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Abstract
Objectives  To investigate the feasibility and effectiveness of a deep learning (DL) super-resolution (SR) ultrasound image 
reconstruction model for predicting cervical lymph node status in patients with papillary thyroid carcinoma(PTC).
Methods  In this retrospective study, researchers recruited 544 patients with PTC and randomly assigned them to train-
ing and test sets. SR ultrasound images were acquired using SR technology to improve image resolution, and artificial 
features and DL features were extracted from the original (OR) and SR images, respectively, to construct a ML, DL model. 
The best model was selected and aggregated with clinical parameters to construct the nomogram. The performance of 
the model is evaluated by ROC curves, calibration curves and decision curves.
Results  In distinguishing the presence or absence of metastatic lymph nodes, the predictive performance of the SR_
ResNet 101 and SR_SVM models based on SR outperformed those based on OR. In the test set, SR_SVM AUC was 0.878 
(95% CI 0.8203–0.9358), accuracy 0.854, while OR_SVM AUC was 0.822 (95% CI 0.7500–0.8937), accuracy 0.665. SR_ResNet 
101 AUC was 0.799 (95% CI 0.7175–0.8806), accuracy 0.793, and OR_ResNet101 AUC was 0.751 (95% CI 0.6620–0.8401), 
accuracy 0.713. Subsequently, Nomogram_A and Nomogram_B were constructed by integrating the SR_SVM model 
and SR_ResNet 101 model, respectively, with clinical parameters, while Nomogram_C was constructed solely based 
on clinical indicators. In the test set, Nomogram_A demonstrated the best performance with an AUC of 0.930 (95% CI 
0.8913–0.9682) and accuracy was 0.829. Nomogram_B AUC 0.868 (95% CI 0.8102–0.9261) and accuracy was 0.829, while 
Nomogram_C AUC 0.880 (95% CI 0.8257–0.9349) and accuracy was 0.787. The DeLong test revealed that the diagnostic 
performance of Nomogram_A based on SR_SVM was significantly higher than that of Nomogram_B, Nomogram_C, and 
the level of Radiologist (P < 0.05). The calibration curves and Hosmer–Lemeshow tests confirmed a high degree of fit, 
and the decision curve analysis demonstrated clinical value and potential patient benefit.
Conclusions  The predictive model constructed using SR reconstructed ultrasound images demonstrated superior per-
formance in predicting preoperative cervical lymph node metastasis in PTC compared to OR images. The nomogram 
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prediction model based on SR images has the potential to enhance the accuracy of predictive models and aid in clinical 
decision-making.

Keywords  Papillary thyroid carcinoma · Cervical lymph node metastases · Deep learning · Super-resolution 
reconstruction · Predictive modelling

1  Introduction

Thyroid cancer (TC) has become one of the fastest growing malignant tumors in the world in recent years, ranking among 
the top ten malignant tumors, especially in women, its incidence rate is among the top five. Papillary thyroid carcinoma 
(PTC) is the most common pathologic type [1, 2]. Almost 90.0% of cancer-related deaths are caused by metastasis [3], 
with cervical lymph node metastasis (CLNM) being one of the most important factors affecting the prognosis of patients 
with TC.

Ultrasound (US) is currently the most commonly used imaging modality for preoperative CLNM assessment of PTC. 
However, US has a low sensitivity for detecting CLNM [4], with studies claiming that 60.0% to 70.0% of CLNM cases remain 
undetected by preoperative imaging [5]. US images are often limited in spatial resolution by speckle noise, low contrast, 
attenuation, shadowing, and signal loss, which can make an accurate diagnosis and treatment planning difficult [6]. In 
addition, US diagnosis is highly operator-dependent, subtle changes are easily missed, and the quality of the US equip-
ment used also affects the diagnosis. Therefore, accurate diagnosis of PTC CLNM remains challenge.

Recently, intelligent image processing technology based on deep learning (DL) has made significant progress, aiming 
to surpass the physical limitations of imaging systems, improve the spatial resolution, and enhance the reliability and 
efficiency of early diagnosis [7]. Super-resolution (SR) reconstruction techniques have attracted significant attention in 
the field of image generation, primarily encompassing traditional and DL-based methods, the latter utilizing DL models 
to learn the mapping between low and high resolutions, which has yielded superior reconstruction quality and preci-
sion. SR reconstruction can be used to improve the quality of images obtained from various modality such as computed 
tomography (CT), magnetic resonance imaging (MRI), and US, thereby enhancing the robustness and stability of radiology 
models [8, 9]. Promising results have been achieved in enhancing the spatial resolution of medical images [6, 10–12].

