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Introduction
Cancer is a highly heterogeneous disease that seriously endangers human health. Accu-
rate cancer subtyping is crucial for precise diagnosis, treatment guidance, prognostic 
stratification, and drug development. The advent and refinement of next-generation 
sequencing technologies have paved the way for the accumulation of vast biological 
datasets in public repositories, readily available for cancer subtyping research [1]. For 
example, The Cancer Genome Atlas (TCGA), an influential cancer genomics project that 
aggregates an array of data, including mRNA, DNA methylation, miRNA expression, and 
mutation information, spanning over 30 cancer types and a multitude of patient cases 
[2]. Unlike single-omics datasets, multi-omics data offer a holistic view of the molecu-
lar dynamics driving cancer progression, providing a powerful resource for advancing 
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precision medicine. Studies have shown that integrating multi-omics data significantly 
enhances the efficacy of clinical outcomes [3–6].

However, the high-dimensional nature of multi-omics data and relatively small sample 
sizes present significant challenges for feature extraction and cancer subtype classifica-
tion. Traditional machine learning methods often rely on feature selection for dimen-
sionality reduction [7], but such techniques struggle to fully capture complex, nonlinear 
relationships within the data. In contrast, deep learning (DL) offers new approaches for 
multi-omics integration, with its powerful data processing capabilities and adaptability 
to complex data structures. DL not only efficiently handles high-dimensional omics data 
but also learns intricate patterns and nonlinear relationships, making it highly promising 
for cancer subtype classification tasks.

Most DL-based multi-omics integration methods are unsupervised and do not fully 
leverage available sample label information. These methods typically integrate omics 
data at the input level, then use DL models to transform them into lower-dimensional 
features. For example, SALMON [8] links mRNA, miRNA, and clinical data for breast 
cancer prognosis, while Subtype-GAN [9] uses variational autoencoders and GANs for 
subtype classification. However, these approaches often neglect relationships between 
patients during feature learning and treat all omics data equally, which can introduce 
bias and reduce classification accuracy. More recently, the rise of supervised learning 
and the increasing availability of annotated datasets have allowed DL models to leverage 
sample labels for more accurate cancer subtype classification. For instance, MOSAE [1] 
and DeepOmix [10] utilize autoencoders  (AEs) to produce omics-specific representa-
tions that are later fused for classification. Although these supervised methods improve 
model accuracy and interpretability, they still lack consideration for patient relationships 
and the varying importance of different omics data in classification tasks.

To address these issues, graph convolutional networks (GCNs) [11, 12] have emerged 
as a powerful tool for multi-omics integration.GCNs effectively model relationships 
between samples and leverage graph-structured data, providing stronger data fitting 
and generalization capabilities. For instance, Wang et  al. [13] introduced multi-omics 
graph convolutional networks (MORONET), a multi-omics integration learning frame-
work that employs GCNs for omics-specific learning and incorporates a view correla-
tion discovery network (VCDN) to unearth intricate cross-omics correlations within 
the label space. Li et  al. [14] crafted a multi-omics integration model based on graph 
convolutional network (MoGCN), a model designed for cancer subtype classification. 
This model initially utilizes AEs and the similarity network fusion (SNF) method for 
dimensionality reduction of the original features and for constructing the patient simi-
larity network (PSN), respectively. Subsequently, both the vector features and the PSN 
are fed into the GCN for further training and evaluation. Bo Yang et al. [15]proposed 
multi-reconstruction graph convolutional network (MRGCN) for the integrative repre-
sentation of multi-omics data. This method first generates graphs for each omics dataset 
based on neighborhood relationships and then encodes each dataset to procure individ-
ual embeddings. MRGCN also formulates an indicator matrix to represent the scenario 
of data absence and integrates each individual embedding into a unified representation. 
Despite the advancements brought by these GCN-based models, they typically rely on 
adjacency matrices that are constructed through manual calculations or based on prior 
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knowledge, which usually introduce subjective parameters that lead to time-consuming, 
and can’t accurately reflect the actual sample relationship. How to automatically learn 
the sample relationship from complex and heterogeneous omics data is a challenge in 
the classification of cancer subtypes.

Another critical challenge in multi-omics research is how to effectively integrate 
diverse omics data. Most existing methods mentioned above generally connect differ-
ent omics features, ignoring the contribution of different omics data in the classifica-
tion task. The attention mechanism [16, 17], a concept that has risen to prominence in 
various fields, offers a promising alternative. It operates by discerning the significance 
of different segments within the training data, enabling models to concentrate on the 
most informative aspects. Great successes have been made on many problems, includ-
ing machine translation [18], recommendation [19], image classification [20], etc. In 
particular, self-attention (SA), a variant of the attention mechanism, has demonstrated 
exceptional prowess in modeling complex relationships by concurrently focusing on all 
positions within the same sequence. Its ability to model arbitrary dependencies, as evi-
denced in tasks such as machine translation and sentence embedding, underscores its 
potential. [21]. Deploying SA for omics integration can enable more flexible and adap-
tive learning of omics’ importance, leading to better classification results.

