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The incidence of movement disorder increases with age
and contrasts with subtle and limited neuroimaging
abnormalities in argininosuccinic aciduria
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Abstract

Argininosuccinate lyase (ASL) is integral to the urea cycle detoxifying neurotoxic

ammonia and the nitric oxide (NO) biosynthesis cycle. Inherited ASL deficiency

causes argininosuccinic aciduria (ASA), a rare disease with hyperammonemia

and NO deficiency. Patients present with developmental delay, epilepsy and

movement disorder, associated with NO-mediated downregulation of central cat-

echolamine biosynthesis. A neurodegenerative phenotype has been proposed in
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ASA. To better characterise this neurodegenerative phenotype in ASA, we

conducted a retrospective study in six paediatric and adult metabolic centres in

the UK in 2022. We identified 60 patients and specifically looked for

neurodegeneration-related symptoms: movement disorder such as ataxia, tremor

and dystonia, hypotonia/fatigue and abnormal behaviour. We analysed neuroim-

aging with diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) in

an individual with ASA with movement disorders. We assessed conventional and

DTI MRI alongside single photon emission computer tomography (SPECT) with

dopamine analogue radionuclide 123I-ioflupane, in Asl-deficient mice treated by

hASL mRNA with normalised ureagenesis. Movement disorders in ASA appear

in the second and third decades of life, becoming more prevalent with ageing and

independent from the age of onset of hyperammonemia. Neuroimaging can show

abnormal DTI features affecting both grey and white matter, preferentially basal

ganglia. ASA mouse model with normalised ureagenesis did not recapitulate

these DTI findings and showed normal 123I-ioflupane SPECT and cerebral dopa-

mine metabolomics. Altogether these findings support the pathophysiology of a

late-onset movement disorder with cell-autonomous functional central catechol-

amine dysregulation but without or limited neurodegeneration of dopaminergic

neurons, making these symptoms amenable to targeted therapy.
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1 | INTRODUCTION

Argininosuccinic aciduria (ASA) (OMIM#207900) is a
rare autosomal recessive metabolic disease, with a preva-
lence of 1 in 110 000 live births and is the second most
common urea cycle disorder.1 Patients present with acute
hyperammonemia either in the neonatal period (early-
onset phenotype), or later in life (late-onset presenta-
tion).2 Patients can develop a systemic phenotype with
chronic neurological (50%–92%), hepatic (37%–52%) and
gastrointestinal (33%) problems, hypokalaemia (46%) and
arterial hypertension in isolated cases.3–9 The neurologi-
cal phenotype is variable with intellectual difficulties,
attention deficit, epilepsy, behavioural changes and a
movement disorder.3,10,11 Whilst hyperammonemia can
explain some of the symptoms and the neurological
sequelae observed in ASA chronic encephalopathy and
these symptoms often occur despite satisfactory control
of ammonia levels.3,12 The best-accepted therapy for ASA
relies on ammonia control through use of a protein-
restricted diet, ammonia scavengers and arginine supple-
mentation2,13 with an increasing number of patients trea-
ted by liver transplantation.14 It has been suggested
recently that liver transplantation could have a sustained

neurological benefit even in individuals with ASA with
well-controlled ammonia levels.15

ASA is caused by the deficiency of the cytosolic
enzyme argininosuccinate lyase (ASL), the only mamma-
lian enzyme enabling endogenous arginine synthesis.16

ASL breaks down argininosuccinic acid into arginine and
fumarate. This biochemical reaction is integral to the
nitric oxide (NO) cycle, facilitating NO synthesis from
arginine, and the urea cycle, a liver-based pathway
enabling excess nitrogen to be converted to ammonia
prior to conversion to urea for excretion.17 The patho-
physiology of ASA chronic encephalopathy is likely mul-
tifactorial with detrimental roles of hyperammonemia,
argininosuccinate toxicity,18 deficiency of arginine and
downstream metabolites such as creatine,1 neuronal
nitro-oxidative stress19 and NO-mediated downregulation
of central catecholamine biosynthesis suggesting a neuro-
degenerative phenotype.20,21