Therefore, we propose to adopt generative adversarial networks (GAN) as the basic framework for SR US images. Based 
on the original (OR) and SR images, we will construct models using various machine learning (ML) and DL algorithms, 
and develop the optimal model in combination with clinical indicators to predict the lymph node (LN) status of PTC. To 
our knowledge, this study is the first to clinically demonstrate the use of DL-based SR reconstruction of US images for 
predicting LN status in patients with PTC.

2 � Materials and methods

2.1 � Patient

This research protocol was approved by the Review Committee of the Second Affiliated Hospital of Nanchang University, 
adhering to the principles outlined in the Declaration of Helsinki and its subsequent amendments or comparable ethi-
cal guidelines. The study abstained from utilizing protected health information and ensured the de-identification of all 
data, thereby negating the requirement for patient informed consent. The inclusion criteria were as follows: (1) first-time 
TC surgery; (2) thyroid US examination within 1 month before surgery; (3) postoperative pathological diagnosis of PTC 
and pathological results of cervical lymph nodes (CLN); (4) complete clinical records, US data, and pathological reports. 
Exclusion criteria: (1) metastatic TC; (3) poor quality of US data; (4) co-morbidities that can cause abnormal changes in 
CLN; (5) interventional treatment or I-131 therapy have performed before US examination. In this study, 544 patients 
with PTC who met the criteria in our thyroid surgery department from December 2018 to January 2021 were finally 
randomly selected for inclusion in the study. All patients were randomly assigned to training and test cohorts according 
to the proportion of 7:3 (Fig. 1).
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2.2 � Ultrasonic image data acquisition

US examination and image acquisition were performed according to the guidelines by a experienced sonographer with 
10 years of practice. The "Thyroid" mode on the Mindray US Diagnostics (Resona 7S; Shenzhen, China) was utilized for 
thyroid ultrasonography, following a consistent protocol for image acquisition, which included standardized settings 
for contrast, depth, frequency, and other parameters. Patients were supine and the anterior neck area was fully exposed. 
Longitudinal, transverse, and oblique thyroidectomy scans were performed with high-frequency linear array probes (5 
to 14 MHz). The overall structure and echo of thyroid gland, the size, shape and internal echo of nodules and the status 
of CLN was evaluated. If a patient has multiple nodules at the same time, most suspicious one is selected for inclusion in 
the study based on physician experience. The longitudinal and transverse sections at the maximum diameter of the lesion 
were collected, and the lesion was located in the middle of the image. The captured US images are stored in DICOM for-
mat. Additionally, senior radiologist reassessed these images to exclude duplicates, excessively large images, images with 
severe artifacts, and blurry low-quality images, and further determined the presence of LNM based on the US findings.

2.3 � Clinical data and pathological results

All patients underwent hemi-or total thyroidectomy and LN dissection within 1 month after the US examination. On 
the premise of unknown imaging results, the postoperative specimens of CLN of PTC were classified as metastatic or 
non-metastatic by pathologists with 10 years of experience. The patient’s basic clinical data (including age, nodule size, 
location, US features, ACR-TIRADS [13] of nodules, and pathological findings (LN status, autoimmune thyroiditis, bilateral, 
multiple) were obtained through the medical record system.

2.4 � Surgical methods

The indications for CLN dissection are primarily based on preoperative ultrasound and cytological examination results. 
When PTC is present in bilateral thyroid lobes, total thyroidectomy and bilateral central neck dissection (CND) are per-
formed. For unilateral PTC, either unilateral thyroidectomy with isthmusectomy or total thyroidectomy is performed, 
accompanied by unilateral or bilateral CND (total thyroidectomy should be considered for patients with unilateral PTC 

Fig. 1   Flow chart of patients 
enrolled in the study
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meeting one or more of the following criteria: tumor size > 4 cm, multiple tumors in a single lobe, extrathyroidal exten-
sion, or distant metastasis). Lateral neck dissection (LND) is considered when there is evidence of lateral neck LNM on 
preoperative examination or when suspicious lateral neck LNs are detected intraoperatively. The treatment decision for 
nodules < 1 cm is based on a comprehensive assessment of the patient, including the results of fine-needle aspiration 
biopsy, US characteristics, the patient’s clinical symptoms, and the physician’s judgment. Even if the nodule is less than 
1 cm, surgery may still be necessary if FNA suggests malignancy or other high-risk features are present.