In this paper, a novel multi-omics integration method named MoAGL-SA was devel-
oped for cancer subtype classification to cope with the above-mentioned questions. 
Firstly, MoAGL-SA addresses the limitations of previous methods by automatically 
learning patient relationship graphs for each omic, using graph learning to capture 
structural information. This eliminates the need for predefined graphs and allows the 
model to reflect actual patient relationships more accurately. Secondly, GCNs were 
used to aggregate original features and structural information into low-dimensional 
graph embedding. Then, graph embeddings of various omics were adaptively integrated 
through the SA. Finally, the integrated feature representation was fed into the classi-
fier to accomplish the cancer subtype classification task. Experiments on three datasets 
demonstrate the superior performance of MoAGL-SA, as well as its ability to identify 
key biomarkers relevant to cancer subtypes.

The innovation of our work can be summarized as follows:

• We introduce graph learning into GCN-based models to automatically structure 
sample relationship graphs from complex, heterogeneous multi-omics data, elimi-
nating the need for manually predefined relationships.

• We develop an SA-based multi-omics integration method that adaptively learns the 
importance of each omic, offering a more flexible and effective solution for cancer 
subtype classification.

Materials and methods
Dateset

Omics data from TCGA were utilized to evaluate the performance of MoAGL-SA for 
cancer subtype classification. Three cancer datasets including breast invasive carci-
noma (BRCA), kidney renal papillary cell carcinoma (KIRP), and kidney renal clear cell 
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carcinoma (KIRC) were used in this paper. Only subjects with matched mRNA expres-
sion, DNA methylation, and miRNA expression data were included in the study for each 
cancer type. PAM50 breast cancer subtypes were adopted as the label of BRCA patients. 
KIRP and KIRC were regarded as two binary classification tasks, which were classified as 
early-stage and late-stage according to the pathological stage following the study of [22]. 
The details of the datasets are listed in Table 1.

The architecture of MoAGL‑SA

The architecture of MoAGL-SA, shown in Fig. 1, consists of two critical modules: omic-
specific graph embedding and adaptive multi-omics integration with SA. The omic-
specific graph embedding module generates low-dimensional representations for each 
omic, while the adaptive multi-omics integration module fuses these embeddings using 
SA. The subsequent sections provide detailed descriptions of each module.

Notation

Let X = {X1, . . . ,XM} denote a multi-omics dataset, where M is the number of the 
omics. The feature matrix of omics m ∈ {1, . . . ,M} is Xm = [xm

1
, . . . , xmN ] ∈ R

N×Dm , 
where N is the number of samples and Dm is the dimension of omics m’s original feature. 
Ym = [ym

1
, . . . , ymN ] ∈ R

Ndenotes the corresponding labels of samples. The low dimen-
sional features learned on omics m is Zm = [zm

1
, . . . , zmN ] ∈ R

N×dm where dm is the low 
dimension of learned features. � · �Frepresents the Frobenius norm.

Table 1 Summary of the datasets

Dataset Categories Number of features

mRNA DNA methylation miRNA

BRCA Normal: 22, Basal: 128, Her2: 65,
LumA: 405, LumB: 182

3217 3140 383

KIRP Early: 191, Late: 65 16,175 16,244 393

KIRC Early: 184, Late: 129 16,406 16,459 342

Fig. 1 The overall architecture of MoAGL-SA
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Omic‑specific graph embedding

The initial step of omic-specific graph embedding is to construct sample relationship 
graph of omic-specific. Sample relationship graph of the m-th omics is denoted with 
Gm = (Vm,Am

,Em) , where Vm = [vm
1
, . . . , vmN ] ∈ R

N×Dm is a set of N nodes, and each 
node is a sample. Am = [Am

11
, . . . ,Am

NN ] ∈ R
N×N , Am

ij  is the set of relations between two 
samples in the m-th omics data, and Em ⊂ Vm × Am × Vm is the edge set, and each edge 
emij = (vmi ,A

m
ij , v

m
j ) ∈ Em represents the relation between sample i and j. Current sam-

ple relationship graph construction methods rely on prior knowledge or manual rules to 
obtain adjacency matrices. This may result in the underutilization of graph nodes and fail-
ure to uncover potential distant connections. On the other hand, fully connected graphs 
can introduce their own set of issues, such as the aggregation of irrelevant or redundant 
node information, which can obscure meaningful insights and hinder the performance of 
the model [23]. In addressing these concerns, the integration of graph learning into exist-
ing graph architecture is a strategic move. By drawing inspiration from the work of[24] and 
[25], this method involves learning a soft adjacency matrix rather than relying on a prede-
fined, rigid graph structure.

