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Abstract 

Background

Although the COVID-19 pandemic has diminished in intensity, the 
virus continues to circulate globally. The SARS-CoV-2 main protease 
(Mpro) is a key enzyme in the life cycle of the virus, making it 
important for the development of treatments against future variants 
of the virus. In this work, Peruvian natural compounds were evaluated 
against different mutations of the SARS-CoV-2 Mpro.

Methods

In silico techniques such as virtual screening, all-atom molecular 
dynamics simulations, and energy estimation analysis were applied.

Results

Of the tested compounds by virtual screening, rutin was identified as 
the best binding agent against the different proposed Mpro 
mutations. In addition, computational simulations and energy 
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estimation analysis demonstrated the high structural and energetic 
stability between the Mpro-rutin systems.

Conclusions

Overall, our study identified rutin as the most promising compound 
with a strong affinity for various Mpro mutations, potentially playing a 
key role in the development of new treatments for emerging viral 
variants.
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Introduction
By the end of 2019, the world experienced the outbreak of the COVID-19 pandemic, which swiftly spread across
communities and healthcare systems, causing widespread infections.1 The pandemic, caused by SARS-CoV-2 (Severe
Acute Respiratory Syndrome Coronavirus 2), marked a significant global health crisis.2,3 Even in 2024, the effects of the
virus persist, with ongoing concerns about public health and economic recovery.4,5 Despite vaccination efforts and
advances in treatments, COVID-19 continues to affect vulnerable populations, and the emergence of new variants
remains a challenge for health systems worldwide. By late 2020, multiple variants of SARS-CoV-2 had emerged and
spread rapidly,6,7 and new variants have continued to evolve, further complicating global response efforts through 2024.

The SARS-CoV-2 main protease (Mpro) is a critical enzyme that plays a pivotal role in viral replication and
transcription.8 Upon entering the host cell, the viral RNA is translated into large polyproteins, which Mpro cleaves at
specific sites to release non-structural proteins (nsps) essential for the virus’s replication.9,10 Mpro specifically processes
polyprotein 1ab at multiple cleavage sites and hydrolyzes the Gln-Ser peptide bond within the Leu-Gln-Ser-Ala-Gly
recognition sequence. This cleavage site is unique compared to those recognized by other human cysteine proteases
known to date.11 As a result, Mpro has become a prime therapeutic target, with its inhibition being a promising approach
to halting viral translation and replication.12 Structurally, Mpro consists of three domains: domains I (residues 8-101), II
(residues 102-184), and III (residues 201-306).8

Likewise, several researchers have highlighted the importance of studying the stability of theMpro structure while taking
mutations into account, as this can complicate the identification of specific inhibitors.13 These variants are characterized
by changes in the amino acid sequence of the virus compared to the first sequenced strain, Wuhan-Hu-1 (GenBank
accession: NC_045512.2). The variants may contain one or more mutations that distinguish them from the wild type.14

Tracking and evaluating the spread of SARS-CoV-2 genetic variations in different countries is crucial.

It is important to note that registered mutations may alter the binding mechanisms of potential inhibitors, leading to
possible resistance.15 Therefore, it is essential to anticipate the effects of these mutations and identify new inhibitors to
counteract them.

In the absence of a specific drug and with the emergence of new mutations, various studies are evaluating the potency of
numerous phytochemicals in restricting the replication of SARS-CoV-2 and other viral infections.16 Phytocompounds
are considered promising drug candidates due to their high bioavailability and low toxicity.17 Similarly, in silico
studies have demonstrated the potent inhibitory action of taraxerol, found in Clerodendrum spp., a plant used in
traditional medicine in tropical regions of Asia, against SARS-CoV-2 Mpro.18 Additionally, β-amyrin and stigmasta-
5,22-dien-3-ol, present in Cyperus rotundus L., a plant commonly used in traditional Indian medicine, have also shown
inhibitory potential.19

Peru is one of the 12 nations with the highest levels of biodiversity, which has allowed a rich tradition of medicinal
practices to flourish and endure over time.20 The Vavilov Institute recognizes this region as a global center for plant
biodiversity.21 The 20,000 to 30,000 plant species found across its diverse ecosystems account for approximately 10% of
all plants used in medicine worldwide.22

This study makes significant contributions to the ongoing research on novel SARS-CoV-2 Mpro inhibitors. First, it
highlights natural compounds derived from Peru’s rich biodiversity, an underexplored resource in prior studies.
Furthermore, we have assessed the efficacy of these compounds against eight specific Mpro mutations (Y54C,23