2.5 � Ultrasound image super‑resolution reconstruction

DL-based GAN network is adopted as the basic architecture. GAN is composed of a generator and discriminator net-
work (Fig. 2A). They are trained in an adversarial manner. Generator uses the convolution layer to extract OR image fea-
tures, learns residuals mapping between low resolution and high resolution through residuals blocks, and finally uses 

Fig. 2   Schematic diagram of a Generative Adversarial Networks (GAN) used to generate super-resolution images from original ultrasound 
images (A). The generator network randomly samples from a latent space as input and produces outputs that mimic the real data in the 
training set as closely as possible. The discriminator network takes either the original data or the output data from the generator network as 
input, and tries to distinguish the generated data from the original data, even as the generated data (B-b) becomes increasingly similar to 
the original data (B-a)
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convolution layer to generate high-resolution images. Then, discriminator outputs a probability value through a series 
of convolution and pooled layers to distinguish the real and generated SR image.

In this study, transfer learning in OnekeyAI platform (version 20240616) was used to obtain SR images. On the basis 
of maintaining the size of the OR ultrasonic image, Gaussian noise was introduced to reduce its out-of-plane resolution 
to 1/4 of the OR, thereby obtaining a new low-resolution image. These low-resolution images are paired with the result-
ant high-resolution images to train a lightweight GAN model. Finally, the model is applied to the OR image, and the 
resolution is improved by transfer learning to achieve SR reconstruction. The sagittal image reconstructed by GAN SR 
has a high visual similarity to the OR image. At the same time, the SR enhances the texture detail, and has a clearer edge 
(Fig. 2B). The technology has been evaluated on a variety of medical imaging modalities, including CT, MRI, and US, all 
of which have significantly improved image quality and spatial resolution. It is also compared with other state-of-the-art 
SR reconstruction techniques and shows superior performance [8, 11, 12].

2.6 � Thyroid nodule labeling and feature extraction

The region of interest (ROI) was manually labeled by a 5-year experienced sonographer on the segmentation software 
ITK-SNAP (version 3.8.0, www.​itksn​ap.​org). During the annotation process of the nodules, the US physician was blinded 
to the pathological results and clinical characteristics of the patients. For nodules with suspicious surrounding areas, we 
adjusted the ROI to ensure inclusion of these areas, including halo sign, spiculation, and ill-defined margins. The anno-
tations were reviewed by another physician with 10 years of experience, and any discrepancies were resolved through 
discussion.

The pyradiomics (version 3.0.1, http://​PyRad​iomics.​readt​hedocs.​io) was used to extract hand-made imaging features, 
including geometric, intensity and texture features, from the OR and SR images of each nodule. Geometric features 
describe the shape characteristics of the nodules. Intensity characteristics describe the first-order statistical distribution 
of voxel intensity within nodules. Texture features describe the spatial relationships and intensity distribution patterns 
among pixels in an image. Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level 
Size Zone (GLSZM), Gray-Level Dependence Matrix (GLDM) and Neighbouring Gray-Tone Difference Matrix (NGTDM) is 
used to extract texture features.

2.7 � Feature selection and radiomics model construction

After z-score regularization of all radiological features, feature selection is carried out according to the following three-
step procedure: (1) Mann–Whitney U tests statistical test and feature screening were performed on all radiological 
features. Only features with a p < 0.05 were retained. (2) Spearman’s rank correlation coefficient was used to evaluate 
the correlation between highly repeatable features, and only one of the two features with an absolute correlation coef-
ficient of > 0.9 was retained. (3) The Least Absolute Shrinkage and Selection Operator (LASSO) regression model is used 
to construct features [12, 14], and all regression coefficients are reduced to zero by adjusting the minimum standard 
regularization parameter (λ), and the features with non-zero coefficients are identified. Here, we use 5 × cross-validation 
and minimum standard adjustment λ, and the final retention coefficient is not zero to fit the regression model, forming 
the radiomics features. The selected features were trained using ML classifiers (support vector machine (SVM), K-Nearest 
Neighbors (KNN)). SR_SVM, OR_SVM, SR_KNN and OR_KNN models were finally constructed.