Given input Vm initialized to Xm , graph learning module generate a soft adjacent matrix 
Am . First, dimensionality reduction is performed to map the original dimension Dm to a 
lower dimension dgraph . The soft adjacency matrix Am is then generated through graph 
learning to represent the relationships between samples, calculated as follows:

where wm ∈ R
dgraph refers to the shared learnable weight vector, and wm ⊙ vmi  denotes 

the Hadamard product, representing the element-by-element multiplication of two vec-
tors. Relu(·) activation function was employed to address the issue of gradient vanishing 
during the training phase. The function softmax(·) was applied to each row of matrix Am 
to ensure that the learned soft adjacency matrix Am met the following property:

To optimize the learnable weight vector wm , we use a modified loss function based on 
[24, 26]:

1−
vmi ·v

m
j∥∥vmi

∥∥∥∥vmj
∥∥ is the consine distance between sample i and j. The first term of Equ(3) 

means that if sample i and j are farther apart in the feature space, Am
ij  will get smaller 

controlled by the weight value. Similarly, samples that are proximate to each other within 
the feature space exhibit greater relation valves. This characteristic serves to inhibit the 
aggregation of information from noisy nodes during graph convolution. Meanwhile, η is 

(1)





Am
i = softmax(emi ), i = 1, . . . ,N , j = 1, . . . ,N ,

emij = Relu

�
1−

�
wm ⊙ vmi

�
·
�
wm ⊙ vmj

�

��wm ⊙ vmi

����wm ⊙ vmj

��

�
,

(2)
N∑

j=1

Am
ij = 1,Am

ij ≥ 0.

(3)LGL =
M∑

m=1

(
1

N 2

N∑

i,j

(
Am
ij + η

(
1−

vmi · vmj
�vmi ��v

m
j �

))
+ γ

∥∥Am
∥∥2
F

)
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a trade-off parameter that governs the significance of nodes in the graph. An average 
operation was also performed on all nodes to reduce the impact of node count. Besides, 
the second term of Eq.  (3) is used to control the sparsity of Am , where γ is a trade-off 
parameter, and a larger γ makes the soft adjacency matrix Am more sparse. By optimiz-
ing LGL , the model learns the mapping relationship between input data and adjacency 
matrix during the training phase. This enables the model to generate appropriate adja-
cency matrix Am for the test data.

To add self-connections, the adjacency matrix Am was modified as follows, according to 
[11]:

where D̂ denotes the diagonal node degree matrix of Â
m

 , and I is the identity matrix.
The second step of the omic-specific graph embedding involves feature extraction. We 

use GCN to extract the features with input Xm and the corresponding soft adjacent matrix 
Am . GCN was built by stacking multiple convolutional layers, and each layer is defined as:

where Hm
(l) is the input of the l-th layer and Hm

(0) = Xm . Wm
(l) is the weight matrix of the 

l-th layer. σ(·) denotes a non-linear activation function. The final embedding Zm is the 
output of the last layer.

Adaptive multi‑omics integration with SA

To enhance multi-omics data integration, it is essential to fuse omic-specific graph embed-
dings in a flexible manner. Recent studies have revealed that SA can be viewed as a weighted 
summation of values, with query and keys playing a crucial role in determining the weight 
coefficients for the corresponding values. In this study, we utilized the query matrix Q and 
key matrices K  to compute attention scores for each omics dataset. These attention scores 
were then used to perform a weighted summation of the omic-specific value matrices V  , 
enabling adaptive multi-omics integration.

Due to the relatively large scale of the networks, a time-efficient way like [27] was used 
to calculate attention score for each omic. Initially, two learnable linear transformations 
were applied to the graph embedding of each omic, represented by weight matrices WQ 
and W K respectively. Subsequently, the query matrix Q and the key matrix K  were derived 
as follows:

Here, the avg operation computes element-wise averages to represent consensus infor-
mation across the omics, while the stack operation combines all key matrices, increasing 
the rank by one. The parameters WQ and W K  are shared across all omics to maintain 
scalability for different numbers of omics. Given that the output of the omics attention 

(4)Ã
m
= D̂

− 1
2 Â

m
D̂

− 1
2 = D̂

− 1
2
(
Am + I

)
D̂

− 1
2
,

(5)Hm
(l+1) = f

(
Hm

(l), Ã
m
)
= σ

(
Ã
m
Hm

(l)W
m
(l)

)
,

(6)Qm =ZmWQ,Q = avg
[
Q1

, . . . ,QM
]
,

(7)Km =ZmW K ,K = stack
[
K 1

, . . . ,KM
]
.
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mechanism is a weighted average of the value matrices Vm , it becomes paramount for 
these matrices to retain the original structural information to the fullest extent. Con-
trasting with the matrices Q and K  , the computation of V  involves utilizing a graph 
encoder, specifically designed to encapsulate higher-order structural information. This 
graph encoder operates based on the function g and is characterized by the weight 
matrix W V :

The attention score is calculated based on the inner product of the query matrix Q and 
the key matrix Km . A higher inner product value indicates greater relevance of a spe-
cific omic, resulting in higher weight being assigned to that omic in the integration. This 
approach reduces computational complexity compared to matrix multiplication. The 
attention score wm

as is computed as:

where the softmax(·) function normalizes all choices, and 
√
d denotes the scaling fac-

tor. Following such intuition, the final representation of omics attention mechanism was 
computed as:

To ensure that the structural integrity of the data is preserved, we implemented an omics 
reconstruction task as a supplementary task to the SA-based integration. This unsu-
pervised task is trained concurrently and ensures that the graph encoder retains a suf-
ficient amount of original information by reconstructing the omic-specific features. The 
decoder operates as follows:

where Z ′ =
∑

m = 1MZm , and Wm
D is the weight matrix for the decoder.