N142S,23 T190I,23 A191V,23 S139A,24 R298A,24 R60C,15 and G11A25), offering a comprehensive analysis of their
interactions with various mutant variants of SARS-CoV-2 Mpro. Using advanced computational approaches—such as
virtual screening, molecular dynamics simulations, and binding free energy estimation via the Molecular Mechanics/
Generalized Born Surface Area (MM/GBSA) method—we conducted an in-depth evaluation of the structural stability
and inhibitory potential of the identified compounds. Notably, our research highlights the high structural stability and
potent inhibitory effects of rutin in the Mpro-rutin system. Computational simulations revealed that rutin forms stable,
long-lasting interactions with the Mpro active site, underscoring its promise as a potential therapeutic candidate for
COVID-19 treatment.

REVISED Amendments from Version 2

Accordingly, to the reviewer’s suggestions, we have added the references to the manuscript.

Any further responses from the reviewers can be found at the end of the article
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Computational details
Proteins preparation
In this study, we analyzed eight critical mutations of the SARS-CoV-2 Mpro protein, namely Y54C, N142S, T190I,
A191V, S139A, G11A, R298A, and R60C. Thesemutations were chosen for their potential impact on the core protease’s
structure and function. The Y54C mutation, identified in Malaysia, and N142S, reported in various countries, were
selected because they could potentially alter the N-terminal domain’s stability and the catalytic loop’s flexibility,
respectively. The T190I mutation affects the interactions within the substrate binding site, while A191V influences
the dimerization dynamics, a crucial process for Mpro’s functionality. The S139A, G11A, and R298A mutations, which
result in the complete loss of dimerization, are essential forMpro’s proteolytic activity. Lastly, the R60Cmutation, found
in Brazil and Vietnam, affects the protein’s dynamics and the inhibitor’s ability to bind to the active site. The crystal
structure of SARS-CoV-2 (PDB ID: 5RE4) reported in the Protein Data Bank (https://www.rcsb.org/pdb/) was used.
Subsequently, mutated protein sequences were prepared by replacing the amino acids at positions R298A, N142S,
A191V, R60C, G11A, Y54C, T190I, and S139A. These sequences were generated by homology modelling on the
SWISS-MODEL server (https://swissmodel.expasy.org) using the crystal structure of SARS-CoV-2 Mpro (PDB ID:
5RE4) as a template.

Preparation of the virtual database and screening
The search for natural products was performed at the Peruvian Natural Products Database (PeruNPDB)26 online web
server (first version) (https://perunpdb.com.pe/, accessed on 23 January 2022) whereas the simplified molecular-input
line-entry system (SMILE) of each compound of was the upload into OpenBabel within the Python Prescription Virtual
Screening Tool (PyRx)27 and the subjection to energy minimization; whereas PyRx performs structure-based virtual
screening by applying docking simulations using the AutoDock Vina tool.28 Likewise, the FASTA sequence of the
Crystal Structure of SARS-CoV-2 main protease (Mpro) (PDB: 5RE4) was subjected to a BLAST29 search (accessed on
16 April 2022) whereas all the mutants were selected and subjected to automated modeling in SWISS-MODEL30 server
(accessed on 17April 2022). For the analysis, the search space encompassed thewhole of themodeled 3Dmodels; and the
docking simulation was then run at an exhaustiveness of eight and set to only output the lowest energy pose. Multiple
sequence alignments of theMpro andmutant sequenceswere visualized using themsa package (version 1.22.0)31 in the R
programming environment (version 4.0.3). The heatmap plot was generated using GraphPad Prism version 9.4.0 for
Windows, GraphPad Software, San Diego, California USA (www.graphpad.com).

Molecular dynamics simulation and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA)
calculation
The simulation of themotion is realized by the numerical solution of the classical Newtonian dynamic equations.We used
Gromacs v. 202032 to calculate the molecular dynamics (MD) simulation and the AMBER-99SB-ILDN force field. The
topologies for the Amber force field were determined on the ACPYPE server (https://www.bio2byte.be/acpype/) for the
best metabolite against mutatesMpro. Each systemwas included in the centre of a cube box of 10 on each side. Likewise,
water molecules were added (water model TIP4P). The energy minimization was carried out with the steep-descendent
integrator with 200000 calculation steps. Herein, the MD simulation in the canonical ensemble NVTwas done for a time
of 1ns. Finally, the production of MD continued 100 ns in the isobaric-isothermal ensemble considering the Parrinello-
Rahman barostat (1 bar) and V-rescale thermostat (309.65 K). The binding free energy estimation by MM/GBSA
(MolecularMechanics/Generalized Born Surface Area) was calculated with the suit mmpbsa.py33 fromAmberTools2034

and gmx MMPBSA v1.4.1.35 The equations related to calculations of binding free energies are the following:

