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A B S T R A C T

With the exploding number of IoT devices generating vast data volumes, there is a growing risk of 
significant performance degradation without efficient congestion management. To tackle this 
challenge, efficient regulation and supervision are essential for managing congestion in IoT 
networks. This research work introduces a One-Way-Delay (OWD)-based congestion control (CC) 
method that estimates data transmission delays of the communication path and adjusts network 
traffic accordingly. The proposed method enhances IoT device performance by continuously 
monitoring OWD along the transmission path to identify and mitigate congestion. Comparative 
analysis with existing methods demonstrates that the proposed approach more effectively utilizes 
network resources, reduces congestion, and improves throughput while ensuring fairness and 
reliability within the IoT infrastructure. The experimental simulations show that the proposed 
OWD-based method outperforms well-established TCP variants such as BBR, TCP Cubic, HTCP, 
and New Reno, achieving average throughput improvements ranging from 4.1 % to 22.7 %. The 
proposed method also maintains fairness in mixed-traffic environments and effectively manages 
congestion in complex network topologies.

1. Introduction

The Internet of Things (IoT) is a rapidly expanding network of interconnected devices that communicate via the Internet, often 
equipped with sensors and actuators for data collection, remote monitoring, and control [1]. IoT technology is widely applied across 
various industries, including healthcare, agriculture, automotive manufacturing, home automation, and smart cities, to enhance ef-
ficiency, productivity, and decision-making through data analysis. According to the latest IoT analytics report [2], there were 19.2 
billion connected IoT devices globally in 2024, and this number is expected to reach 29.7 billion by 2027 (Fig. 1). This surge in 
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connected devices has resulted in a substantial increase in data traffic across communication network, both wired and wireless, 
necessitating effective congestion management strategies to maintain performance and reliability.

In communication networks, the Transport Layer protocol, Transmission Control Protocol (TCP) [3] is responsible for reliable data 
transmission between nodes. TCP provides an end-to-end, connection-oriented service over IP networks. In 1981, Jacobson [3] pro-
posed mechanisms such as slow start, congestion avoidance, fast retransmission, and recovery to manage congestion during data 
transmission. These innovations significantly enhanced TCP’s congestion control, reducing data packet loss and improving network 
bandwidth utilization, setting a benchmark for future TCP versions.

Cubic [4] and Compound [5] are the most widely deployed versions of TCP over the Internet and IoT networks [43–46]. Cubic, 
globally adopted and used in Linux and Android operating systems, is a congestion control approach designed to enhance TCP per-
formance in high-bandwidth networks. It utilizes a cubic function to regulate the data transmission rate based on network conditions. 
However, Cubic’s aggressive nature limits its performance in IoT networks, where most devices communicate through low bandwidth 
channels. Compound, developed by Microsoft and used in Windows Vista and later versions, aims to improve TCP performance in 
high-speed and high-delay networks. It adapts the transmission rate to the current congestion window (cwnd) and smooth round-trip 
time (RTT). While the Compound performs well in high-speed and long-delay networks, it requires further enhancements for optimal 
performance in IoT networks due to its reaction time.

Therefore, we analyzed the performance of Cubic [4] and Compound [5] to identify the positive and negative aspects of both 
protocols. The analysis was performed using NS-2.35 to simulate both protocols in a dumbbell topology. In this simulation setup, the 
bottleneck link bandwidth was set at 1.5 Mbps, the queue size at 50 packets, and the simulation time at 100 s. This topology included 
one TCP and two UDP connections. One UDP flow (200 Kbps) ran parallel to TCP, while the other UDP flow (1000 Kbps) was in the 
reverse direction of TCP. We compared the TCP variants’ throughput and packet loss ratio with RTT varying from 150 ms to 400 ms. 
The choice of a 50-packet queue size and a bottleneck bandwidth of 1.5 Mbps was made based on empirical data from related work and 
the typical characteristics of constrained IoT environments. Many IoT networks, particularly in resource-constrained deployments, 
tend to have low-bandwidth links and limited buffer sizes, making these parameters representative of real-world conditions.

Fig. 2 illustrates the goodput of both TCP variants. TCP Cubic’s goodput increases (to some extent) as RTT increases, while 
Compound TCP’s goodput decreases with increasing RTT. The behavior of both TCP variants is opposite to each other during the 
simulation. Compound TCP achieves better goodput until RTT reaches 250 ms, after which TCP Cubic outperforms Compound TCP. 
Thus, Compound TCP is suitable for low-delay networks, whereas TCP Cubic is better suited for high-delay networks. Fig. 3 depicts the 
packet loss ratio for TCP Cubic and Compound TCP. TCP Cubic experiences more packet losses than Compound TCP. As RTT increases, 
the packet loss in TCP Cubic decreases, whereas Compound TCP consistently exhibits lower packet loss compared to TCP Cubic.

1.1. Motivation

Traditionally, TCP has been widely deployed over the Internet to provide reliable data transfer between devices. However, con-
cerns have been raised about the suitability of TCP for IoT networks due to the unique characteristics and constraints of IoT devices [6]. 
Studies by Gomez et al. [6] (2018), Jain et al. [7] (2022), and Anitha et al. [46] (2023) on IoT congestion control have highlighted that 
network service quality suffers due to factors such as network lifespan, connection quality, control overhead, end-to-end delay, and the 
presence of heterogeneous devices in the network. As IoT is envisioned as a crucial part of the future internet, spanning various 

Fig. 1. IoT Analytics forecast of connected IoT devices (Source IoT Analytics [2]).
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domains, resolving congestion issues is imperative to facilitate resource sharing and performance, fostering IoT development in the 
future. These studies also argue that TCP will continue to play a significant role in the growth of IoT due to its congestion control, 
reliability, and end-to-end semantics, which are important for various IoT applications.

The large number of IoT devices will generate enormous amounts of data, necessitating a suitable congestion control approach to 
regulate internet traffic. Several innovative approaches have been proposed to address this issue in recent years. For instance, deep 
reinforcement learning-based congestion control algorithms have shown promise in optimizing transmission rates and improving 
network stability under varying traffic conditions [47,48]. Similarly, fuzzy logic-based methods have been employed to provide 
energy-efficient solutions for congestion management in resource-constrained environments like WSNs [13,49,50]. Hybrid approaches 
that combine traditional TCP mechanisms with adaptive algorithms have also been explored to enhance throughput and fairness 
[18–21]. Despite these advancements, many of the existing solutions struggle with the unique challenges posed by IoT networks, 
particularly in terms of handling asymmetric delays and maintaining fairness in mixed-traffic environments.

The following points motivated us to design a new congestion control approach for IoT networks. 

✓ Real-Time Monitoring and Control: IoT applications, such as smart city traffic management and healthcare, rely on minimizing 
forward delay to ensure timely updates and real-time responses. For instance, in traffic management, forward delay-based 
congestion control helps maintain the flow of critical information, while in healthcare IoT, it ensures the real-time transmission 
of vital signs for immediate intervention [1,6].

✓ Asymmetric Networks in IoT: IoT devices in remote areas often operate in asymmetric network environments, such as satellite or 
long-range wireless networks. For example, in rural monitoring applications, forward delay-based congestion control optimizes 
data transmission from sensors to servers, ensuring timely delivery even with slower return paths [7,46].

✓ Traffic Engineering for IoT: Efficient traffic management is critical in IoT networks. In Industrial IoT (IIoT), congestion control 
based on forward delay ensures time-sensitive data is prioritized, maintaining process stability. Similarly, during firmware updates 
or data delivery to large IoT networks, forward delay management prevents congestion and ensures efficient transmission [46].