The objective function for omics reconstruction, guided by the mean square error, 
is defined as:

Cancer subtype classification task

To classify cancer subtypes, cross-entropy loss LCE(·) was employed to train 
MoAGL-SA:

(8)Vm = g
(
Am

,Zm
)
= AmZmW V ,

(9)V = stack
[
V 1

, . . . ,VM
]
,

(10)wm
as =

softmax(Q · Km)
√
d

,

(11)Z =
M∑

m=1

wm
asV

m
.

(12)Z̃
m = g̃

(
Ã
m
,Z ′

)
= Ã

m
Z ′Wm

D ,

(13)LD =
1

M

1

N

M∑

m=1

|Zm − Z̃
m|

2

F .
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where Ntr is the number of samples in the training set.
In summary, the total loss function for MoAGL-SA is formulated as:

where α and β are trade-off parameters that control the importance of the graph learning 
and omics reconstruction tasks, respectively.

Results
Performance evaluation

Different metrics were utilized to evaluate the performance of the model for cancer sub-
type classification. For binary classification tasks, accuracy (ACC), F1 score, and the area 
under the receiver operating characteristic curve (AUC) were used. For multi-class clas-
sification tasks, accuracy (ACC), weighted F1 score (F1-w), and macro-average F1 score 
(F1-m) were employed. ACC and F1 were defined as follows:

where TP, TN, FP, and FN were regarded as true positives, true negatives, false positives, 
and false negatives, respectively.

Implementation details

Figure 2 illustrates the architecture of the MoAGL-SA network. Initially, each omic data-
set is input into a single linear layer, which maps the data to lower dimensions, followed 
by a graph learning layer. The original features and the learned adjacency matrices are 
then fed into a three-layer GCN to generate omic-specific graph embeddings, with the 
activation function set to LeakyReLU. Afterward, the learned features are input into the 

(14)LC =
Ntr∑

n=1

LCE
(
MoAGL− SA(xn), yn

)
,

(15)L = LC + αLGL + βLD,

(16)ACC =
TP + TN

TP + TN + FP + FN
,

(17)F1 =2×
Precsision× Recall

Precsision+ Recall
,

(18)Precsision =
TP

TP + FP
,Recall =

TP

TP + FN
,

Fig. 2 The overall architecture of MoAGL-SA
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integration module, where three separate linear layers combined with corresponding 
average, stack, and graph encoder operations transform the features into the SA input 
matrices Q , K  , and V  . Following attention calculation, a feedforward neural network, 
residual connections, and normalization are applied before feeding the features into 
the linear layers for classification and graph decoding. The process culminates with the 
application of the softmax function for final subtype classification.

The MoAGL-SA network was implemented using PyTorch 1.10.1 and Python 3.9.7. 
Training was performed on a system equipped with an Intel(R) Core(TM) i9-13900k 
CPU and an NVIDIA GeForce RTX 4090 GPU. Several key hyperparameters, such as 
the feature dimensionality of the three-layer GCN, number of epochs, learning rate, and 
trade-off parameters, were carefully configured. The GCN feature dimensions were set 
to [400, 200, 100] for all datasets, with the number of training epochs set to 2500. The 
learning rate was set to 1e − 4 , and the AdamW optimizer was employed for the classifi-
cation task. Cosine Annealing was used to adjust the learning rate throughout training. 
In the graph learning module, the trade-off parameters γ and η were set to 0.3 and 0.7, 
respectively, while α and β in the final loss function were both set to 1e − 3.

Figure 3 shows the variation in the loss value across epochs with the above parameter 
settings on MoAGL-SA. As seen in Fig. 3, the model reaches a low and stable loss value 
under these current parameters.

Comparison with previous methods

MoAGL-SA was compared with five classification methods that utilized multi-omics 
data including three classical methods i.e., k-nearest neighbor classifier (KNN), support 
vector machine classifier (SVM), random forest (RF), as well as two DL-based methods 
of MoGCN and MORONET.

• KNN, the final classification was decided by voting of k-nearest neighbors;
• SVM identified an optimal hyperplane that maximally separated the different classes 

of data set;

Fig. 3 The variation of the loss value with epoch on MoAGL-SA
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• RF constructed multiple decision trees during training and output the class that was 
the mode of all the individual decision tree predictions;

• MoGCN [14] is a multi-omics integration method for cancer subtype classification 
based on GCN, which used AE and SNF to reduce dimensionality and construct the 
patient similarity network respectively;

• MORONET [13] is a method that jointly used GCN and VCDN for multi-omics data 
classification.