ΔGbind ¼Gcomplex� GproteinþGlig

� �
(1)

¼ΔEM M þΔGGBþΔGSA�TΔS (2)

¼ΔEvdwþΔEeleþΔGGBþΔGSA�TΔS (3)

The equation that determines the electrostatic solvation energy (ΔGGB) considers (ΔEMM) which is the variation be-
tween the minimized energy of the protein-ligand complexes of the study which includes the van der Waals (ΔEvdw) and
electrostatic (ΔEele) contributions, while (ΔGSA) is the difference in surface area energies for protein and ligand and
(�TΔS) refers to the contribution of entropy at temperature T.

Finally, the graphical visualizations were made with Visual Molecular Dynamics (VMD),36 allowing interactive
visualization with an easy-to-use interface. The interpretation of the molecular interactions was recreated with Maestro
(Schrodinger) 2D interactions diagram. Likewise, the Molecular dynamics simulation results were performed by the
Gromacs tools, and the values were processed by Gnuplot 5.2 (http://gnuplot.info/) command-driven interactive function
plotting program.
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Results
Mutant SARS-CoV-2 Mpro description
SARS-CoV-2 Mpro is a cysteine protease of 67.6 kDa, and its structure possesses a catalytic dyad (Cys145 and His41)
with a substrate-binding pocket located in a cleft between domains I and II. The secondary structure ofMpro has 10 alpha
helixes, 13 beta sheets, 8 beta protrusions, 7 beta hairpins, 22 beta turns, 5 gamma turns, and 9 helix-helix interactions. In
this work, we used the access code PDB ID: 5RE4 which was downloaded from the Protein Data Bank. This crystal
structure was determined by the X-ray diffraction method with a resolution of 1.88 Å.

Besides, we focused on the analysis of eight mutations registered in different parts of the world. First is the Y54C
mutation reported inMalaysia, and theN142Smutationwas reported 17 times in 5 different countries. T190I is amutation
identified in 15 countries, such as South Africa and the USA. The mutation A191V is characterized by having an
occurrence rate of 0.30% and is present in more than 34 countries. Besides, the S139A, G11A, and R298A mutation
results provided a better understanding of the dimerization and catalytic mechanism of the Mpro.24,37 In Brazil and
Vietnam, the R60C mutation was reported, affecting the protein dynamics and the inhibitor’s binding within its active
site.15 The R298A leads to the interruption of the dimeric conformation and irreversible inhibition of the enzyme’s
catalytic activity,24 and the G11Amutation avoids the insertion of the N finger region (residues 1-9) and therefore wholly
declines its activity.38 The location of the eight mutations is shown in Figure 1.

Figure 2 shows the sequence alignment of Mpro mutations. The black square selects the variation of residues by mutant
Mpro. The G11A, Y54C, and R60C mutations are located close to the His41 residue and in Domain I from Mpro. Two
mutations (S139A and N142S) are present in Domain II and close to Cys145, and it is expected that these protein
structures could show different behaviour than Mpro without mutations. On the other hand, it was also observed that
mutations in T190I andA191V are in the connection of Domain II andDomain III. For the case of R298Amutation, it can
be observed near Domain III.

Figure 1. 3D representation of SARS-CoV-2 Mpro in which the eight mutations are located.
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The in silico prediction of disease-causing variants was conducted using the publicly accessible Meta-SNP tool (https://
snps.biofold.org/meta-snp/).39 This approach is distinguished by its integration of four established methods: PANTHER,
PhD-SNP, SIFT, and SNAP each with predefined default threshold parameters. The prediction criteria are as follows:
PANTHER, PhD-SNP, andMeta-SNP yield values between 0 and 1 (mutations with values >0.5 are predicted as disease-
causing); SIFT produces a positive value (mutations with values >0.05 are predicted as neutral); and SNAP normalizes its
output between 0 and 1 (mutations with values >0.5 are predicted as disease-causing). The predictions from Meta-SNP
and its integrated tools provide a valuable initial assessment of the potential impact of nsSNVs (non-synonymous Single

Figure 2. Sequence alignment of SARS-CoV-2 Mpro with the different proteins mutated.
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Nucleotide Variants). However, the variability in predictions underscores the importance of complementing these
bioinformatic tools with experimental studies to achieve conclusive validation of each variant’s pathogenicity. Of
particular interest are the Y54C and S139A mutations, which showed strong predictions towards pathogenicity and,
therefore, warrant further in-depth analysis in future research (See Table 1).