On the other hand, most delay-based congestion control approaches use RTT as a delay indicator. When the source computes the 
RTT, it includes the time a packet takes to reach the destination and the time for the acknowledgment (ACK) to return to the source. 
Our communication system utilizes separate channels for forward and backward traffic to implement full-duplex communication. 
Therefore, these channels operate independently, resulting in potentially different delays for each channel.

1.2. Contributions

The key contributions of this paper are as follows. 

➢ It leverages a one-way delay estimator at the receiver end and includes this information with acknowledgments sent to the sender.

Fig. 2. RTT Vs Goodput: Under dumbbell topology with bottleneck link of 1.5 Mbps, queue size 50 packets, forward and backward UDP 200Kbps 
and 1000Kbps respectively, CBR, RTT varies from 150 to 400 ms, simulation time 100 ms.

Fig. 3. RTT vs. packet drop ratio Under dumbbell topology with bottleneck link of 1.5 Mbps, queue size 50 packets, forward and backward UDP 
200Kbps and 1000Kbps respectively, CBR, RTT varies from 150 to 400 ms, simulation time 100 ms.
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➢ It introduces an OWD Analyzer system to measure and analyze OWD in the network for accurately predicting the traffic intensity of 
the path.

➢ It also proposed an adaptive congestion control mechanism to adjust the transmission rate based on current traffic intensity.
➢ An experimental evaluation of the proposed approach is performed, and results indicate improvement in the performance 

regarding device lifetime, throughput, and fairness.

These contributions collectively advance the understanding and implementation of congestion control mechanisms tailored spe-
cifically for IoT networks, offering enhancements in performance and network management.

The rest of the paper is organized as follows: Section 2 describes the existing literature on IoT and TCP. In section 3, we proposed a 
new congestion control approach that utilizes a one-way path delay to adjust the data transfer rate. Section 4 presents the experimental 
analysis of the proposed approach compared with the existing approach. Section 5 concludes the overall performance of the proposed 
approach.

2. Related work

This section reviews existing research on CC mechanisms for IoT networks, with a focus on TCP variants, to assess their suitability 
and identify gaps for our proposed Delay-based Adaptive CC Algorithm.

2.1. Related survey on congestion control

Due to limitations in smart devices, congestion is a significant issue in IoT networks, leading to data loss and performance 
degradation. The authors of [7] review end-to-end and hop-by-hop CC strategies for reliable communications, emphasizing rate 
optimization and traffic engineering within the IoT network stack. Another survey work [8] provides an overview of CC algorithms in 
the transport layer, highlighting the importance of CC for critical IoT applications and addressing current difficulties in adjusting to 
network conditions.

Machine learning applications in broad-sensing Internet CC and avoidance are analyzed in Ref. [9], discussing specific procedures 
and technologies for network state acquisition. The authors of [10] focus on improving TCP CC to accommodate emerging technol-
ogies, using delay signals (RTT or one-way delay) to detect congestion early. Apart from these, the work of [11] examines CC 
mechanisms in multipath environments, identifying research gaps and suggesting future directions.

2.2. TCP variants for IoT

TCP variants have been specifically developed to address the distinct challenges faced by IoT networks, including resource con-
straints, intermittent connectivity, and the need for efficient data transmission. For instance, LLN TCP is designed for low-power, lossy 
networks, employing trickle timers and adaptive retransmission to manage packet loss effectively [12]. However, it may struggle with 
rapidly changing network conditions, potentially leading to delays in data transmission. TCP-WSN incorporates energy-efficient al-
gorithms tailored for Wireless Sensor Networks, addressing the limited resources of sensor nodes [13]. Despite this, it can face dif-
ficulties in managing diverse application requirements and varying traffic loads. Similarly, TCP-IoT optimizes the protocol for 
managing short data packets in low-bandwidth environments, enhancing communication efficiency [14]; yet it may not handle larger 
packet sizes well, leading to potential bottlenecks. The CoAP-TCP variation minimizes overhead and resource usage for efficient in-
teractions with the Constrained Application Protocol [15], but its effectiveness can be hindered in highly congested networks. 
Furthermore, Compound TCP for IoT is adapted to manage low bandwidth and variable latency, enhancing performance in fluctuating 
network conditions [16]; however, it may still encounter challenges with fairness and throughput during extreme congestion sce-
narios. Lastly, TCP Cubic with Optimized Small Packets includes enhancements for handling small data packets in 
resource-constrained devices [17], but it may be sensitive to specific network conditions, impacting its overall performance. Despite 
these advancements, issues such as ongoing packet loss, latency variations, and the inherent complexity of these protocols remain, 
necessitating continuous research and refinement to ensure optimal performance in diverse IoT scenarios.

2.2.1. IoT-specific CC mechanisms
Several congestion control methods aim to reduce network congestion, but challenges remain. The Effective Loss-Based Scheme 

adjusts the congestion window based on packet loss, but it may still react too aggressively to transient losses, leading to bandwidth 
underutilization [19]. DDNN-PSO, designed for intelligent transportation systems, improves delivery ratios and reduces latency, but it 
still faces scalability issues and may not be well-suited for highly dynamic environments with frequent topology changes [20]. 
EWT-IoT enhances TCP performance without requiring AQM changes, but fairness and throughput may degrade in dense IoT envi-
ronments where many flows compete for limited resources [21].

2.2.2. Delay-based CC approaches
Verma et al. proposed a delay-based adaptive method named DACC which adjusts transmission rates based on queuing latency but 

can misinterpret high latency caused by other factors as congestion, leading to unnecessary reductions in transmission rates [23]. In 
another work, Su et al. [24] outlined DVPTCP, which improves bandwidth utilization in high-latency networks, but its reliance on RTT 
can lead to inaccurate congestion detection in asymmetric networks, causing inefficiencies in traffic management. DA-BBR addresses 
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fairness concerns in BBR, but it may still experience performance degradation in high-latency or high-loss environments due to its 
reliance on RTT-based control [25]. Modular Data CC reduces packet loss in enterprise cloud systems but can face difficulties in 
complex, multi-tenant environments where network conditions change rapidly [26]. CoCoA++ improves congestion detection in 
low-power IoT devices, but it may still suffer from slow convergence times in highly variable network conditions, affecting the 
timeliness of congestion control [27].

2.2.3. Adaptive CC for resource-constrained devices
In the work proposed by Xu et al. [28], the adaptive approach PHAQM, which uses MPC theory and Hebbian learning, outperforms 

traditional AQM methods but requires significant computational resources, making them less suitable for highly constrained devices. 
Adaptive Aggregation Strategies reduce packet and header sizes, improving transmission efficiency, but these methods can still lead to 
excessive data abstraction, impacting the granularity of information sent across the network [29]. QTCP, which uses Q-learning to 
manage congestion, improves throughput and reduces delays, but it still faces challenges in environments with highly unpredictable 
traffic patterns [30]. Lastly, LACC improves vehicle-to-vehicle communication by optimizing message delivery. Still, it may struggle in 
large-scale vehicular networks with high-density traffic, where maintaining low latency becomes increasingly difficult [31].

2.2.4. Machine learning-based CC for IoT
Machine learning-based CC methods have emerged to optimize performance in IoT networks by leveraging predictive algorithms 

and adaptive strategies. Leon et al. [32] proposed a Cat Boost-Based Approach that predicts packet delivery based on the network’s 
traffic state, which leads to improvements in both packet delivery ratio and network transit time, enhancing overall efficiency in IoT 
networks. In another work proposed by Xie et al. [33], adaptive Fuzzy Prescribed Time CC uses a saturation Fuzzy time prescribed 
function to ensure user-defined tracking performance, providing flexibility and enhancing system responsiveness under varying 
network conditions. DRL-AQM applies deep reinforcement learning to manage congestion adaptively, outperforming classic AQM 
methods, especially in complex network scenarios where traditional approaches struggle [34]. Congestion Control using Learning 
Automata combines learning automata with IoT environments, efficiently eliminating congestion and improving QoS in lossy net-
works, particularly where packet loss is prevalent [35].