All competitive methods were implemented using publicly available code. The scikit-
learn package was mainly used to implement these methods with default parameters. 
The input data of these classical methods was a single matrix that concatenated the 
multi-omics data. MoGCN, MORONET, and the proposed method were implemented 
using the PyTorch framework. MoGCN utilized AEs trained with mean squared error, 
followed by SNF for patient similarity network construction and a two-layer GCN. 
MORONET trained a three-layer GCN with L2 parametric loss, while VCDN was 
trained with cross-entropy loss. The critical threshold k, determining the average num-
ber of neighbors per sample, was set between 2 and 10.

Following the approach in [13], 70% of the samples were used for training, and the 
remaining 30% for testing. During testing, all samples were input to the model to main-
tain their relationships, and evaluation metrics were calculated only on the test set. The 
average evaluation metrics were calculated from five random runs. Additionally, com-
putational time was reported to provide a comprehensive overview of performance effi-
ciency. Table 2 displays the classification results on three datasets.

As shown in Table 2, MoAGL-SA outperformed the five compared methods in most 
classification tasks. Although RF and SVM produced slightly higher F1 scores on the 
KIRC dataset, MoAGL-SA achieved comparable ACC and superior AUC. Compared 
to the other two GCN-based methods(MoGCN and MORONET), MoAGL-SA demon-
strated superior performance in all classification tasks, though at the cost of increased 
computational time due to the need for optimizing the sample relationship graph.

The method integrated three types of omics data of mRNA, DNA methylation, and 
miRNA. To demonstrate the necessity of integrating multiple omics data for classifica-
tion, we compared the classification results of the method using multi-omics data and 
single-omics data. Fig. 4 gives the results.

Figure 4 shows that MoAGL-SA consistently outperformed the method based on sin-
gle-omics data, except for AUC in the KIRC classification task, where DNA and miRNA 
individually achieved higher performance. The performance of different omics varied 
across classification tasks. For example, mRNA performed best in BRCA classification, 
whereas miRNA outperformed mRNA in KIRP classification. These results underscore 
the importance of integrating multi-omics data for robust classification performance.

Ablation experiments

To further validate the robustness of the proposed method, ablation studies were sys-
tematically conducted, focusing on both key modules and key parameters.

To assess the effectiveness of the graph learning module, we replaced the graph learn-
ing module with a KNN and cosine distance-based graph construction method (denoted 
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as Consine_n), where n (2,4,8,16) represents the number of k-nearest neighbors. Table 3 
displays the results for MoAGL-SA compared to Consine_n. From Table 3, the following 
results are observed: firstly, for the fixed composition method Consine_n, the classifica-
tion performance of the model is sensitive to the value n. For example, in BRCA classifi-
cation task, the maximum and minimum values of ACC are obtained when n is set to 2 
and 16 respectively. Secondly, compared with Consine_n methods, MoAGL-SA achieves 
superior performance across various classification metrics. This demonstrates the effec-
tiveness of the graph learning module in constructing the sample similarly graph and 
yielding more accurate and robust classification results.

In addition, to verify the effectiveness of SA module in omics integration, we replaced 
SA with two alternative methods, simply adding various omics features (GCN_NA) and 
assigning equal weights (GCN_EQU) to different omics. From Table 4, we can see that 
GCN_NA and GCN_EQU methods have a relatively low classification performance in 
most evaluation metrics for three cancers, which illustrates that ordinary integration 
strategy that directly adds various omics features or assigns equal weights for differ-
ent omics may be insufficient for cancer subtype classification. This demonstrates the 
superiority of the SA-based integration module in enhancing MoAGL-SA’s ability to 

Fig. 4 Classification results between multi-omics data and single-omics data via MoAGL-SA

Table 3 Ablation experiments of the graph learning module

Bold indicators the highest value of each evaluation metric

Method BRCA KIRP KIRC

ACC (%) F1‑w (%) F1‑m (%) ACC (%) F1 (%) AUC (%) ACC (%) F1 (%) AUC (%)

Consine_2 85.48 85.10 77.71 81.30 88.12 77.42 71.28 74.52 74.92

Consine_4 82.99 82.71 71.32 84.67 90.52 82.85 70.43 73.26 73.28

Consine_8 81.91 80.60 74.13 85.97 91.31 81.82 70.85 74.72 74.35

Consine_16 81.49 81.14 76.23 81.56 88.62 83.26 69.79 73.77 73.16

MoAGL-SA 88.22 88.05 83.83 90.13 93.81 92.03 72.34 77.02 76.22

Table 4 Ablation experiments of the omics integration module

Bold indicators the highest value of each evaluation metric

Method BRCA KIRP KIRC

ACC (%) F1‑w (%) F1‑m (%) ACC (%) F1 (%) AUC (%) ACC (%) F1 (%) AUC (%)

GCN_NA 77.10 73.92 70.71 83.38 88.42 90.61 70.00 74.28 76.14

GCN_EQU 81.41 79.98 68.67 80.78 86.85 90.05 68.09 73.60 76.06

MoAGL-SA 88.22 88.05 83.83 90.13 93.81 92.03 72.34 77.02 76.22
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effectively distinguish cancer subtypes. Furthermore, the best classification performance 
is achieved by combining two key modules in the proposed method for three cancers, 
which demonstrates the superiority of graph learning for automatically constructing 
sample relationship graph and SA based adaptive integration modules for cancer sub-
type classification.