Virtual screening analysis
The Virtual Screening technique, widely used for drug discovery, seeks to identify potential compounds for a particular
therapeutic target. This approach allowed us to find new possible candidates within the PeruNPDB dataset against one of
the therapeutic targets from mutant Mpro of SARS-CoV-2.

The 84 substances included in the study are taken from the original PeruNPDB collection; themost recent dataset consists
of 280 substances. Figure 3 shows the gradient palette, the violet color indicated strong binding (ΔG<-12 kcal/mol), while
the yellow color indicated weak binding (ΔG>-2 kcal/mol). In this heat map, rutin is shown as the best compounds.
However, for the T190I and Y54C mutations, the color intensity is lower compared to the other mutations.

In Table S1 of the Supplementary Material, the values of coupling energies are reported. The values for Mpro wild,
A191V, G11A, N142S, R60C, R289C, S139A, T190I, and Y54C were -10.7 kcal/mol, -10.4 kcal/mol, -10.7 kcal/mol,
-10.4 kcal/mol, - 10.7 kcal/mol, -10.7 kcal/mol, -10.7 kcal/mol, -9.4 kcal/mol, and -9.1 kcal/mol, respectively.
Additionally, the results of Lipinski’s rule of five40 and ADMET (Absorption, Distribution, Metabolism, Excretion
and Toxicity) prediction obtained from http://www.scfbio-iitd.res.in/ ADMETlab v 3.041 of the 84 compounds are shown
in Table S2 and Table S3 from the Supplementary Material. The Lipinski’s rule of five analysis for the majority of the

Table 1. Summary of diseased SNPs predicted from Meta-SNP in SARS-CoV-2 mutations.

Mutation PANTHER PhD-SNP SIFT SNAP Meta-SNP RI Profile

G11A NA Neutral Disease Disease Neutral F [G]=55%

- 0.312 0.03 0.655 0.256 5 F [A]=0%

Nali=46

Y54C NA Neutral Disease Disease Disease F [Y]=64%

- 0.499 0 0.745 0.675 4 F [C]=0%

Nali=46

R60C NA Neutral Neutral Disease Neutral F [R]=56%

- 0.435 0.16 0.630 0.323 4 F [C]=0%

Nali=47

S139A NA Disease Disease Disease Disease F [S]=100%

- 0.535 0 0.79 0.73 5 F [A]=0%

Nali=47

N142S NA Neutral Neutral Neutral Neutral F [N]=33%

- 0.189 0.7 0.47 0.193 6 F [S]=4%

Nali=47

T190I NA Neutral Neutral Neutral Neutral F [T]=17%

- 0.214 0.34 0.39 0.197 6 F [I]=4%

Nali=46

A191V NA Neutral Neutral Neutral Neutral F [A]=32%

- 0.066 1 0.3 0.064 9 F [V]=26%

Nali=46

R298A NA Neutral Neutral Disease Neutral F [R]=30%

- 0.159 0.06 0.53 0.183 6 F [A]=0%

Nali=46

RI=Reliability Index between 0 and 10; F [X]=Frequency of residue X in the sequence profile; Nali: Number of aligned sequences in the
mutated site.
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compounds revealed no significant violations in terms of molecular weight, hydrogen bond donors, and acceptors.
However, some compounds did not comply with the logP values. Further experimental determination of logP values may
provide a better understanding of these discrepancies. The data obtained from the ADMET analysis were found to be
comprehensive and informative, allowing for a better understanding of the properties to be considered in the present
study.

Molecular dynamics simulations and estimation of binding free energy
The results obtained from virtual screening helped us to consider rutin as a ligand against the different Mpro mutations.
Molecular dynamics simulations allow us to understand the behavior of different mutated Mpro at an atomistic level.
After analyzing 100 ns of production dynamics, the convergence of each protein is observed by Root-mean squared
deviation (RMSD) analysis (See Figure 2A). This result shows us that the different types of mutations achieved
equilibrium; likewise, an average RMSD between 0.1 and 0.2 nm is appreciated, an acceptable value in this structural
model. The Root-mean squared fluctuation (RMSF) calculates the flexibility of individual residues that make up the
Mpro protein during a simulation trajectory. The RMSF per residue diagram structurally indicates which amino acids in a
protein contribute the most to a molecular motion. Figure 4B highlights the area of His41 and Cys145 amino acids where
the most significant fluctuation in the His41 area occurs with the R298Amutation, while the most significant fluctuation
in the Cys145 area occurred in the R60C, Y54C, R298A, and N142S mutation.