2.8 � Deep learning model construction

The maximum cross-sectional US images of thyroid nodules were input into a pre-trained Convolutional Neural Network 
(CNN) through a rectangular cropping mode for transfer learning. DL features were extracted using ResNet 101 and 
DenseNet 121. We use the Z-score method to standardize all features and calculate the mean and variance (standard 
deviation) of each feature. Each column of features is subtracted from the mean, divided by variance, and converted to 
a standard normal distribution. Then, LASSO was used to filter out the features whose coefficients are not zero, select-
ing and reducing the dimensionality of the fused features to obtain the optimal subset of fused features. Finally, the 
SR_ResNet 101, OR_ResNet 101, SR_DenseNet 121 and OR_DenseNet 121 models were constructed. To further explain 
the DL model in a human-readable format, this study utilizes Gradient-weighted Class Activation Mapping (Grad-CAM) 
technology to illuminate the key regions of focus for the model.

http://www.itksnap.org
http://PyRadiomics.readthedocs.io
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2.9 � Construction of nomogram

Firstly, the clinical features with statistical significance were screened by univariate logistic regression analysis (P < 0.1), 
and the risk factors independently associated with the outcome were selected by multivariate logistic regression analysis. 
In order to intuitively and effectively evaluate the incremental prognostic value of radiomics and DL features to clinical 
risk factors, clinical indicators, DL signature and radiomics signature was incorporated into the diagnostic model to con-
struct Nomogram. The diagnostic effect of Nomogram was tested in the test cohort. Calibrations were evaluated using 
calibration curves and the Hosmer–Lemeshow test [15]. The Receiver Operating Characteristic (ROC) curve was used to 
compare the diagnostic performance. Figure 3 shows the overall process of the study.

2.10 � Statistical analysis

Variables are expressed as mean ± standard deviation or frequency (percent). Shapiro–Wilk test was used to assess 
whether the data violated the assumption of normal distribution. Student’s t test or Mann–Whitney U-test was used 

Fig. 3   The overall process of this study
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to compare data between two groups. Data for categorical variables were compared using the chi-square test.Logistic 
regression was used to identify clinically independent correlates.DeLong test was used to compare differences between 
areas under the curve (AUC). Calibration curves were used and all statistical analyses were performed using R (version 
4.2.3) and Python software (version 3.7.17, http://​www.​python).

3 � Results

3.1 � Baseline characteristics

In our study, 544 PTC patients with an average age of 43.03 ± 11.33 were enrolled, of which 420 (77.21%) were female 
and 124 (22.79%) were male, and the mean diameter was 12.22 ± 8.56 mm. There were 380 patients in the training cohort 
and 164 patients in the test. The US characteristics of nodules and ACR-TIRADS were not statistically different between 
the training and test cohort. There were 162 patients with CLNM and 382 patients without CLNM. Among the US reports, 
there were 182 cases with suspected LN metastasis and 362 cases without abnormal LN. Detailed data are presented 
in Table 1. Four cases with TR2 nodules were also included in the study, as they underwent surgery due to the nodules’ 
significant impact on patients’ lives. Intraoperative frozen section analysis indicated PTC, and based on these results, 
unilateral CND was performed.

The diagnostic ability of senior radiologist based on clinical indicators was evaluated in terms of AUC, which was 
0.806 (95% CI 0.7626–0.8497) in the training set and 0.783 (95% CI 0.7090–0.8572) in the test set. Using clinical data, 
multivariate logistic regression analysis revealed that age, nodule size, margin, and multiplicity were independent risk 
factors for CLNM (Supplementary Table 1).

3.2 � Evaluation of radiomics and deep learning model

The radiomics model evaluated 18 first-order features, 14 shape features, and 73 texture features, and after applying 17 
image filters, extracted a total of 1561 manual features, i.e., 17 × (73 + 18) + 14. A detailed description is given in supple-
mentary Table 2, and a comprehensive interpretation of all image features can be found on the online platform (http://​
pyrad​iomics.​readt​hedocs.​io).