Further ablation experiments were conducted to evaluate the impact of the key param-
eters(α , β , γ , η ). α and β are the coefficients for graph learning loss and omics reconstruc-
tion loss, respectively, which determine the importance of graph learning and omics 
reconstruction task. Ablation experiments were conducted where one parameter was 
fixed at 1e − 3 while the other was set to [ 1e − 1 , 1e − 2 , 1e − 3 , 1e − 4 , 0]. γ and η are key 
parameters for graph learning loss, where γ controls the sparsity of the adjacency matrix 
and η governs the importance of the samples. Similarly, the ablation experiment was set 
with these two parameters of 0.3 and 0.7, respectively, with one parameter unchanged in 
the solid state and the other set to [0.1, 0.3, 0.5, 0.7, 0.9]. Table 5 displays the results of 
the ablation results for the key parameters.

It is observed that the optimal performance across all three datasets occurs when both 
α and β are set to 1e-3. This parameter setting demonstrates an effective balance, pro-
viding high accuracy and F1 scores, indicating that it optimally balances performance 
across different datasets. Notably, variations in α have a more pronounced impact on 
model performance compared to changes in β . This suggests that the graph learning 
task, relative to the omics reconstruction task, plays a more crucial role in influencing 
the final classification outcomes. Our model achieves the best performance under the 
setting γ=0.3 η=0.7 compared with other settings. This further demonstrates the impor-
tant role of graph learning tasks in the model. The above results show that appropriate 
parameter selection is the key to achieve robust and stable performance.

Case studies

To demonstrate the ability of MoAGL-SA in identifying cancer subtypes and enhance 
the interpretability of MoAGL-SA, the Permutation importance method [28] was 
applied for important feature ranking and selection on BRCA dataset whose subtype was 
more complex compared to the other two datasets. Firstly, the input data is normalized 
to the range of [0,1]. Next, randomly set one of the feature values to 0 in the test dataset 
and use the trained model to re-predict the dataset. The attenuation of model perfor-
mance represents the importance of the feature. In the BRCA classification task, ACC is 
used to evaluate the attenuation of MoAGL-SA model’s performance. By repeating this 
process for all features, the feature importance calculation is completed and the feature 
with the most significant decrease is identified as the most critical feature. Table 6 dis-
plays the top 100 biomarkers for the BRCA dataset from mRNA expression data.

Several biomarkers identified by MoAGL-SA have known associations with breast 
cancer. For example, E2F8 demonstrated robust elevation in both breast cancer cell lines 
and clinical tissue samples. Studies by Ye et al. confirmed that upregulation of E2F8 sig-
nificantly promoted breast cancer cell proliferation and tumorigenicity both in vitro and 
vivo [29]. KIF20A was more frequently expressed in human epidermal growth factor 
receptor 2 (HER2) -positive and triple-negative breast cancer than in the luminal type. 
Masako et  al. [30] indicated that KIF20A expression was an independent prognostic 
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factor for breast cancer. In addition, overexpression of tumor-related KIFs correlated 
with worse outcomes of breast cancer patients and could work as a potential prognostic 
biomarker [31]. Additionally, DEPDC1B was also demonstrated to be overexpressed in 
breast cancer [32].

Meanwhile, the biomarkers mentioned above also ranked high among differentially 
expressed genes in mRNA expression data, as shown in Table 7, which is sorted by false 
discovery rate (FDR). It validated the effectiveness of the proposed method in discover-
ing these key biomarkers.

Furthermore, to demonstrate the relationship between identified biomarkers and 
breast cancer, KEGG pathway enrichment analyses and GO enrichment analyses, includ-
ing biological process (BP) annotation, cellular component (CC) annotation, and molec-
ular function (MF) annotation for the selected top 100 biomarkers, were conducted 

Table 5 Ablation experiments of the key parameters

Bold indicators the highest value of each evaluation metric

Method BRCA KIRP KIRC

ACC (%) F1‑w (%) F1‑m (%) ACC (%) F1 (%) AUC (%) ACC (%) F1 (%) AUC (%)