In more specialized cases, OAC-TCPCC focuses on addressing long-term delays in the Internet of Distributed Smart Things com-
munications, significantly enhancing TCP throughput and reducing file transfer times, making it suitable for distributed systems [36]. 
Hou et al. [47] proposed the CC method for lossy networks like 6LoWPAN, it uses a Deep-Reinforcement-Learning-Aided Loss-Tolerant 
mechanism that adjusts transmission rates based on network state feedback, improving packet delivery ratios and throughput in 
constrained environments. In another work Luo et al. [48] proposed inverse reinforcement learning with parallel training 
optimization-based congestion control decisions by applying inverse reinforcement learning, which increases training efficiency 
through parallel processing, leading to better network performance in highly dynamic scenarios. In smart grid networks, a rein-
forcement learning algorithm dynamically adjusts transmission rates, optimizing data flow and enhancing network stability in 
complex and large-scale smart grid environments [49]. Finally, the efficient fuzzy methodology for CC in wireless sensor networks uses 
fuzzy logic to manage congestion, improving energy efficiency while reducing computational complexity, which is crucial for 
resource-constrained wireless sensor networks [50].

Machine learning-based CC approaches show significant promise in addressing congestion and improving performance across 
diverse IoT environments. By leveraging predictive models and adaptive mechanisms, these methods enhance packet delivery, opti-
mize throughput, and improve network responsiveness. However, challenges still exist, particularly related to the high computational 
demands required for real-time decision-making and adaptability. As IoT networks grow more complex and dynamic, the need to 
balance performance gains with resource constraints, especially in low-power, lossy networks, remains a critical area for further 
research and development.

2.2.5. Cross-layer CC for IoT
Cross-layer CC techniques utilize data from multiple layers of the communication stack to enhance network performance, but 

several challenges still persist. QCCP, designed for IoT in the medical industry, prioritizes critical data and reduces packet loss, delay, 
and power consumption. However, the method can still struggle with scalability in large networks, especially under heavy traffic loads, 
where prioritization alone may not be sufficient to prevent congestion [38]. Rank-Based CC adjusts transmission rates based on 
successful transmissions, which improves throughput in multipath environments. Yet, this method can suffer from inefficiencies in 
highly dynamic environments, where fluctuating network conditions may result in inaccurate transmission rate adjustments, leading 
to congestion or underutilization [37].

Mast et al. [39] proposed a cross-layer solution for TCP in Wireless Ad Hoc Networks, that improves throughput and fairness by 
reducing retransmissions. But, it faces challenges in managing the overhead of cross-layer communication, which can become complex 
and resource-intensive in larger, more mobile networks. In another work, Mishra et al. [40] outlined the IoV cross-layer strategy to 
improve network performance in the Internet of Vehicles networks by notifying the sender about buffer space and link usage. Despite 
these improvements, the approach can be limited by the rapid mobility and high density of vehicles in urban environments, leading to 
delays in communication that may not fully alleviate congestion.

While cross-layer approaches improve congestion management and resource utilization, but on the cost of complexity, overhead, 
and compatibility issues across different devices and protocols, limit their scalability and efficiency in larger, more heterogeneous IoT 
and vehicular networks.

The key variants TCP Cubic [4], New Reno [42], HTCP [41], and BBR [51] are designed to enhance performance in diverse network 
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conditions, each addressing specific challenges inherent to traditional TCP. Cubic optimizes congestion control for high-bandwidth 
and long-distance networks by employing a cubic function to adjust its congestion window, which improves throughput but can be 
sensitive to sudden changes in network conditions, leading to potential performance degradation. An improved variant of classical 
Reno, New Reno, addresses issues related to packet loss and retransmission in scenarios with multiple losses, yet it may still struggle in 
environments with high delay and frequent packet loss, impacting overall efficiency. A more aggressive variant HTCP introduced to 
adjust the congestion window based on observed network conditions, effectively enhancing performance in high-bandwidth-delay 
product environments; however, its performance can diminish in highly dynamic or unpredictable network settings. Lastly, BBR 
(Bottleneck Bandwidth and Round-trip propagation time) aims to optimize throughput and minimize latency by estimating the 
bottleneck bandwidth and RTT, yet it has been criticized for its potential to create unfairness among competing flows and its de-
pendency on accurate bandwidth estimation. As IoT and high-speed networks continue to evolve, future research may focus on hybrid 
approaches that combine the strengths of these TCP variants while addressing their limitations, such as enhancing adaptability in 
rapidly changing environments, improving fairness in multi-flow scenarios, and optimizing performance.

2.3. Research gap

From the literature study and presented comparative summary of existing congestion control schemes for IoT outlined in Table 1, it 
is evident that the advancement of congestion management is inevitable to address the requirement of resource-constrained networks 
like IoT and M2M communication. The study reveals the following listed research gaps that must be addressed to fulfil the current 
requirements. 

✓ Real-time adaptation in highly dynamic IoT environments represents a critical research gap that necessitates focused attention to 
fulfil performance requirements related to device lifetime, throughput, and fairness.

✓ Scalability issues represent a significant challenge that must be addressed in the context of congestion management for resource- 
constrained networks like IoT and M2M communication.

✓ Despite the continuous push of standardization and interoperability in enhancing congestion management for IoT networks, there 
is a lack of solutions that effectively address the resource-constrained requirement within current congestion control mechanisms.

✓ The QoS awareness to be incorporated into congestion management strategies is crucial for effective resource utilization.
✓ To satisfy the changing needs of M2M and IoT communication, a unique research need that has to be explored is the dynamic 

adjustment of delay thresholds.

3. Proposed OWD congestion control

The key goal of designing the proposed method is to enhance the performance of IoT devices. The OWD is an important factor that 
plays a vital role in various IoT applications where real-time communication, control, and decision-making are essential. High delay 
may lead to longer RTT, potentially impacting TCP throughput and efficiency. When utilizing RTT as a congestion indicator, the source 
calculates the total time for a packet’s journey from the source to the destination and back. This computation includes the time for the 
data packet to reach the destination and the time for the ACK packet to return to the source.

Consider a scenario where the backward path, responsible for transmitting acknowledgment packets, encounters higher traffic than 
the forward path. This congestion on the backward path results in delays or increased queuing times for acknowledgment packets. If 
the source relies on RTT and detects delays based on the backward path, it might interpret this delay as a sign of overall network 
congestion. Consequently, the source may mistakenly assume that the entire network is congested and respond by reducing its 
transmission rate. This reduction in transmission rate aims to mitigate perceived congestion based on the RTT measurement.

The challenge here lies in the fact that, in this particular situation, the congestion is confined to the backward path handling 
acknowledgment packets. The forward path, responsible for sending data packets from the source to the destination, may be relatively 
uncongested. Consequently, reducing the overall transmission rate based on RTT could be an unnecessary and suboptimal response, as 
it impacts both the forward and backward paths.

To tackle this issue, the proposed approach recommends using forward delay (One-Way Delay, OWD) as a congestion indicator. By 
concentrating on the delay specifically in the forward path, the source can make more precise and targeted adjustments to its 
transmission rate, effectively adapting to the actual congestion conditions within the network. Based on Fig. 4, the proposed approach 
has been structured into four distinct modules: the OWD Estimator, OWD Analyzer, Traffic Intensity Predictor, and Transmission Rate 
Controller. The process flow of the proposed OWD congestion control method is shown in Fig. 5. It depicts how different modules 
interact with each other during the transmission of data (see Table 1).

3.1. Notation and abbreviation

The description of notations and abbreviations used in the proposed method and its evaluations are listed in Table 2.