Figure 3.Heatmapanalysis of binding constants ofmetabolites fromPeruviannativeplants screenedagainst
mutated Mpro of SARS-CoV-2.
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On the other hand, Table 2 shows us the quantitative values of the RMSD, where the G11A and R60Cmutations showed
the lowest average RMSD value. In contrast, the average value for the Y54C mutation was higher than the others.
Regarding the average RMSF values of the last 5 ns, for the 5RE4, A191V, G11A, N142S, R60C, S139A, and T190I
systems, the average RMSF of the Mpro structures oscillated by 0.8 nm, while for R298A the RMSF average results in
0.09 nm and Y54C it was 0.07 nm.

Besides virtual screening and molecular dynamics simulation studies, molecular mechanics/generalized Born surface
area (MM/GBSA) was performed with all frames of the MD. Table 3 indicates the average free energy values for each
system. The values show a high coupling energy estimate, indicating that the interaction was carried out correctly.

The mutation R60C showed the best interaction energy (-45.09 kcal/mol) against the different systems studied. The
energy values for G11A and A191V were -41.17 kcal/mol and -40.71 kcal/mol, respectively. While the systems that
showed low binding energy were mutations R298A and S139A, with average values of -24.11 kcal/mol and -25.84 kcal/
mol, respectively.

Figure 4. RMSDandRMSFplots.A.) RMSDof eight SARS-CoV-2Mprowith rutin. B.) RMSFof the last 5 nsper residueof
each SARS-CoV-2 Mpromutated, highlighting the principal residues of the catalytic dyad (His41 and Cys145). RMSD,
Root-mean square deviation; RMSF, Root-mean square fluctuation; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; Mpro, main protease.
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Likewise, the most significant energy contribution was given by the Van der Waals energies (ΔEV DWAALS) in the wild
system, A191V, G11A, N142S, R298A, S139A, and T190I. These types of energy are weak and have short-range inter-
actions; in biological systems, they play a significant role in stabilizing protein-small molecules. On the other hand, in the
R60C and Y54C systems, the energy contribution is given by electrostatic energies (ΔEELE). Electrostatic energy
considers into account the charges of each atom in the system, which depend on the medium in which they are found;
these have greater scope, and the force of interaction it possesses is linked to the relative orientations it accepts.

Figure 5 shows the last frame of each simulation of the Mpro-rutin complex. In general, it was observed that the
interactions in the active site are due to the formation of hydrogen bonds. However, we observed some changes in the
region around the active site for the mutations occurring in N142S and Y54C. The residues around N142S are mostly
hydrophobic (green contour), hence N142S exhibits a greater energy contribution from hydrophobic interactions
(ΔEV DWAALS = -54.18 kcal/mol, higher than the other mutations). In Y54C, the residues around rutin are polar (sky
blue contour), demonstrating its high energetic contribution by electrostatic interactions (ΔEELE = -66.78 kcal/mol more
elevated than the other mutations).

Discussion
To date, research teams worldwide have been collecting data on SARS-CoV-2 strains, some of which exhibit numerous
mutations in various structural proteins. The main protease (Mpro) plays a crucial role in the SARS-CoV-2 life cycle by
mediating viral replication and transcription. Mpro functions by cleaving the viral polyproteins pp1a and pp1ab, which
are synthesized from the viral RNA once SARS-CoV-2 enters the host cell. It recognizes specific sequences within these
polyproteins and cleaves them at approximately 11 conserved sites, releasing nonstructural proteins (nsps) essential for
forming the replication-transcription complex (RTC). The active site of Mpro, consisting of cysteine and histidine,

Table 2. RMSD and RMSF average values of SARS-CoV-2 Mpro wild and mutated.

System RMSD (nm) RMSF (nm)

5RE4 0.15 �0.02 0.08 �0.03

A191V 0.16 �0.02 0.08 �0.03

G11A 0.14 �0.02 0.08 �0.04

N142S 0.16 �0.02 0.08 �0.03

R60C 0.14 �0.01 0.08 �0.03

R298A 0.17 �0.03 0.09 �0.03

S139A 0.15 �0.02 0.08 �0.03

T190I 0.17 �0.02 0.08 �0.03

Y54C 0.18 �0.03 0.07 �0.03

Table 3. Calculated Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) binding free energy of
the systems.