α=1e − 1,
β=1e − 3

81.78 77.18 67.99 85.30 85.90 83.32 57.45 72.97 71.48

α=1e − 2,
β=1e − 3

80.54 80.20 75.25 87.90 87.60 83.83 58.51 73.47 73.82

α=1e − 4,
β=1e − 3

80.12 76.73 70.16 79.22 88.41 89.27 62.77 74.82 73.36

α=0,
β=1e − 3

70.12 65.91 56.41 79.22 80.41 76.66 53.19 66.15 65.62

α=1e − 3,
β=1e − 1

85.10 83.25 80.32 86.62 86.76 79.94 60.64 73.47 71.69

α=1e − 3,
β=1e − 2

87.18 85.36 82.39 89.22 88.41 80.30 69.57 74.48 74.68

α=1e − 3,
β=1e − 4

85.93 83.91 82.74 87.92 87.41 81.73 62.77 74.45 71.78

α=1e − 3,
β=0

81.37 76.27 67.18 80.52 88.89 79.68 60.64 72.97 67.95

α=1e − 3,
β=1e − 3

88.22 88.05 83.83 90.13 93.81 92.03 72.34 77.02 76.22

γ=0.1,
η=0.7

85.78 86.09 77.99 89.22 88.41 83.17 64.89 74.47 68.08

γ=0.5,
η=0.7

86.35 86.43 81.85 90.02 88.89 86.91 62.77 73.45 68.38

γ=0.7,
η=0.7

84.61 86.10 81.22 89.22 88.41 84.75 60.64 73.48 66.62

γ=0.9,
η=0.7

82.32 83.36 80.23 89.22 88.41 77.02 59.57 73.97 67.99

γ=0.3,
η=0.1

85.54 87.14 74.43 89.22 88.24 90.09 70.64 74.13 71.57

γ=0.3,
η=0.3

85.95 87.24 81.68 90.02 90.05 91.22 70.64 73.47 74.03

γ=0.3,
η=0.5

86.80 87.56 82.76 87.92 87.41 91.27 70.64 72.97 70.79

γ=0.3,
η=0.9

83.78 82.25 79.08 86.62 86.76 91.22 71.70 73.53 71.23

γ=0.3,
η=0.7

88.22 88.05 83.83 90.13 93.81 92.03 72.34 77.02 76.22
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using DAVID (https:// david. ncifc rf. gov/). The results of the enrichment analysis are 
shown in Fig. 5. The left subgraph of Fig. 5 shows the KEGG pathway enrichment analy-
sis results, where the gene ratio refers to the pathway of biomarkers associated with a 
specific biological pathway or function related to the total number of biomarkers. A high 
gene ratio indicates that a significant portion of biomarkers is related to the pathway, 
suggesting a strong biological relevance. Conversely, a low gene ratio indicates a weaker 

Table 6 The top 100 biomarkers of BRCA dataset

Rank Gene Rank Gene Rank Gene Rank Gene

1 E2F8 26 TCEAL7 51 LRRFIP1 76 CARKD

2 YBX2 27 GRIN2A 52 SLITRK5 77 PLAC9

3 PRR11 28 EPCAM 53 PRKCA 78 SLITRK6

4 KIF20A 29 MAL2 54 PBX2 79 SOX5

5 PRPH 30 ZG16 55 ESYT1 80 SLIT1

6 DEPDC1B 31 MMP28 56 C10orf58 81 PHLDA2

7 TFR2 32 ZSCAN10 57 PYY2 82 ESAM

8 MYBL1 33 IBSP 58 SLCO4C1 83 CKMT1A

9 BTNL9 34 NDRG4 59 SPINK4 84 CLDN18

10 KCNG3 35 FA2H 60 DRP2 85 CKMT1B

11 BARD1 36 PLD4 61 PKHD1 86 LRRC55

12 VSTM1 37 P2RY1 62 ARHGEF7 87 GPRASP1

13 TREH 38 PAX2 63 SLITRK3 88 RDH16

14 NEFL 39 SLC6A11 64 DQX1 89 CAMK1

15 SOX17 40 RPL39L 65 COX7A1 90 ERBB2

16 CDH1 41 IP6K3 66 SGCA 91 C9orf7

17 psiTPTE22 42 MYOM3 67 TRIM29 92 SPIN1

18 TMEM59L 43 PYCR1 68 CKMT2 93 SSX4

19 TRPM2 44 APOBEC3B 69 PTGDS 94 GPR128

20 PALMD 45 ANKRD26P1 70 TARP 95 C8orf84

21 LTBP2 46 SLC5A11 71 ST8SIA6 96 UGT1A5

22 FAM83A 47 CES3 72 NRN1 97 GDPD2

23 RAB42 48 PPP1R9A 73 XKR8 98 RNF17

24 NMU 49 SEPT5 74 RABEPK 99 ADH1A

25 ME1 50 SEMA6C 75 C6orf145 100 APOA2

Table 7 The top 10 differentially expressed genes in mRNA expression data of BRCA dataset

Bold indicates that this gene also appears among the top genes selected by MoAGL‑SA

Rank Gene FDR

1 DEPDC1B 2.70E-22

2 NAT1 3.81E-20

3 E2F8 3.81E-20

4 AGR3 4.63E-20

5 KIF20A 4.63E-20

6 SCUBE2 5.38E-20

7 ERBB4 5.38E-20

8 TFF1 7.64E-20

9 CA12 2.31E-19

10 BCL11A 2.74E-19

https://david.ncifcrf.gov/
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association with a specific biological pathway. The right subgraph of Fig. 5 shows the GO 
enrichment analysis results. BP involves pathways and broader processes that the genes 
are involved in; CC pertains to the parts of the cell or extracellular environment where 
the genes are active; and MF describes the biochemical activities carried out by gene 
products.