3.2. One-way delay estimator

The proposed approach first calculates the OWD at the destination and then sends it to the source using acknowledgment. Here’s 
the representation of Algorithm 1 for OWD. 
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Table 1 
A summary of key congestion control methods.

Method Year of 
Publication

Working Approach Type 
(Delay, 
Loss, or 
Hybrid)

Role in IoT Issue if Used in IoT Network

Dynamic Cubic Function 
for Congestion 
Window Adjustments 
[4]

2008 Uses a cubic function to 
dynamically adjust the 
congestion window based on 
network conditions.

Hybrid Enhances high-speed and 
long-distance networks by 
optimizing window sizes.

Sensitivity to rapidly 
changing conditions, leading 
to performance degradation.

Priority Queuing for IoT- 
Based Technologies 
[18]

2023 Implements priority queuing 
for assigning priority levels to 
traffic.

Delay Improves IoT traffic 
management and resource 
allocation.

Complex configuration, and 
challenges in diverse IoT 
applications.

Loss-Based Congestion 
Management for IoT 
[19]

2022 Manages congestion by 
leveraging loss-based 
mechanisms.

Loss Outperforms standard 
algorithms in congestion 
management.

Performance varies in 
dynamic and real-world IoT 
environments.

Particle Swarm 
Optimization in 
Wireless Sensor 
Networks for ITS [20]

2023 Combines PSO with a Dynamic 
Deep Neural Network to tackle 
congestion.

Hybrid Improves congestion control 
in Intelligent Transportation 
Systems (ITS).

Limited performance 
beyond experimental setups; 
context-dependent.

Early Window Tailoring for 
TCP in Home Networks 
[21]

2021 Introduces early window 
tailoring to enhance TCP 
performance without 
modifications.

Delay Reduces transfer time, 
improves fairness, and 
increases goodput in home 
IoT networks.

Lacks explicit details on 
challenges or limitations in 
implementation.

Lightweight TCP for IoT 
(lwIP) [22]

2022 Enhances lwIP TCP by 
addressing constraints and 
scalability in IoT networks.

Hybrid Improved performance 
metrics such as RTOs and 
congestion behavior in IoT.

Lacks real-world testing to 
identify potential 
limitations.

Queuing Delay Variation- 
Based Adaptive TCP 
[23]

2020 Adapts transmission rates 
based on queuing delay 
variation.

Delay Reduces packet loss and 
retransmissions, enhances 
fairness and goodput.

May perform poorly in 
rapidly changing or 
unpredictable 
environments.

RTT-Based Dynamic 
Adjustment of Virtual 
Parallel Streams [24]

2019 Adjusts parallel streams based 
on RTT to optimize 
performance.

Delay Enhances bandwidth 
utilization and TCP 
friendliness.

Limited efficacy in 
heterogeneous, dynamically 
changing IoT networks.

DA-BBR (Delay-Aware 
BBR) [25]

2021 Addresses fairness in Google’s 
BBR by considering RTT.

Delay Reduces persistent queues 
and improves fairness indices.

Requires more diverse 
evaluations to ensure 
broader applicability.

Delay-Tolerant Data 
Congestion Avoidance 
(Modular Computing) 
[26]

2018 Uses modular computing for 
delay-tolerant congestion 
avoidance.

Delay Reduces packet loss in large 
enterprise cloud systems.

Efficiency in processing 
needs improvement.

CoAP Congestion Control 
(Delay Gradients and 
Probabilistic Backoff) 
[27]

2019 Utilizes delay gradients and 
probabilistic backoff.

Delay Provides a more accurate 
congestion measure and 
improves packet-sending 
rates.

Complex implementation, 
unnecessary congestion 
window reduction.

MPC-Based Adaptive AQM 
with Hebb Learning 
[28]

2020 Applies MPC theory with Hebb 
learning rules for adaptive 
queue management.

Hybrid Faster convergence rate, 
reduces queue length 
fluctuations.

May perform poorly in real- 
world applications.

QTCP (Reinforcement- 
Based Q-Learning for 
TCP) [30]

2021 Uses Q-learning to allow 
senders to learn optimal 
congestion control policies.

Hybrid Improves throughput and 
reduces transmission latency 
in IoT networks.

Performance varies in 
dynamic or unpredictable 
environments.

Adaptive CC for Vehicle-to- 
Vehicle 
Communication [31]

2019 Implements adaptive 
congestion control with greedy 
routing for vehicular networks.

Hybrid Enhances communication by 
reducing delays and 
improving message delivery.

May impose unnecessary 
burden in handling 
interruptions.

Adaptive Fuzzy Congestion 
Control for HSTCP/ 
AQM Systems [33]

2021 Utilizes fuzzy logic with a novel 
shifting function for congestion 
control.

Hybrid Improves convergence and 
reduces queue length in 
adaptive AQM systems.

Complex implementation 
and requires frequent 
adjustments.

CCCLA (Learning 
Automata for IoT) [35]

2019 Uses learning automata for 
congestion control in lossy 
networks.

Loss Improves QoS, delay, 
reliability, and throughput in 
IoT networks.

Performs poorly in real- 
world networks due to 
complexity.

OAC-TCPCC (Dynamic 
Congestion Windows 
for IoDST) [36]

2020 Dynamically adjusts congestion 
windows for optimal 
throughput.

Delay Improves TCP throughput in 
networks with long 
propagation delays.

Limited to high-delay 
networks, may struggle in 
others.

QCCP (Priority-Based CC 
for IoMT) [38]

2023 Prioritizes traffic in Internet of 
Medical Things (IoMT) 
networks.

Delay Reduces latency, packet loss, 
and improves throughput.

Limited to medical IoT, may 
underperform in other 
scenarios.

Buffer-Aided Congestion 
Control for IoV [40]

2021 Uses two extra bits in ACKs to 
convey buffer and link status 
for dynamic congestion 
window adjustment.

Delay Optimizes bandwidth and 
prevents congestion in 
vehicular networks.

Additional overhead and 
complexity in real-time ACK 
processing.

(continued on next page)

L.P. Verma et al.                                                                                                                                                                                                       Heliyon 10 (2024) e40266 

7 



Table 1 (continued )

Method Year of 
Publication 

Working Approach Type 
(Delay, 
Loss, or 
Hybrid) 

Role in IoT Issue if Used in IoT Network

H-TCP for High 
Bandwidth-Delay 
Products [41]

2006 Adapts congestion control for 
paths with high bandwidth- 
delay products.

Delay Enhances performance in 
networks with high BDP.

Focuses mainly on 
congestion avoidance, 
leaving slow-start 
unchanged.

Fast Retransmit and 
Recovery Without TCP 
SACK [42]

2002 Responds to partial ACKs 
during Fast Recovery to 
improve performance without 
SACK.

Loss Improves performance in 
scenarios where SACK is not 
available.

Takes longer to detect loss 
and can unnecessarily 
reduce the window size.

DRL-Aided Loss Tolerance 
for 6LoWPAN [47]

2023 Uses deep reinforcement 
learning to tolerate losses and 
adjust rates in 6LoWPAN.

Loss Enhances throughput and 
delivery in lossy IoT 
networks.

High computational 
complexity increases energy 
consumption.

Inverse Reinforcement 
Learning for Parallel 
Congestion Control 
[48]

2023 Optimizes congestion control 
through parallel training with 
IRL.

Hybrid Increases training efficiency 
and improves network 
performance.

Requires a large amount of 
training data, leading to 
initial delays.

RL-Based Congestion 
Management in Smart 
Grids [49]

2022 Dynamically adjusts 
transmission rates in smart grid 
networks using RL.

Hybrid Improves real-time decision- 
making and stability in smart 
grids.

High computational 
overhead may be unsuitable 
for resource-limited devices.