The performance of the radiomics and DL model constructed is shown in Table 2. It can be found that the efficiency 
of the model based on SR image is generally superior to that of OR. In addition, ML model SR_SVM and DL model 
SR_ResNet 101show superior performance. In the test set, the best-performing SR_SVM model had AUC values 0.56 
higher than OR (p = 0.013), and the rest of the SR image-based models also had AUC values slightly higher than OR 
models and improved accuracy, although the differences were not statistically significant (Supplementary Fig. 1). In the 
training set, the AUC of the SR_SVM was 0.924 (95% CI 0.8808–0.9573), accuracy was 0.879; SR_ResNet 101 was 0.970 
(95% CI 0.9510–0.9899), accuracy was 0.934; OR_SVM was 0.911 (95% CI 0.8780–0.9432), accuracy was 0.805; OR_ResNet 
101 was 0.952 (95% CI 0.9284–0.9748), accuracy was 0.913. In the test set, SR_SVM was 0.878 (95% CI 0.8203–0.9358), 
accuracy was 0.854; SR_ResNet 101 was 0.799 (95% CI 0.7175–0.8806), accuracy was 0.793; OR_SVM was 0.822 (95% CI 
0.7500–0.8937), accuracy was 0.665; OR_ResNet 101 was 0.751 (95% CI 0.6620–0.8401), accuracy was 0.713. The ROC 
curve of the radiomics model is shown in Fig. 4A and B, and that of the DL is shown in Fig. 4C and D. For visualizations of 
DL models see supplementary Fig. 2.

3.3 � Nomogram construction and evaluation

The multivariate regression model revealed that age, nodule diameter, nodule margin, and multiplicity were indepen-
dently associated with CLNM. By incorporating the SR_SVM model and SR_ResNet 101 model as labels with clinical 
parameters, Nomogram_A and Nomogram_B were derived (Figs. 5A and B), respectively. Additionally, Nomogram_C 
was created by solely aggregating clinical indicators (Fig. 5C). From Nomogram_A and Nomogram_B, it can be observed 
that clinical indicators have lower weights, indicating their relatively minor influence on prediction outcomes compared 
to the radiomics models.

The diagnostic performance of the nomograms was further evaluated in the test set, and a comparison was made with 
the diagnostic level of radiologists. As can be seen in Figs. 6A and B, within the test set, Nomogram_A demonstrated the 
best performance, with an AUC of 0.930 (95% CI 0.8913–0.9682) and an accuracy rate of 0.829. In contrast, Nomogram_B had 

http://www.python
http://pyradiomics.readthedocs.io
http://pyradiomics.readthedocs.io
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Table 1   Clinical and 
ultrasound characteristics of 
the patient

Feature name ALL Test Train P

Age (mean ± SD) 43.03 ± 11.33 43.66 ± 11.17 42.75 ± 11.40 0.425
Diameter (mean ± SD) 12.22 ± 8.56 11.57 ± 8.16 12.51 ± 8.72 0.106
Gender (%) 0.803
 Female 420 (77.21) 125 (76.22) 295 (77.63)
 Male 124 (22.79) 39 (23.78) 85 (22.37)

Bilaterality (%) 0.622
 No 443 (81.43) 131 (79.88) 312 (82.11)
 Yes 101 (18.57) 33 (20.12) 68 (17.89)

Multifocality (%) 0.590
 No 408 (75.00) 120 (73.17) 288 (75.79)
 Yes 136 (25.00) 44 (26.83) 92 (24.21)

Location (%) 0.202
 Full 6 (1.10) 0 6 (1.58)
 Upper 123 (22.61) 40 (24.39) 83 (21.84)
 Middle 270 (49.63) 83 (50.61) 187 (49.21)
 Lower 114 (20.96) 36 (21.95) 78 (20.53)
 Isthums 31 (5.70) 5 (3.05) 26 (6.84)

CLNM (%) 0.134
 No 382 (70.22) 123 (75.00) 259 (68.16)
 Yes 162 (29.78) 41 (25.00) 121 (31.84)

HT (%) 0.299
 No 409 (75.18) 118 (71.95) 291 (76.58)
 Yes 135 (24.82) 46 (28.05) 89 (23.42)

Composition (%) 0.722
 Cystic and solid 13 (2.39) 5 (3.05) 8 (2.11)
 Solid 531 (97.61) 159 (96.95) 372 (97.89)

Calcify (%) 0.797
 No 228 (41.91) 68 (41.46) 160 (42.11)
 Stubby 58 (10.66) 16 (9.76) 42 (11.05)
 Peripheral 6 (1.10) 1 (0.61) 5 (1.32)
 Micro 222 (40.81) 71 (43.29) 151 (39.74)
 Stubby and micro 27 (4.96) 8 (4.88) 19 (5.00)
 Peripheral and micro 3 (0.55) 0 3 (0.79)

Margin (%) 0.755
 Smooth or ill defined 319 (58.64) 99 (60.37) 220 (57.89)
 Irregular or lobulated 158 (29.04) 44 (26.83) 114 (30.00)
 Extrathyroidal extension 67 (12.32) 21 (12.80) 46 (12.11)