System Δ TOTAL VDWAALS EEL EGB ΔG gas ΔG solv

5RE4 -33.49�7.32 -44.09�6.48 -33.36�16.91 50.02�9.38 -77.45�14.88 43.96�9.18

A191V -40.71�6.07 -47.19�4.43 -43.39�10.75 55.74�7.21 -90.58�12.04 49.88�7.03

G11A -41.17�4.48 -46.51�3.29 -42.57�10.84 53.40�7.96 -89.08�10.55 47.91�7.78

N142S -36.65�3.82 -54.18�3.16 -26.84�6.44 51.02�5.15 -81.02�6.77 44.37�5.10

R60C -45.09�7.29 -48.90�5.88 -49.45�12.23 59.24�7.93 -98.35�13.21 53.26�7.10

R298A -24.11�8.41 -36.30�8.91 -21.09�12.85 37.81�12.91 -57.39�19.44 33.28�11.74

S139A -25.84�2.95 -45.56�2.63 -18.41�7.38 43.84�5.14 -63.97�6.74 38.13�5.11

T190I -35.87�5.80 -48.17�5.82 -30.99�8.97 49.32�5.99 -79.15�9.71 43.29�5.81

Y54C -34.53�5.62 -28.04�5.52 -66.78�10.26 65.39�6.59 -94.82�10.55 60.29�6.36
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catalyzes the cleavage of peptide bonds, thereby enabling the release of nsps required for viral replication. This makes
Mpro a key target for therapeutic interventions.

However, mutations in the main protease (Mpro) of SARS-CoV-2 are significant because they can influence the virus’s
ability to replicate and its susceptibility to antiviral treatments. Mpro is a critical enzyme in processing viral polyproteins,
and any alterations in its structure due tomutations can affect its catalytic efficiency, protein stability, and interactionwith
inhibitors.42

In this context, numerous studies have focused on identifying new inhibitors derived from natural compounds,
as they offer a rich and promising source for drug discovery against SARS-CoV-2.43–52 These compounds provide
significant advantages in terms of chemical diversity, safety, sustainability, and therapeutic efficacy. For example,
several phytochemical molecules, such as kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin,
apigenin-7-glucoside, oleuropein, curcumin, catechin, and epicatechin gallate, have been reported as promising antiviral
agents against SARS-CoV-2.53 Additionally, Parvez et al. identified azobechalcone, rifampin, isolophirachalcone,
tetrandrine, and fangchinoline as potential Mpro inhibitors,54 while Padhi et al. demonstrated that putaminoxin B,
putaminoxin D, jasmonic acid, and jasmonic methyl ester possess good pharmacokinetic properties against Mpro.55 In
2020, more than a thousand FDA-approved drugs were virtually screened using molecular docking and binding free
energy calculations, with nelfinavir emerging as a potential inhibitor of SARS-CoV-2. Goyzueta et al. studied rutin as a
promising Mpro inhibitor using in silico techniques.56 Similarly, reused drugs and phytochemical compounds have

Figure 5. 2D interaction diagram of rutin. The pink arrow lines represent the hydrogen bond. Mpro, main
protease.
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shown binding affinities to various Mpro mutants. For instance, salvianolic acid A, extracted from Salvia miltiorrhiza,
demonstrated inhibition effects against the N142S and T190I mutations.23

We analyzed eight specific Mpro mutations (Y54C, N142S, T190I, A191V, S139A, G11A, R298A, and R60C), which
have been identified in various parts of the world and have significant implications for the protease’s structure and
function. These mutations are critical for developing effective inhibitors for antiviral treatments. The Y54C mutation,
found in Malaysia, may affect the stability of Mpro, potentially altering its overall structure and interaction with
inhibitors.57 This could compromise the three-dimensional conformation of Mpro, which is essential for its active site
function. The N142S mutation, reported in five countries, could impact the flexibility of the catalytic loop, a key element
in the active site’s efficiency.58 Alterations in this region may significantly affect the protease’s functionality. The T190I
mutation, identified in 15 countries, including South Africa and the United States, may alter interactions at the substrate
binding site by changing the orientation of catalytic residues, which could impair Mpro’s ability to interact with
substrates.59,60 The A191V mutation, with a 0.30% occurrence rate, has been reported in over 34 countries and may
influence dimerization dynamics, which are essential for enzymatic function, thereby affecting the stability and activity of
Mpro.38,61 The S139A mutation could modify the catalytic environment, affecting Mpro’s interaction with inhibitors.62

The R298A mutation disrupts dimeric conformation and leads to the irreversible inhibition of catalytic activity,
destabilizing Mpro’s structure and impairing its ability to maintain an active conformation.24 The G11A mutation
eliminates the N-finger region (residues 1-9), reducing Mpro’s enzymatic activity and preventing proper dimer
formation, which is crucial for proteolytic function.38 The R60C mutation, identified in Brazil and Vietnam, affects
the protein’s dynamics and the inhibitor binding within its active site, thus compromising Mpro inhibition.15 This
mutation particularly impactsMpro’s three-dimensional structure and its interaction with potential therapeutic inhibitors,
thereby reducing the effectiveness of protease inhibitor-based treatments.

