Paulesu et al., 1996). Functionally, lesion 
studies (Baratelli et al., 2015; Marxreiter et al., 2019; Peskine et al., 
2008; Weiss et al., 2016) and fMRI studies (Ackermann & Riecker, 2004; 
Hickok & Poeppel, 2004; Riecker et al., 2000) have elucidated the roles 
of the insula in motor planning, speech motor control, auditory 
comprehension, and written language processes. Additionally, previous 
studies have demonstrated the role of the insula in domain-general 
cognitive functions, including executive control (Markostamou et al., 
2015) and attention (Jarrahi et al., 2015; Kucyi et al., 2012; Qi et al., 
2021; Wynn et al., 2015). Consistent with neuroimaging studies, 
behavioral-domain analysis also revealed predominant activation of the 
left insula during attention and language tasks. Together, the disruption 
of functional connectivity between the left insula and the left 
temporal-parietal region may represent universal critical neural circuits 
accounting for DD and PDS. Subsequent research should validate this 
proposed functional connectivity role in the two language disorders.

Furthermore, our findings have implications for the dual-route 
framework of speech, which postulates that the cortical architecture of 
speech perception bifurcates into the ventral stream and the dorsal 
stream (Hickok & Poeppel, 2004). The ventral stream traverses 
ventro-laterally towards the inferior posterior temporal cortex, sup
porting the mapping of sound onto meaning. The dorsal stream en
compasses a region at the parietal-temporal juncture, eventually 
terminating in frontal regions, supporting the mapping of sound onto 
articulatory-based representations. The co-occurrence of dysfunction in 
both the ITG and IPG suggests that individuals with PDS and DD may 
face challenges in effectively integrating the ventral and dorsal routes, 
leading to compounded difficulties in reading, speaking, and overall 
language processing. Overall, these findings support the dual-route 
model by illuminating how disruptions in specific brain regions can 
affect both written and spoken language processing, emphasizing the 
need for targeted interventions that address both routes in individuals 
with language disorders.

Shared functional hyperactivation patterns related to DD and PDS

In our secondary meta-analyses, we found common hyperactivation 
abnormalities in adult participants in the right PreCG, left SMA, and 
MCC/ACC. Overactivation in the right hemisphere is frequently attrib
uted to increased effort and compensatory strategies, reflecting the 
development of complementary mechanisms to address deficits in the 
left language network (Bach et al., 2010; Martin et al., 2016; Richlan 
et al., 2009). This hyperactivation pattern aligns with the perspective 
that less efficient processing involves greater "tissue use" (Hare et al., 

2008; Poldrack, 2015), suggesting a common compensatory mechanism 
in language impairment and related conditions (Cardebat et al., 1994; 
Cocquyt et al., 2017; Dick et al., 2013; Kraegeloh-Mann, 2004). Neu
roimaging studies have provided evidence of the involvement of the 
PreCG in motor control, motor execution, and articulatory processes 
(Bach et al., 2010; Jackson et al., 2019; Petersen et al., 1988; van 
Ermingen-Marbach et al., 2013). Increased brain activation in the right 
PreCG in individuals with DD or PDS may indicate compensation for 
reliance on motor-articulation (Cao et al., 2017; Paulesu et al., 2014).

In addition, the MCC/ACC and SMA are motor cortices primarily 
involved in planning motor sequences (Shibasaki et al., 1993; Tanji, 
2001; Tanji & Shima, 1994). Specifically, the cingulate gyrus is related 
to high-order motor control and monitors competition between re
sponses, especially in task conditions eliciting conflict (Barch et al., 
2000). The SMA plays a key role in the selection, planning, and pro
duction of voluntary hand movements, and it also contributes to speech 
perception, production, reading, and writing (Alario et al., 2006; Her
trich et al., 2016; Lima et al., 2016; Longcamp et al., 2019). Addition
ally, the left SMA is associated with verbal short-term memory and 
phonological rehearsal (Crottaz-Herbette et al., 2004; Davachi et al., 
2001), suggesting that higher activation may assist individuals with DD 
or PDS in memorizing speeches and phonological structures. Finally, the 
SMA has been implicated in supporting sequential processing (Cona & 
Semenza, 2017), a critical component commonly involved in reading 
and speaking. Thus, the hyperactivation of this region may reflect def
icits in sequential processing related to language development, in 
accordance with the procedural learning deficit hypothesis of develop
mental language disorders (Ullman et al., 2020).

A perceptual-motor theory of speech perception connects perceptual 
shaping and motor procedural knowledge in the human brain (Schwartz 
et al., 2012). Neurophysiological studies support the coupling of motor 
and sensory representations during speech perception and visual pro
cessing of letters (Fadiga et al., 2002; James & Gauthier, 2006; Nakat
suka et al., 2012). Thus, we propose that individuals with different 
language disorders, whether related to written or spoken language, may 
rely on motor strategies for compensating their language deficits during 
development.

Despite the finding that children with these two disorders exhibited 
reduced activation in several regions, we should be cautious about the 
result because no studies specifically involving children with PDS were 
included. The limited number of child studies leads us to speculate that 
the current findings are likely driven by the results of DD. Therefore, we 
did not discuss the results for children, and further studies are needed to 
obtain reliable insights into the dysfunction associated with language 
disorders in children.