Echoes (%) 0.090
 Hyper-or Isoechoic 42 (7.72) 11 (6.71) 31 (8.16)
 Hypoechoic 249 (45.77) 65 (39.63) 184 (48.42)
 Very hypoechoic 253 (46.51) 88 (53.66) 165 (43.42)

Shape (%) 0.702
 No taller-than-wide 297 (54.60) 87 (53.05) 210 (55.26)
 Taller-than-wide 247 (45.40) 77 (46.95) 170 (44.74)

ACR_TIRADS (%) 0.688
 TR2 4 (0.74) 1 (0.61) 3 (0.79)
 TR3 8 (1.47) 1 (0.61) 7 (1.84)
 TR4 102 (18.75) 33 (20.12) 69 (18.16)
 TR5 430 (79.04) 129 (78.66) 301 (79.21)

Surgical Methods (%) 0.804
 Unilateral leaf + isthmus + CDN 208 (38.24) 66 (40.24) 142 (37.37)
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an AUC of 0.868 (95% CI 0.8102–0.9261) and the same accuracy rate of 0.829. The DeLong test revealed that the diagnostic 
performance of Nomogram_A, based on SR_SVM, was significantly higher than that of Nomogram_B, Nomogram_C, and the 
level of radiologists (P < 0.05) (Fig. 6C and D). Meanwhile, Nomogram_B, based on SR_ResNet 101, exhibited a comparable 
diagnostic performance to Nomogram_C, which relied solely on clinical indicators.

The calibration curve showed that Nomogram showed good consistency in diagnosing CLNM in PTC patients (Supple-
mentary Fig. 3), and the Hosmer–Lemeshow test results showed that Nomogram plots did not deviate from perfect fit in 
either cohort (P > 0.05). Nomogram_A was shown by DCA to have the highest clinical value (Fig. 6E, F).

Continuous variables are expressed as mean ± standard (SD) deviation and categorical variables as num-
ber (percentage). CLNM: cervical lymph node metastasis; HT: Hashimoto’s Thyroiditis; ACR-TIRADS: Ameri-
can College of Radiology Thyroid Imaging Report and Data System; TT: total thyroidectomy; CND: central 
neck dissection; LND: lateral neck dissection

Table 1   (continued) Feature name ALL Test Train P

 TT + CND 256 (47.06) 74 (45.12) 182 (47.89)
 TT + CND + LND 80 (14.71) 24 (14.63) 56 (14.74)

Location of LNM (%) 0.840
 No 379 (69.67) 117 (71.34) 262 (68.95)
 Central 114 (20.96) 33 (20.12) 81 (21.32)
 Central + Lateral 51 (9.38) 14 (8.54) 37 (9.74)

Radiologist (%) 0.747
 No 362 (66.54) 107 (65.24) 255 (67.11)
 Yes 182 (33.46) 57 (34.76) 125 (32.89)

Table 2   Performance of individual models

AUC: area under the curve; PPV: positive predictive value; NPV: negative predictive value; SR: super resolution; OR: original

Model AUC​ 95% CI Accuracy Sensitivity Specificity PPV NPV F1 Cohort

SR_ResNet101 0.970 0.9510–0.9899 0.934 0.898 0.952 0.906 0.949 0.902 Train
0.799 0.7175–0.8806 0.793 0.689 0.832 0.608 0.876 0.646 Test

OR_ResNet101 0.952 0.9284–0.9748 0.913 0.883 0.929 0.863 0.94 0.873 Train
0.751 0.6620–0.8401 0.713 0.733 0.706 0.485 0.875 0.584 Test

SR_DenseNet121 0.948 0.9223–0.9728 0.884 0.883 0.885 0.796 0.937 0.837 Train
0.784 0.6988–0.8699 0.793 0.622 0.857 0.622 0.857 0.622 Test

OR_DenseNet121 0.915 0.8821–0.9484 0.853 0.867 0.845 0.74 0.926 0.799 Train
0.814 0.7382–0.8895 0.774 0.778 0.773 0.565 0.902 0.654 Test

SR_SVM 0.924 0.8908–0.9573 0.879 0.859 0.889 0.797 0.926 0.827 Train
0.878 0.8203–0.9358 0.854 0.644 0.933 0.784 0.874 0.707 Test

OR_SVM 0.911 0.8780–0.9432 0.805 0.945 0.734 0.644 0.964 0.766 Train
0.822 0.7500–0.8937 0.665 0.889 0.580 0.444 0.932 0.593 Test