The novelty of this study lies in the use of 84 substances taken from the original PeruNPDB (https://perunpdb.com.pe)
collection; the most recent dataset consists of 280 substances. Our results reveal that the rutin metabolite, found in
Smallanthus sonchifolius (yacón) and Lepidium meyenii (maca), exhibited the strongest binding affinity with all the
proposed Mpro mutations. Rutin, also known as rutoside, is a natural phenolic compound that plays a key role in
maintaining the oxidant-antioxidant balance associatedwith certain diseases.63,64 TheMDsimulation results indicate that
rutin interacted with the active site residues of Mpro mutations and remained stabilized in the active site region with
minimal fluctuation. These results are in perfect agreement with the MM/GBSA obtained after the docking calculation
and the RMSD analysis. Where the stable RMSD ensures that the MM/GBSA calculation is based on a structurally
consistent system, making the free energy predictions more reliable between Mpro mutations and rutin.

Conclusions
Themain protease (Mpro) is crucial for SARS-CoV-2 replication and represents a promising drug target. In this study, we
analyzed eight Mpro mutations of SARS-CoV-2 (Y54C, N142S, T190I, A191V, S139A, R298A, R60C, and G11A),
each located in different regions of the protease. Among these, S139A demonstrated strong pathogenicity predictions
through Meta-SNP calculations, warranting further investigation in future research. Additionally, virtual screening
identified rutin, from the PeruNPDB database, as themost promising candidate for binding toMpro.Molecular dynamics
simulations and energy estimation analyses confirmed that rutin forms a highly stable complex with Mpro. We believe
that computer-assisted drug design and molecular dynamics simulations offer a powerful complementary approach to
screening potential Mpro inhibitors, providing an attractive strategy to combat SARS-CoV-2 and its variants.
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This project contains the following underlying data:

• Table 1. Summary of diseased SNPs predicted from Meta-SNP in SARS-CoV-2 mutations.

• Table 2. RMSD and RMSF average values of SARS-CoV-2 Mpro wild and mutated.

• Table 3. Calculated MM/GBSA binding free energy of the systems.

• Table S1. Values of the coupling energies obtained by virtual screening.

• Table S2. Lipinski’s “rule of five” analysis of the 84 phytocompounds determined their solubility, permeability,
and efficacy for drug discovery.

• Table S3. In silico ADMET properties of 84 phytocompounds.

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
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Miguel Angel Chavez-Fumagalli 

Today, numerous studies are studying the different mutations of SARS-CoV-2 which are 
worrying and which can make the virus more aggressive and spread faster. Along these 
lines, the authors studied eight SARS-CoV-2 Mpro mutations (Y54C, N142S, T190I, A191V, 
S139A, R298A, R60C, and G11A) and analyzed several compounds from Peruvian natural 
sources by virtual screening methods. Molecular dynamics simulations and binding free 
energy estimation by MM/GBSA showed high stability of the Mpro-rutin complex and 
excellent energy affinity, respectively. These results demonstrated the database the utility 
of PeruNPDB in finding rutin as a promising inhibitor of different SARS-CoV-2 Mpro 
mutations. 
The results are numerous and interesting, the article corresponds perfectly to the objectives 
of the journal. I recommend its publication after a few corrections 
  
Authors are invited to better rewrite the abstract and the conclusion 
Answer: The abstract and conclusions were improved 
 
The authors are invited to explain and to detail the mechanism of action 
Answer: The mechanism of action of Mpro in SARS-CoV-2 is explained in the “Introduction” 
section. 
 