Fuzzy Logic for Congestion 
Control in Wireless 
Sensor Networks [50]

2021 Uses fuzzy logic for congestion 
control in resource-constrained 
WSNs.

Hybrid Improves energy efficiency 
and lowers computational 
demands.

Limited adaptability in 
highly dynamic networks 
due to predefined rules.

Fig. 4. Proposed OWD framework.
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3.3. One-way delay Analyzer

The OWD Analyzer is a module proposed specifically to measure and analyze the OWD of a path within a network. Its primary 
objective is to evaluate and monitor the delay characteristics of the network, providing valuable insights into its overall performance.

This module employs an OWDv approach to predict the traffic intensity along the path. OWDv is calculated by measuring the 
deviation of the OWDcur from the path’s OWDmin. An increase in OWDv indicates a higher degree of variability or fluctuation in the 
OWD, which could signify congestion or other network-related issues. The OWDv is determined using the following equation (1): 

OWDv=
OWDCur − OWDmin

OWDmin
(1) 

OWDv represents the variation relative to OWDmin. OWDv serves as an indicator of the dynamic behaviour exhibited by the 

Fig. 5. Process flow of proposed method.

Table 2 
Notation and Abbreviations used in the proposed method.

Notation Description

PStime Packet Sent Time
PRtime Packet Receive Time
OWD One Way Delay
OWDv OWD variation
OWDmin Minimum OWD
OWDcur Maximum OWD
μ The threshold value based on the maximum OWDv
cwnd Congestion Window Size
ws(t) Congestion window size at time t
Ds(t) Observed one-way delay at time t
ds Estimated propagation delay
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network. A rising OWDv signifies increased variability in delay, which may be attributed to shifts in traffic intensity or alterations in 
network conditions.

The proposed approach involves adapting the traffic intensity along the path based on the observed changes in OWDv. By 
monitoring OWDv over time, the system can make informed decisions regarding traffic management to mitigate congestion and 
optimize network performance.

3.4. Traffic Intensity Predictor

During the slow start phase, the values of OWDv, OWDmin, and μ (the threshold value based on the maximum OWDv) are 
calculated. These values form the basis for assessing traffic intensity and network conditions. As TCP transitions into the congestion 
avoidance phase, the calculated values of OWDv, OWDmin, and μ are used to adjust the transmission rate. In this phase, the method 
continuously monitors OWDv and μ to detect any signs of increasing congestion. When OWDv exceeds the threshold μ, it indicates that 
traffic intensity is high on the network path. Thus TCP needs to adjust the transmission rate along the path. The value of μ is 
continuously updated based on the maximum observed OWDv, ensuring that the method adapts to evolving network traffic intensity in 
real-time.

3.5. Transmission Rate Controller

This module dynamically adjusts the transmission rate along the network path in response to fluctuations in path traffic intensity. 
To determine if the path’s traffic intensity has reached or exceeded its capacity, the method uses OWD and threshold μ, serving as a 
congestion indicator. When the traffic volume surpasses the path’s capacity, the source must reduce its transmission rate by reducing 
congestion window. 

The OWDv plays a crucial role as a congestion predictor. If the OWDv exceeds the threshold μ, indicating potential congestion on 
the path, the source modifies its transmission rate. The reference value OWDv_max is utilized to compute the threshold μ. This dynamic 
adjustment of μ ensures an accurate reflection of the network status at the source, enabling swift responses to changes in traffic 
conditions and facilitating efficient congestion management.

Equation (2) represents a set of conditions and corresponding actions aimed at dynamically adapting the congestion window size in 
a network protocol. These adjustments are based on the observed OWDv and the threshold value μ. When OWDv exceeds the threshold 
2μ, indicating potential congestion, the rate controller reduces the congestion window size to mitigate congestion and promote effi-
cient data transmission. Similarly, if OWDv is within the acceptable range (OWDv >μ), the congestion window size remains unchanged 
to maintain optimal network performance. However, if OWDv is less that μ means that network path still having available bandwidth. 
Thus, TCP increase the transmission rate in a linear fashion. 

cwndi+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cwndi −

(
1

cwndi

)

if OWDv > 2μ

cwndi if OWDv > μ

cwndi +
1

cwndi
if cwndi < μ

cwndi + 1 if cwndi〈ssthresh <

(2) 
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In essence, the proposed method introduces a novel approach to congestion control in IoT networks, leveraging OWDv, dynamic 
transmission rate adjustment, and advanced congestion prediction techniques to optimize network performance and reliability. The 
following are the novelty of the proposed approach. 

✓ The suggested solution reduces the cwnd according to equation (2) by subtracting 1/cwnd if OWDv> 2μ. It means TCP flow needs 
to lower the transmission rate when the network reaches capacity. Nevertheless, these kinds of notions are absent from conven-
tional TCP variations. Therefore, this modification is applied when the observed OWDv is greater than twice the product of the μ.

✓ On the other hand, if OWDv is greater than μ, the proposed method maintains the study state and does not change the value of 
cwnd. Unlike the traditional TCP, the proposed method will not exceed the network capacity when the network has limited 
resources.

The proposed approach uses the same slow start and congestion avoidance method to start the TCP and utilize the available 
network capacity. This complete method is shown in Algorithm 2.

Additionally, the time and space complexities of the proposed congestion control method, along with several widely used TCP 
variants, are as follows: TCP Reno and TCP New Reno both have a time complexity of O(n) and a space complexity of O(1), meaning 
they require linear time to process data but constant space regardless of the data size. Similarly, TCP H-TCP and TCP BBR also exhibit O 
(n) time complexity and O(1) space complexity. In contrast, TCP Cubic has a more efficient time complexity of O(log n), though it 
maintains the same space complexity of O(1). The proposed OWD-based method matches the linear time complexity of O(n) and the 
constant space complexity of O(1) seen in the other protocols, making it computationally efficient while requiring minimal memory 
resources.

4. Analysis of OWD over RTT

To mathematically demonstrate that OWD is a better indicator of congestion than RTT, we have modeled the relationship between 
these metrics under various congestion scenarios. Let, OWDAB be an OWD from node A to node B and OWDBA be a One-Way Delay from 
node B to node A. Let, RTT be the time it takes for a packet to travel from node A to node B and back to node A. Initially, without 
congestion RTT should be two times of OWD as shown in equation (3). 

RTT=OWDAB + OWDBA (3) 

If RTT is equal to double of OWD, and OWD is denoted as d, then RTT will be calculated using equation (4): 

RTT=2 × d (4) 

If the network is congested in only one direction (from A to B), Then OWDAB is calculated by equation (5). 

OWDAB = d + Δ (5) 

Fig. 6. Sensitivity analysis with heavy congestion on the forward path and less congestion on the backward path.
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Where, Δ an additional delay was introduced due to congestion on the path from A to B. However, the backward path B to A is not 
congested. Therefore, RTT is calculated using equation (6). 

OWDBA = d 

RTT=OWDAB + OWDBA 

RTT=(d+Δ) + d 

RTT= 2d + Δ (6) 

4.1. Sensitivity analysis

The relative and percentage changes for OWD and RTT can be computed as follows:
Relative change in OWD: Δ/d, Percentage change in OWD: (Δ/d) × 100.
Relative change in RTT: Δ/(2d), Percentage change in RTT: (Δ/2d) × 100.
To illustrate the sensitivity difference, we use d = 50 ms and Δ = 20 ms:
OWD Sensitivity: Relative change = 20/50 = 0.4 (40 %)
RTT Sensitivity: Relative change = 20/(2 × 50) = 0.2 (20 %)
This analysis shows that OWD is twice as sensitive to congestion as RTT. The greater sensitivity of OWD means it can detect changes 

in network conditions more quickly, making it a more effective metric for congestion control in real-time environments, especially in 
scenarios where rapid detection of congestion is crucial.