SR_KNN 0.914 0.8876–0.9408 0.839 0.633 0.944 0.853 0.835 0.726 Train
0.816 0.7350–0.8971 0.811 0.578 0.899 0.684 0.849 0.627 Test

OR_KNN 0.880 0.8472–0.9134 0.829 0.641 0.925 0.812 0.835 0.716 Train
0.737 0.6508–0.8226 0.787 0.311 0.966 0.778 0.788 0.444 Test

Radiologist 0.806 0.7626–0.8497 0.826 0.719 0.881 0.754 0.86 0.682 Train
0.783 0.7090–0.8572 0.787 0.644 0.84 0.604 0.862 0.682 Test
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4 � Discussion

In this study, DL-based GAN architecture was used for SR reconstruction to generate SR US images. Radiomics and DL 
models were developed and evaluated based on SR and OR US images, and the nomogram was further constructed 
combined with clinical features. The results show that SR models exhibit better performance in predicting CLNM 
compared to OR US-based images. The nomogram based on SR_SVM aggregation has excellent predictive perfor-
mance, significantly better than clinical nomogram model and radiologist diagnostic level.

Despite PTC being an indolent tumor, CLNM may occur in some patients at an early stage, with an incidence rate 
ranging from 20–90% [4], mainly including central LNM and cervical lateral LNM, usually extending from the central 
region to the cervical lateral region, and jumping metastasis can also occur. The presence of LNM is an important 
reference index to determine the extent and mode of surgery, and is also an important risk factor for tumor recur-
rence and death [16–18]. Data published by ATA showed that the 14-year all-cause survival rate for PTC without 
LNM was 82%, compared with 79% for PTC with LNM (p < 0.05). Furthermore, the ATA guidelines categorize patients 
with fewer than five LNM as low-risk; however, this does not diminish the predictive value of CLNM for recurrence 
[19]. Studies by Sugitani et al. have demonstrated that patients with five or more LNM exhibit a significantly higher 
recurrence rate (19%) compared to those with fewer than five metastases (8%) [20], highlighting that even a small 

Fig. 4   ROC curves for the radiomics (A, B) and deep learning (C, D) model in the training and testing set
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Fig. 5   Summary of Nomo-
gram. A Nomogram_A of 
obtained by aggregating 
SVM and clinical indicators. 
B Nomogram_B obtained 
by aggregating ResNet 101 
and clinical indicators. C 
Nomogram_C obtained by 
pooling clinical factors inde-
pendently associated with 
outcome
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number of CLNM poses a risk of recurrence. Therefore, meticulous LN assessment in PTC patients is imperative to 
provide clinicians with a foundation for tailoring surgical plans.

Currently, US serves as the primary imaging modality for preoperative assessment of LNM in TC. However, it is plagued 
by low detection rates for metastatic LN and susceptibility to interference from bone and gas, which limits its effective-
ness. Moreover, US often struggles to reach certain specialized regions, such as the retropharyngeal region, mediastinum, 

Fig. 6   Performance evaluation of the Nomograms
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and low-lying level IV, further constraining its utility. Studies indicate that preoperative imaging for CLNM exhibits a 
specificity exceeding 85% but a sensitivity ranging from only 20% to 50% [21–23]. The majority of current studies base 
their predictions on the primary tumor, employing traditional risk prediction models constructed from US image features, 
including tumor size, number, margins, Hashimoto’s thyroiditis, and microcalcifications [24–26]. Our results also show 
that age, nodule size, margin, and multifocal are independent predictors of CLNM. In line with studies focused on PTC 
and LNM [27, 28], the reported nodule diameter approximates 12 mm, implying that malignant nodules may develop 
LNM even at smaller sizes.

However, these US signs need to be verified by experienced physicians and heavily rely on the quality of the US image. 
To overcome these limitations, computer-aided diagnosis (CAD) systems based on AI technologies are rapidly develop-
ing, which can transform the invisible aspects of images into values that can be read by clinicians, quantitatively analyze 
medical image data, and extract a large number of features such as image intensity, texture and other features from medi-
cal images by manual definition or computer automatic learning. In previous studies, AI showed good performance in 
predicting benign and malignant thyroid nodules and LN status [28–30]. These studies focused on gray-scale US, elastog-
raphy, and contrast-enhanced US images [26, 30–32]. Due to the noise and artifacts, the low contrast between the lesion 
and surrounding tissue, and variability in lesion size and morphology, typical features may not always be detectable.