The authors must justify the choice of the protein 
Answer: It was better explained in the “Introduction” section 
 
Why did the authors not pursue the studies using other in-silico techniques 
Answer: Our expertise lies in the employment of in-silico methodologies that are both 
reliable and widely recognized within the scientific community for the investigation of viral 
proteins. The decision to abstain from utilizing additional in-silico techniques was based on 
practical and strategic considerations. Initially, the techniques implemented in this study, 
including virtual screening, molecular dynamics simulations, and binding free energy 
estimation using the Molecular Mechanics/Generalized Born Surface (MM/GBSA) method, 
have already demonstrated exceptional effectiveness and dependability in the structural 
and functional analysis of viral proteins. These techniques provided an in-depth 
understanding of the molecular interactions between Mpro and the chosen natural 
compounds. It should be noted that the inclusion of more in-silico techniques could have 
increased the complexity and duration of the study without guaranteeing a proportional 
improvement in the quality of the results. It is important to emphasize that virtual screening 
was utilized to efficiently identify potentially effective compounds from a vast library of 
molecules, while molecular dynamics simulations were essential to examine atomic-level 
interactions between inhibitors and Mpro in a dynamic environment. These simulations 
provided detailed information on the structural stability of the complexes formed and the 
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possible conformations adopted during the interaction. The MM/GBSA method allowed for 
the quantification of the affinity of the inhibitors for Mpro. Our primary objective was to 
provide precise and reproducible data within a reasonable time frame. By concentrating on 
well-established methodologies, we ensure the consistency and validity of our results, 
avoiding potential complications and variations associated with the use of lesser-known or 
invalidated techniques in the context of this specific study. 
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The research article entitled “Identification of compounds from natural Peruvian sources as 
potential inhibitors of SARS-CoV-2 Mpro mutations by virtual screening and computational 
simulations” has found rutin is a potential inhibitor against SARS-CoV-2 Mpro mutations. The 
research topic is interesting. There are recommendations for the authors to make the manuscript 
more effective for readers. The manuscript can be considered for indexing on addressing the 
following major comments.

The abstract conclusion is not that effective, it could be more effective. It should not start 1. 
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with “his”, kindly rephrase it. 
 
The abstract is not very effective, kindly re-write it. Kindly refer to these research papers for 
better understanding: Mathpal et al. (2022(1) and Joshi et al. (20222) and cite them 
accordingly. 
 

2. 

The authors have not analyzed the properties of mutations either these are deleterious in 
nature or neutral mutation. There are many online servers like Meta-SNP. Authors can use 
these servers. 
 

3. 

The authors have not analyzed the ADMET and Lipinski properties of compounds. Kindly 
include these methods. 
 

4. 

In the results, the authors have written that mutation is collected from different sources. 
The short part should be written on the material method and a long can be written on the 
discussion part. 
 

5. 

The results of RMSD are good but for better understanding kindly analyze interaction 
energy. 
 

6. 

The authors have been unable to explain how this study is different from other studies that 
have also found rutin against Mpro. 
 

7. 

There are many loopholes in this study.  
 

8. 

The discussion and conclusion are also not written perfectly. Kindly try to cite recent 
publications. 
 

9. 

There is a high recommendation for authors to use professional software or language 
experts to correct the grammar and language of the manuscript. There are many places 
where sentences look incomplete and create confusion for readers. 

10. 
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The research article entitled “Identification of compounds from natural Peruvian sources as 
potential inhibitors of SARS-CoV-2 Mpro mutations by virtual screening and computational 
simulations” has found rutin is a potential inhibitor against SARS-CoV-2 Mpro mutations. 
The research topic is interesting. There are recommendations for the authors to make the 
manuscript more effective for readers. The manuscript can be considered for indexing on 
addressing the following major comments. 
 
The abstract conclusion is not that effective it could be more effective. It should not start 
with “his” Kindly rephrase it. 
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The abstract is not very effective kindly re-write it. Kindly refer to these research papers for 
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them accordingly. 
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In the results, the authors have written that mutation is collected from different sources. 
The short part should be written on the material method and a long can be written on the 
discussion part. 
Answer: Information was added on page 9. From the “Discussion” section. 
 
The results of RMSD are good but for better understanding kindly analyze interaction 
energy. 
Answer: Information was added on page 9. From the “Discussion” section. 
 
The authors have been unable to explain how this study is different from other studies that 
have also found rutin against Mpro. 
Answer: Information was added on page 9. From the “Discussion” section. 
 
There are many loopholes in this study. 
Answer: The manuscript was revised and improved 
 
The discussion and conclusion are also not written perfectly. Kindly try to cite recent 
publications. 
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There is a high recommendation for authors to use professional software or language 
experts to correct the grammar and language of the manuscript. There are many places 
where sentences look incomplete and create confusion for readers. 
Answer: The manuscript was revised and improved  
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