To validate the claim that OWD is twice as sensitive to congestion as RTT, we conducted additional simulations to verify this 
sensitivity. These simulations were performed under two scenarios. In the first scenario, the forward path experienced heavy traffic, 
while the backward path was less congested. The observed results of delay sensitivity are plotted in Fig. 6. In the second scenario, the 
forward path had low traffic intensity, while the backward path was highly congested. The corresponding sensitivity results are shown 
in Fig. 7.

These results reinforce the conclusion that OWD is more sensitive to forward-path congestion, whereas RTT predicts similar 
behaviour in both scenarios. So, we can conclude that the proposed OWD method is more effective at detecting delays and congestion 
than RTT, making it a more sensitive and precise metric for congestion indicators.

4.2. Congestion window adjustment model using OWD

The Congestion window adjustment (ws(t+1)) is managed by equation (7).

Given: ws(t + 1) = ws(t)+ 1
Ds(t)

(
ds

Ds(t) − 1
)

Fig. 7. Sensitivity analysis with low congestion on the forward path and heavy congestion on the backward path.
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ws(t+1)=ws(t) +
ds − Ds(t)

Ds(t)2 (7) 

4.2.1. Derivative Analysis
To understand the dynamics of the congestion window adjustment, we can take the derivative of ws(t+1) concerning time. This 

gives us the rate of change of the window size, indicating how quickly the window adjusts to changes in delay and it is calculated using 
equation (8). 

dws(t + 1)
dt

=
d
dt

(

ws(t)+
ds − Ds(t)

Ds(t)2

)

(8) 

Let’s rewrite the adjustment term using equation (9). 

Δws(t)=
1

Ds(t)

(
ds

Ds(t)
− 1

)

(9) 

Combining the fractions, we get equation (10). 

Δws(t)=
ds − Ds(t)

Ds(t)2 (10) 

So, the full update formula is represented using equation (11). 

ws(t+1)=ws(t) +
ds − Ds(t)

Ds(t)2 (11) 

4.2.2. Interpretation of the adjustment term
When Ds(t) ≈ ds: The observed delay is close to the estimated propagation delay, indicating low congestion. 

Δws(t)=
ds − ds

Ds(t)2 = 0 

The window size remains almost unchanged.
When Ds(t)> 〉ds: The observed delay is greater than the estimated propagation delay, indicating high congestion. 

Δws(t)=
ds − Ds(t)

Ds(t)2 < 0 

The window size decreases to reduce congestion.
When Ds(t) < ds: This scenario is less common but can occur due to measurement anomalies or dynamic network conditions. 

Δws(t)=
ds − Ds(t)

Ds(t)2 > 0 

The window size increases, although this situation should be carefully monitored.
Derivative Analysis.
To understand how the window size changes over time, we can take the derivative of the adjustment term concerning time.
Derivative of the Adjustment Term 

Δws(t)=
ds − Ds(t)

Ds(t)2 

Differentiate this concerning time t we can represent congestion window adjustment using equation (12). 

d
dt

(Δws(t))=
d
dt

(
ds − Ds(t)

Ds(t)2

)

(12) 

Use the chain rule for differentiation, equation (13) is obtained. 

d
dt

(
ds − Ds(t)

Ds(t)2

)

=
d
dt

(ds − Ds(t)) ·
1

Ds(t)2 +(ds − Ds(t)) ·
d
dt

(
1

Ds(t)2

)

(13) 

Since ds is a constant: 

d
dt

(ds − Ds(t))= −
dDs(t)

dt 
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d
dt

(
1

Ds(t)2

)

= − 2 ·
1

Ds(t)3 ·
dDs(t)

dt 

Combine these results, equation (14) is derived. 

d
dt

(
ds − Ds(t)

Ds(t)2

)

= −
dDs(t)

dt
·

1
Ds(t)2 +(ds − Ds(t)) · − 2 ·

1
Ds(t)3 ·

dDs(t)
dt 

d
dt

(
ds − Ds(t)

Ds(t)2

)

= −
dDs(t)

dt

(
1

Ds(t)2 +
2(ds − Ds(t))

Ds(t)3

)

(14) 

Thus, the derivative of the adjustment term is represented using equation (15). 

dΔws(t)
dt

= −
dDs(t)

dt

(
1

Ds(t)2 +
2(ds − Ds(t))

Ds(t)3

)

(15) 

Full congestion window update model with derivatives including the rate of change of the congestion window: 

dws(t + 1)
dt

=
dws(t)

dt
−

dDs(t)
dt

(
1

Ds(t)2 +
2(ds − Ds(t))

Ds(t)3

)

(16) 

Equation (16) shows that the rate of change of the congestion window ws at the next time step t+1 is adjusted based on two factors: 
the current rate of change of ws and the rate of change of Ds. Specifically, the correction term involving d Ds(t)

dt adjusts the rate of change 
of ws at time t. This indicates that the evolution of ws over time is influenced by how Ds changes. Therefore, ws will vary in response to 
changes in Ds, as Ds is the dynamic one-way delay factor that evolves and affects the behavior of ws.

5. Experimental setup and results

The simulation setup employed in this study is detailed in this section, along with the analysis of results focusing on throughput and 
fairness. The entire experiment was conducted using NS-2.35, a widely used network simulator.

The simulation setup utilized a dumbbell network topology, as shown in Fig. 8. The topology consisted of one TCP IoT source and 
two UDP IoT sources connected to Router-1. On the other side, Router-2 was connected to two UDP IoT sources, one TCP IoT desti-
nation, and two UDP destinations. A bottleneck link was created by interconnecting Router-1 and Router-2.

All nodes in the network were connected via links with varying bandwidths and propagation delays along the path. The experi-
mental configuration incorporated a drop-tail queuing policy, with the default queue size set to 50 packets. Specifically, the TCP source 
was associated with an FTP traffic generator, while the UDP source was linked to a Constant Bit Rate (CBR) traffic generator.

This setup allowed for the evaluation of network performance metrics such as throughput and fairness, providing insights into the 
effectiveness of the proposed congestion control method in managing network congestion and optimizing data transmission in IoT 
environments.

Figs. 9–13 illustrate the performance of the proposed congestion control method in terms of throughput, comparing it against 
existing algorithms such as Cubic [4], HTCP [41], and New Reno [42]. These figures provide a visual representation of how the 
throughput varies with the delay of the network path.

5.1. Throughput under variable RTT

Fig. 9 illustrates the performance of the proposed method within a variable RTT environment, where the RTT of the bottleneck 
fluctuates between 60 ms and 150 ms. The depicted graph demonstrates how the throughput of different TCP variants evolves in 

Fig. 8. Dumble topology used for simulation.
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response to changes in the RTT of the communication path. Notably, TCP NewReno consistently exhibits the lowest throughput 
compared to HTCP and Cubic. By comparison, the suggested method exhibits better throughput performance. This benefit stems from 
using OWD as a congestion indicator, which provides a more accurate assessment of the traffic volume on the communication line. The 
suggested approach is able to better detect and react to real traffic circumstances by depending on OWD, enabling it to modify the 
congestion window dynamically. Thanks to its quick flexibility, the suggested technique can traverse and perform better under 
different path conditions. In summary, incorporating OWD as a congestion indicator enhances the proposed method’s ability to swiftly 
and accurately adapt to changing network dynamics, leading to improved throughput compared to traditional TCP variants like 
NewReno, HTCP, and Cubic.

Fig. 10 depicts the evaluation of the simulation’s average throughput. The results show that the suggested technique regularly 
achieves 542.9 kbps of average throughput. By contrast, the average throughput of classic TCP variations like Cubic, HTCP, and New 
Reno is 521 kbps, 494 kbps, and 485 kbps, respectively. The suggested approach guarantees a more precise knowledge of network 

Fig. 9. Performance analysis of the proposed method in the presence of variable RTT.