In recent years, SR technology improves image resolution through algorithms and restores high-resolution images 
from multiple low-resolution images, which has become the mainstream trend of image processing. SR can be imple-
mented through a variety of techniques, traditional methods, or DL-based methods. DL-based SR technology is increas-
ingly applied in medical imaging, remote sensing image and other fields [33–35]. Ryu et al. proposed that compared with 
the OR coronary angiography images, the image noise generated by SR is lower, the image quality is significantly higher, 
and the coronary stent can be displayed more clearly [36]. Farias et al. found that SR based on GAN increases the robust-
ness of radiomic features. These findings demonstrate the promising potential of applying SR to radiomic analysis [8].

In this study, the radiomics and DL model based on SR and OR US images were established, and the nomogram was 
further constructed combined with clinical indicators. The results showed that SR technique significantly improved the 
accuracy of the prediction model (in the training set, SR_ResNet 101: AUC = 0.970, accuracy 0.934; SR_SVM: AUC = 0.924, 
accuracy 0.879. The test set was slightly reduced, SR_ResNet 101: AUC = 0.799 (95% CI 0.7175–0.8806), accuracy 0.793; 
SR_SVM: AUC = 0.878 (95% CI 0.8203–0.9358), accuracy 0.854.), suggesting that the SR images have high reliability. As 
the SVM was well realised in the test set, the final Nomogram_A constructed by aggregating SR_SVM, clinical indicators 
performed even better in predicting CLNM (AUC of 0.930 (95% CI 0.8913–0.9682), accuracy of 0.829 in the test set), and 
significantly outperformed the clinical nomogram model and radiologist.

The above results may be attributed to the following aspects: (1) SR technology makes the image clearer, provides 
more pixel information, clearer details in the image, and provides more subtle changes in nodule morphology and 
pathophysiology, so as to obtain more abundant and reliable feature extraction and analysis results. (2) SR images reduce 
image blur, improve feature recognizability, help to screen out radiomics features and DL that are strongly correlated 
with LNM, and improve the prediction ability of the model. (3) The prediction model constructed by logistic regression 
and other statistical methods can effectively integrate all valid labels to achieve accurate prediction of LNM.

In this study, we observed that the radiomics model surpassed the DL model in performance on the test set, indicating 
that for the specific dataset of super-resolution reconstructed PTC US images, a quantitative feature-based radiomics 
analysis may be more appropriate. Conversely, the DL model’s high AUC value on the training set did not translate to 
the test set, suggesting potential issues with generalization ability, possibly due to overfitting to specific patterns in the 
training data. Notably, the radiomics model, with its meticulously designed features, may have more effectively captured 
stable features associated with LNM, rendering it less sensitive to variations in data distribution and maintaining robust 
predictive performance on the test set. These features may be more closely aligned with biological markers of CLNM. 
Nevertheless, this does not discount the potential of DL models in all cases. Their evident capabilities in image recognition 
and classification tasks, along with potential improvements in model architecture, data augmentation, and increased 
data volume, may enhance their generalization abilities. Furthermore, the development of hybrid models that integrate 
the strengths of both DL and radiomics models represents a promising avenue for future exploration.

This study has several limitations that must be acknowledged. Firstly, it is a single-center study, which may introduce 
regional and device-related differences, as well as a lack of external test. This may hinder the model’s generalizability to 
diverse patient populations. Secondly, the retrospective nature of the study, relying on known LN biopsy results from 
PTC patients, and the relatively small sample size, may introduce bias into the results. Future prospective multicenter 
studies, with a larger sample size and the inclusion of reactive LN lesions and lymphomas as controls, are warranted. 
Thirdly, the use of static US images as the primary data source has inherent limitations. Future studies should consider 
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incorporating US videos and multi-slice images to enhance the analysis of nodule characteristics and minimize errors. 
Despite these limitations, the DL-based SR reconstruction method employed in this study significantly enhanced the 
preoperative prediction of CLNM in PTC patients.

5 � Conclusion

In summary, this study found that the prediction model constructed based on SR US images outperformed the OR in pre-
dicting preoperative CLNM in patients with PTC, and demonstrate a promising application prospect. The display details 
of US images can be significantly improved using this technique, and the Nomogram based on SR holds great potential 
in enhancing the detection accuracy of prediction models and assisting clinical decision-making. It provides new insights 
and evidence for the application of US radiomics in the diagnosis and treatment of PTC. We believe that with continuous 
technological development and optimization, this method is expected to play an even greater role in clinical practice.
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