The shared anatomical basis of DD and PDS

The meta-analysis of VBM studies failed to reveal any shared 
anatomical alterations when combining both groups. However, in a 
secondary analysis separating children and adults, we found that the left 
IFG exhibited reduced GMV in children with written and spoken lan
guage disorders. A structural MRI analysis of an inherited speech and 
language disorder found reduced gray matter in the left IFG (Watkins 
et al., 2002), suggesting similar structural changes in individuals with 
spoken and written language disorders. Abundant evidence suggests 
that the left IFG is related to semantic, speech, phonological processing, 
and auditory-articulatory mapping (Beal et al., 2013; Booth et al., 2007; 
Tomaiuolo et al., 2021). A meta-analysis of healthy individuals found 
the left IFG (BA45, BA47) activation during both phonemic and se
mantic fluency tasks, regardless of whether the design was overt or 
covert (Wagner et al., 2014). Notably, all language disorders exhibit 
core dysfluency features during speaking for PDS (Yairi & Ambrose, 
1999) or reading for DD (Lyon et al., 2003), potentially stemming from 
atypical structural problems in the left IFG.

However, we did not find overlaps between the functional and 
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anatomical alterations in these two disorders. The relationship between 
structure and function is a fundamental question in neuroscience. The 
structural connectome shapes and constrains signaling transmission 
between neuronal populations, resulting in complex neuronal coac
tivation patterns that support perception, cognition, and other mental 
functions (Bullmore & Sporns, 2009; Yang et al., 2023). The prevailing 
hypothesis suggests that the structure-function relationship may grad
ually decouple from unimodal to transmodal cortex (Suárez et al., 
2020), indicating that structure-function decoupling may not be an 
inherent characteristic of brain architecture (Yang et al., 2023). Given 
that language processing requires integration across modalities, such as 
sensory-motor modality combination and corresponding modality under 
different language modes (Li et al., 2022; Pattamadilok et al., 2019; 
Schaeffner et al., 2016), our finding of no overlap between structural 
and functional abnormalities is reasonable.

Implications and future perspectives

This study identified common brain signatures for DD and PDS, 
implying the inherent connection between auditory and visual language 
modalities. Early developmental studies have demonstrated interactions 
between different language modalities, even if they exhibit uneven rates 
of development (Berninger, 2000; Berninger & Abbott, 2010). Behav
ioral studies show that phonological information efficiently enhances 
letter recognition performance and modulates the brain’s response to 
visually presented stimuli (Arguin & Bub, 1995; Madec et al., 2016; 
Ziegler et al., 2000). Moreover, fMRI studies investigating neural sub
strates in different language modes have identified common activation 
in the premotor cortex during the processing of spoken and written 
languages (Longcamp et al., 2019). These findings collectively suggest 
the intertwined nature of different language modes, supporting our 
discovery of a common neural basis among DD and PDS.

In addition, the present results carry profound implications for 
further genetic research. Numerous genetic studies have identified a 
shared genetic architecture that significantly contributes to the suscep
tibility to both spoken and written language impairments, such as 
FOXP2, CNTNAP2, and CMIP (Graham & Fisher, 2013; Newbury et al., 
2010; Paracchini, 2011; Whitehouse et al., 2011). Combining genetic 
analysis and neuroimaging, other studies have implicated 
language-related genes, such as Doublecortin Domain Containing 2 
(DCDC2) and CNTNAP2, in gray matter distribution in language-related 
brain regions, including the ITG (Meda et al., 2008; Paternicó et al., 
2016). Enlightened by these results, certain genes originating from 
specific core brain circuits are expected to serve as pivotal nodes within 
gene networks intricately linked to spoken and written language 
phenotypes.

Limitations

The current meta-analysis has several limitations. First, the meta- 
analysis on children with DD or PDS found significant hypoactivation 
in the left IPG and PreCG, which was likely driven by a small subset of 
studies, as shown by asymmetry funnel plots (eFigure 1G&H). There
fore, it should be noted that this part of results should be interpreted 
with caution. Second, different linguistic tasks were used in the included 
studies, which might bias the results of our study. The participants with 
DD primarily engaged in reading-related tasks, while individuals with 
PDS typically focused on speech production activities (speaking), 
potentially eliciting distinct patterns of brain activation dependent on 
the specific task. However, it is noteworthy that despite the disparate 
tasks employed, our meta-analysis still identified common brain regions, 
highlighting the existence of fundamental language processing mecha
nisms underlying DD and PDS that transcend individual task demands. 
Furthermore, fMRI studies have illuminated a similar underlying neural 
network in both reading and speaking, encompassing a frontal-parietal- 
temporal language network, such as the inferior frontal gyrus (Sahin 

et al., 2009), and the left occipitotemporal areas (Longcamp et al., 2019; 
Qin et al., 2021), which to some extent reduce the impact of different 
tasks. Given that only a limited number of studies with similar tasks 
were included in the present meta-analysis, additional work is needed to 
examine the influence of different tasks on the results. Third, the results 
may be limited by the imbalance of studies between DD and PDS. To 
address this issue, the initial meta-analysis included the type of language 
disorders as a covariate for both fMRI and VBM data. Possibly, the VBM 
meta-analysis on adults, which encompassed only six experiments, may 
lack sufficient statistical power to detect decreased GMV. Future VBM 
studies on adults with DD or PDS are expected to provide further in
sights. Fourth, the results of the present analysis may be influenced by 
language bias, given that only English publications were included.

Conclusions

The present study revealed shared brain abnormalities across DD and 
PDS, two representative disorders of written and spoken language, 
respectively. Functionally, we found that children and adults exhibited 
shared hypoactivation in the left ITG extending to the IPG. When 
differentiating between children and adults, children with DD or PDS 
exhibited shared dysfunction in language-related regions, while adults 
with DD or PDS exhibited compensatory hyperactivation in the motor 
cortex. Anatomically, we identified decreased GMV only in the left IFG 
in children with DD or PDS. Indeed, our findings do not imply that 
phenotypic differences between language disorders are negligible. 
Rather, identifying common neural markers sheds new light on the 
neurological models of the causes of developmental language disorders, 
and meanwhile emphasizes the importance of transdiagnostic neural 
signatures in language disorders.
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