The KEGG pathway enrichment showed that these biomarkers were significantly 
enriched in the Metabolic pathways, Cell adhesion molecules, Pathways of neurodegen-
eration-multiple diseases, Arginine and proline metabolism, etc. Metabolic pathways of 
energy production and utilization were dysregulated in tumor cells, and this dysregula-
tion was a newly accepted hallmark of cancer. Intervention measures on breast cancer 
pathways might benefit high-risk groups of breast cancer [33]. Cell adhesion molecules 
was considered essential for transducing intracellular signals responsible for adhesion, 
migration, invasion, angiogenesis, and organ-specific metastasis, which was related to 
the metastasis of breast cancer [34]. The GO enrichment analysis of the top 100 bio-
markers showed that their biological function focused on the phosphocreatine biosyn-
thetic process, axonogenesis, plasma membrane, basolateral plasma membrane, creatine 
kinase activity, and kinase activity. Cancer-related axonogenesis and neurogenesis were 
regarded as a novel biological phenomenon, and spatial and temporal associations 
between increased nerve density and preneoplastic and neoplastic lesions of the human 
prostate were identified [35], indicating that these biological phenomena might also be 
related to breast cancer, which deserves future research. In the aspect of the plasma 
membrane, the fourier transform infra-red spectra of plasma membrane proteins 
showed significant differences between normal and benign tissues compared to malig-
nant tissues of breast cancer at 1536 and 1645 cm−1 [36]. Although there is no direct 
literature to prove that the remaining biomarkers are related to breast cancer subtypes, 
the enrichment analysis results show that some biomarkers are involved in metabolic 
pathways, molecular functions, cellular components and biological processes that may 
be related to the development and progression of breast cancer. These findings provide a 
promising way for future research.

Discussion
This paper proposes MoAGL-SA, a novel multi-omics integration method combining 
graph learning, GCN, and SA in a unified framework. The graph learning of MoAGL-SA 
could adaptively construct sample relationship graph from each omics data, overcoming 
the limitations of traditional graph construction methods that required prior knowledge 

Fig. 5 The results of enrichment analysis on top 100 biomarkers
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or manual operations. The SA-based multi-omics integration module automatically 
assigns weights to each omic, producing a final integrated feature representation.

Our experimental results on BRCA, KIRP, and KIRC demonstrate the superior classi-
fication performance of MoAGL-SA compared to classical methods and state-of-the-art 
DL-based methods. One important observation is that DL-based methods like MoGCN 
and MORONET did not consistently outperform classical methods on certain datasets. 
This may be due to the fact that MoGCN relies on AEs for feature extraction, which can 
be suboptimal for handling high-dimensional omics data, particularly for the KIRP and 
KIRC datasets. Additionally, MORONET, while effective for multi-class classification, 
appears less suited for binary classification tasks, which might explain its lower per-
formance. However, MoAGL-SA consistently achieved superior results across multiple 
metrics. Its end-to-end learning approach, coupled with adaptive multi-omics integra-
tion, allowed it to handle complex data relationships more effectively, demonstrating its 
advantage over both classical and DL-based methods.

Our case studies on BRCA demonstrate MoAGL-SA’s capacity to identify biologically 
relevant biomarkers associated with breast cancer subtypes, such as E2F8, KIF20A, and 
DEPDC1B. The KEGG and GO enrichment analyses further validated the biological rel-
evance of these biomarkers, highlighting their roles in processes like cell adhesion and 
metabolic pathways, which are known to be involved in cancer development.

Despite its promising results, MoAGL-SA has several limitations. First, the model 
requires complete multi-omics data, limiting its use in cases with missing data. Future 
work will explore imputation techniques or models that handle incomplete datasets. 
Second, while MoAGL-SA performed well on BRCA, KIRP, and KIRC datasets, its gen-
eralizability to other cancers remains to be evaluated, requiring validation on independ-
ent datasets. Lastly, although the model identified potential biomarkers, further clinical 
trials are needed to confirm their biological significance and relevance to cancer sub-
types. Addressing these limitations will be the focus of future research.

Conclusion
In this study, we propose MoAGL-SA, an advanced multi-omics integration framework 
that combines graph learning, GCNs, and self-attention to enhance cancer subtype 
classification. By automatically constructing sample relationship graphs and adaptively 
weighting each omics, MoAGL-SA not only achieves outstanding classification accuracy 
but also effectively identifies biologically relevant biomarkers. Its adaptive, end-to-end 
design outperforms classical and DL-based methods, providing a promising tool for 
advancing precision medicine through flexible multi-omics integration.
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