Fig. 10. Average throughput.

Fig. 11. Performance analysis of proposed method in presence of variable packet loss rate.

L.P. Verma et al.                                                                                                                                                                                                       Heliyon 10 (2024) e40266 

15 



circumstances by utilizing precise OWD estimations, allowing it to adjust the transmission rate for maximum efficiency dynamically. 
The suggested approach performs 14.1 %, 20.5 %, and 22.7 % better than Cubic, HTCP, and New Reno, respectively.

5.2. Throughput under variable loss rate

Fig. 11 showcases the experimental results of the OWD method under simulated conditions with varying packet loss rates. The 
simulation encompasses a spectrum of packet loss rates ranging from 1 % to 10 %.

The trend observed in Fig. 8 illustrates a consistent decline in throughput across all TCP variants as the packet loss rate increases. 
Notably, TCP New Reno consistently exhibits the weakest performance compared to Cubic and HTCP. This trend highlights the impact 
of packet loss on TCP performance and underscores the effectiveness of the proposed OWD method in managing congestion and 
maintaining throughput under adverse network conditions.

In contrast, the OWD method showcases a more robust throughput despite the increasing packet loss rates. This improved per-
formance can be attributed to the method’s data rate adaptation policy, which relies on OWD as a fundamental parameter. By utilizing 
OWD, the proposed method can dynamically adjust its data rate in response to varying network conditions, enabling it to mitigate the 
impact of packet loss more effectively than traditional TCP variants.

The average performance of different TCP variations with varying packet loss is shown in Fig. 12. The measured throughput for TCP 
New Reno, Cubic, HTCP, and the suggested approach are, in order, 459.2 Kbps, 472.3 Kbps, 508.1 Kbps, and 528.5 Kbps.

The throughput of New Reno is 13.0 % less than that of the suggested approach, while the throughput of Cubic is 10.6 % less. HTCP 
performs better than New Reno and Cubic, but it is still not up to par with the suggested approach, with a throughput that is 4.1 % 
lower. These percentage differences highlight the enhanced performance of the suggested technique in the face of varying packet loss 
situations.

5.3. Throughput in sporadically changing environment

The rapid growth in the number of IoT devices poses significant challenges for network scalability. As the number of devices and 
traffic volume increase, maintaining low latency, efficient congestion control, and high throughput becomes critical. While protocols 
like TCP Fast Open and TCP BBR have effectively addressed some scalability issues in traditional TCP networks, the proposed OWD- 
based method takes a distinct approach. By focusing on real-time congestion management and dynamically adjusting the congestion 

Fig. 12. Average throughput.

Fig. 13. Throughput under IoT scenario.
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window based on OWD, the proposed method is designed to rapidly adapt to network congestion in large-scale IoT environments.
To thoroughly analyze the scalability of the OWD-based method, we evaluated its performance under varying traffic volumes and 

device counts in a highly dynamic environment. We simulated this by configuring the TCP source and destination in scenarios with 
sporadically changing network conditions. First, we introduced a variable, heavy background of UDP traffic to simulate the massive 
scale typically found in IoT environments. Second, we accounted for network heterogeneity, incorporating factors such as fluctuating 
latency, packet loss, and bandwidth constraints.

As bandwidth increases, the network can handle more data, but it also increases the risk of congestion under high traffic. The 
proposed OWD method adjusts the transmission rate based on real-time traffic intensity using forward delay, preventing overloading 
the network even at higher bandwidths. High RTT values indicate longer network paths or more congestion. In asymmetric networks, 
RTT-based approaches can misinterpret the forward and reverse path delays. OWD’s focus on one-way traffic allows for more precise 
congestion control, particularly in scenarios with high RTT. Packet loss directly impacts network performance by triggering 
retransmissions. The OWD method dynamically adjusts the transmission rate to minimize packet loss, especially in environments 
where the loss rate is as high as 10 %.

As seen in Table 3, throughput was evaluated across varying network conditions. Bandwidth ranged from 1 Mbps to 10 Mbps, loss 
rates from 1 % to 10 %, and RTT from 50 ms to 350 ms. Background UDP traffic was adjusted according to the maximum bandwidth 
available for each instance. The results, illustrated in Fig. 13, demonstrate that the TCP source using the proposed OWD method 
outperforms other referenced schemes in these dynamic environments. Traditional RTT-based congestion control approaches often 
struggle with performance in scalable IoT networks, where forward and reverse paths may experience significant differences in 
conditions. By contrast, the OWD-based approach decouples the forward path from the return path, significantly reducing the 
complexity of congestion estimation. This decoupling allows the method to perform more efficiently in scalable IoT networks, as each 
TCP source device only needs to monitor delay in a single direction, resulting in faster and more accurate congestion management. 
While every congestion control method may face bottlenecks as network size increases, the proposed OWD method is well-positioned 
to mitigate many common issues, such as computation overhead, increased queuing delays, and memory requirements. However, the 
biggest challenge for the OWD method is clock synchronization between the source and destination, which is critical for accurately 
measuring OWD. Fortunately, ongoing research into efficient clock synchronization mechanisms, such as the Network Time Protocol 
(NTP), can address this challenge, making the method more robust for large-scale implementations.

The scalability of the proposed method is particularly relevant for high-density IoT applications, such as smart cities, industrial IoT, 
and healthcare systems. In smart city environments, where devices like traffic sensors and surveillance cameras are continuously 
transmitting data, the OWD-based method ensures that critical data flows are maintained without congestion, even as the number of 
connected devices grows. Similarly, in IIoT environments, where real-time monitoring and control of machinery are essential, the 
method’s ability to minimize delays ensures stable operations as more devices are added.

5.4. Fairness Analysis

Fig. 14 visually represents the fairness among different TCP variants operating concurrently on the same communication path. TCP 
Cubic, a widely deployed variant in Android and Linux operating systems, serves as the benchmark for fairness measurement in this 
simulation. In this scenario, three instances of TCP Cubic are actively transmitting on the path, while another variant attempts to 
achieve a fair share of the bandwidth alongside these three TCP Cubic flows. The figure clearly demonstrates that the proposed 
approach exhibits superior fairness compared to TCP New Reno, Cubic, and HTCP. Despite the simultaneous operation of three TCP 
Cubic flows, the proposed method achieves equitable distribution of bandwidth with the existing traffic. This improvement in fairness 
can be attributed to the proposed approach’s sophisticated procedures, which likely involve adaptive modifications based on OWD and 
intelligent congestion control strategies.

Overall, Fig. 14 highlights the enhanced fairness achieved by the proposed method in managing multiple TCP flows concurrently, 
showcasing its effectiveness in optimizing bandwidth utilization and ensuring equitable access to network resources.

5.5. Throughput analysis under heterogeneous environment

To further validate the performance of the proposed OWD method, we conducted additional simulations using a more complex 
heterogeneous topology to demonstrate its robustness. This setup is designed to better reflect real-world IoT networks, where multiple 
paths, varying link qualities, complex topologies, and different traffic levels are common. The simulation topology, depicted in Fig. 15, 
consists of a wireless IoT node configured as a TCP source and a wired node serving as the TCP destination (sink node). Additionally, 
two UDP traffic generators are deployed at the TCP endpoints—one wireless and one wired. Both TCP nodes are connected through 
gateways: one gateway connects to the network via a single path, while the other connects through multiple paths, both wired and 
wireless. Moreover, several other IoT devices are connected at the wireless end, adding further complexity to the network.

In this configuration, the bottleneck link is set with a bandwidth of 1.5 Mbps and a propagation delay of 50 ms, using a drop-tail 
queue policy with a queue size of 50 packets. The UDP source at gateway-1 generates traffic at 1.4 Mbps, while the UDP source at 
gateway-2 generates traffic at 1 Mbps. Additionally, the IoT devices connected to the network generate data at rates ranging from 10 
to 25 Kbps.

Fig. 16 presents the throughput results under the heterogeneous topology shown in Fig. 15. The results demonstrate that the 
proposed OWD-based method continues to outperform traditional TCP variants, such as TCP Cubic, HTCP, BBR and New Reno, even in 
more complex environments. The method adapts effectively to varying link qualities and multiple paths, maintaining higher 
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throughput and fairness across different conditions.
The proposed OWD-based method outperforms traditional TCP variants like TCP Cubic, HTCP, BBR, and New Reno due to its ability 

to more accurately detect and respond to congestion in real-time by monitoring one-way delay. Unlike Cubic and HTCP, which may 
struggle with responsiveness in dynamic IoT networks, the OWD method adapts quickly to varying link qualities and congestion. 
Compared to BBR, which relies on RTT and can misinterpret asymmetric paths, OWD focuses on forward-path delay, offering more 
precise congestion detection. Furthermore, while New Reno uses traditional AIMD mechanisms that react slowly, OWD allows faster, 
more accurate transmission rate adjustments, ensuring better throughput and fairness in complex, multi-path IoT environments.

Table 3 
Parameter setting in a sporadically changing environment.

Instance Bottleneck links parameters

 Bandwidth 
(Mbps)

RTT 
(ms)

Loss 
Rate 
(%)

Impact on OWD Comparison with Existing Studies

1 1 340 1 Low bandwidth and high RTT introduce significant 
delays in detecting congestion. The OWD-based 
method dynamically adjusts the transmission rate to 
handle these delays.

Most existing studies do not evaluate performance 
under such high RTTs, making our method’s 
adaptability unique.

2 2 320 2 Increased bandwidth reduces overall delay, but 
higher loss rates challenge the method’s ability to 
maintain low packet loss. OWD still provides more 
precise congestion signals than RTT.

Other studies often rely on RTT-based mechanisms 
that perform poorly with such high loss rates.

3 3 350 3 High RTT and loss rates test the method’s robustness 
in extreme conditions. The OWD metric helps reduce 
unnecessary congestion window reductions.

Previous work typically focuses on ideal conditions 
with lower RTT and loss rates, highlighting the 
resilience of our approach.

4 4 280 4 As bandwidth increases, the method maintains a high 
throughput, but OWD continues to be more effective 
in adjusting the transmission rate than RTT in 
environments with high loss rates.

Studies like [47] focus primarily on optimizing RTT, 
but fail to address such high-loss environments.

5 5 240 5 A balance between bandwidth and RTT shows how 
the OWD method can handle diverse network 
conditions. Increased packet loss still poses 
challenges, but OWD helps maintain fairness.

Limited studies test conditions with such a 
combination of high bandwidth and loss, 
demonstrating the novel contributions of this study.

6 6 200 6 Higher bandwidth enables better congestion control, 
but the OWD method needs to adapt quickly to 
prevent high packet loss under these conditions.

Existing research primarily targets either low-loss or 
low-latency environments, which limits their 
applicability to real-world IoT scenarios.

7 7 170 7 Increasing loss rate becomes a critical factor. The 
OWD-based method adjusts transmission to prevent 
high congestion while balancing packet delivery 
time.

Few studies have addressed both high-loss and high- 
RTT scenarios effectively, further supporting the 
novelty of the proposed method.

8 8 130 8 Low RTT and high bandwidth offer optimal 
conditions for OWD-based control. The method 
achieves high throughput with minimal delay in 
detecting congestion.

Compared to studies focusing only on ideal 
conditions, our approach demonstrates versatility 
across varied environments.

9 9 90 9 Extremely high loss rates challenge congestion 
control mechanisms. The OWD method continues to 
dynamically adjust to maintain network 
performance.

Most existing approaches struggle in such high-loss 
environments, while our method maintains a more 
stable performance.

10 10 50 10 High bandwidth, low RTT, and very high loss rates 
test the upper limits of the method. The OWD-based 
approach still outperforms RTT-based methods in 
controlling congestion effectively.

Existing studies often fail to accommodate such 
scenarios with such high packet loss and bandwidth 
combinations, highlighting the strengths of the 
proposed method.

Fig. 14. Fairness Analysis of the proposed method.

L.P. Verma et al.                                                                                                                                                                                                       Heliyon 10 (2024) e40266 

18 



This simulation demonstrates that the proposed OWD-based method effectively manages mixed-traffic environments, maintaining 
fairness and stable throughput even when non-TCP (UDP) traffic is present. The method dynamically adjusts TCP transmission rates in 
real-time, preventing excessive aggression from TCP flows and ensuring that UDP traffic is not adversely impacted. This confirms the 
method’s ability to provide a balanced and efficient solution for IoT networks with both TCP and UDP traffic.

5.6. Discussion and limitations

Experimental analysis reveals that the proposed OWD-based approach outperforms well-established TCP variants such as TCP 
Cubic, HTCP, and New Reno, with improvements in average throughput ranging from 4.1 % to 22.7 %. These results suggest that the 
OWD-based method has significant potential to enhance both efficiency and fairness in IoT communications. However, One of the main 
challenges in using OWD for congestion control, particularly in TCP contexts, is the difficulty of accurately estimating OWD in real 
time. Unlike RTT, which is easier to measure as it considers the time taken for a packet to travel to the receiver and for an 
acknowledgment to return, OWD only measures the delay in one direction (from sender to receiver). Accurately measuring OWD in 
real-time requires precise synchronization between the sender’s and receiver’s clocks. Without this synchronization, it becomes 
challenging to correctly estimate how long it takes for a packet to reach the receiver. Additionally, OWD measurements may be also 
affected by network asymmetry, where the forward and reverse paths experience different delays. In such cases, using OWD alone for 
congestion control may lead to inaccurate conclusions about network congestion, potentially resulting in underutilization or over-
utilization of network resources.

Fig. 15. Heterogeneous environment used for simulation.

Fig. 16. Throughput under a heterogeneous topology environment.
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To mitigate this, further work may use hybrid approaches that combine OWD with other metrics, such as RTT or packet loss rate, 
which could offer a more robust solution. A dual-metric system could be explored, where OWD remains the primary metric for 
congestion control, providing real-time forward path delay information. However, in cases of significant path asymmetry, the system 
could fall back on RTT to account for both forward and return path delays. Additionally, packet loss rate could serve as a supple-
mentary metric, especially in cases where high packet loss indicates congestion that might not be detected by OWD alone.

6. Conclusions

The paper introduces a novel adaptive congestion control approach based on OWD, which estimates path traffic intensity by 
calculating OWD during data transmission. This method dynamically adjusts the transmission rate according to traffic intensity, 
aiming to maximize network performance. Experimental analysis reveals that the proposed approach outperforms established TCP 
variants such as TCP Cubic, HTCP, and New Reno, with average throughput improvements ranging from 4.1 % to 22.7 %. The OWD- 
based method shows great potential for enhancing efficiency and fairness in IoT communication, due to its ability to adapt to changing 
network dynamics, accurately estimate congestion, and ensure equitable bandwidth distribution. However, despite its promise, several 
limitations must be considered, such as challenges in scaling to very large networks, the resource-constrained nature of IoT devices, 
and the need for precise clock synchronization. Future research should focus on optimizing the method for large-scale networks, 
adapting it for devices with limited processing power and memory, improving clock synchronization mechanisms, and further vali-
dating its performance across diverse network scenarios. Additionally, exploring further optimizations to enhance the methodology for 
practical IoT implementations is essential.
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