Here, we present a national multicentre retrospective
study assessing the movement disorder phenotype in ASA,
a well-recognised feature of ASA chronic encephalopathy.
We provide a clinical description of neurodegenerative-
related symptoms, movement disorder, hypotonia/fatigue
and abnormal behaviour for a large cohort of patients,

1214 GURUNG ET AL.



present patient neuroimaging data and highlight the diffi-
culties in modelling the movement disorder phenotype in
ASA mouse models. We show that the incidence of move-
ment disorder in ASA increases with ageing, starting in
adolescence and early adulthood. Abnormal diffusion ten-
sor imaging (DTI) features can affect both the grey and
white matter, preferentially close to basal ganglia. In order
to assess the role of cerebral ASL deficiency (ASLD) with-
out the confounding bias of hyperammonemia, liver-
targeting mRNA therapy-treated ASLD mice with normal-
ised ureagenesis were assessed. They did not recapitulate
the DTI patient findings and showed normal single pho-
ton emission computer tomography (SPECT) with 123I-
ioflupane, a dopamine analogue radionuclide. These find-
ings support the pathophysiology of a movement disorder
in ASA with functional central catecholamine dysregula-
tion but without loss of dopaminergic neurons, making
movement-disorder symptoms amenable to targeted
therapy.

2 | MATERIALS AND METHODS

2.1 | Patients

We conducted a retrospective study in six paediatric and
adult tertiary metabolic centres in the UK. Electronic
records from July 2015 to June 2022 of epidemiological
and clinical data of individuals with ASA with neurologi-
cal disease were reviewed retrospectively by a physician.
A patient was considered as having the symptom even if
this feature was identified but not present at subsequent
or the latest visit.

Movement disorder-related symptoms were considered
when reported by a patient during medical history investi-
gation or when observed during medical examination. The
following symptoms were considered: (i) involuntary
abnormal movements such as tremor or ataxia, excluding
seizures, (ii) abnormal muscle tone, unusual and unex-
plained acute episodes of fatigue and chronic lethargy,
(iii) early signs observed in neurodegenerative diseases
such as sleep disturbances and abnormal behaviour.

Abnormal behaviour was considered as a generic
term when a patient presented with aggressive behaviour
or sleep disturbances. Aggressive behaviour was either
self-harming or hetero aggressivity requiring intervention
from a professional (e.g., psychological or emotional
support from a psychologist, medication prescribed by a
physician) or adaptation of the environment (e.g., self-
protective equipment, specific management protocol at
school or work).

Myopathic features were defined as tiredness, fatigue,
hypotonia and myopathy-like symptoms. Acute tiredness
and chronic fatigue were used for profound lethargy and

unexplained episodes of general weakness persisting sev-
eral days before spontaneous recovery. Acute tiredness
and chronic fatigue were used for symptoms lasting for
less and more than 2 weeks, respectively.

Intellectual disability was determined by clinical
judgement of the metabolic specialist or paediatric neu-
rologist or by the need for additional support at school or
in the workplace.

Early-onset ASA was defined as hyperammonemia
occurring in the patient or familial index case on or
before 28 days of age, and late-onset ASA as hyperammo-
nemia occurring after 28 days of age.

The human ASL Refseq transcript ID NM_000048.4
was used as the reference sequence when genotyping the
patients.

2.2 | Patient's neuroimaging analysis

A brain magnetic resonance imaging (MRI) was performed
in one individual with ASA. The standard operating proce-
dures of Great Ormond Street Hospital for Children were
followed for conventional T1-weighted and diffusion tensor
imaging (DTI) sequences. Images were obtained using a Sie-
mens Prisma 3T MRI scanner (Erlangen, Germany) and a
20-channel head coil. T1-weighted images were acquired
using an MPRAGE sequence with a repetition time (TR) of
2300 ms, time to echo (TE) of 2.74 ms, field of view (FOV)
of 256 � 256 mm, 1 mm slices and a 256 � 256 matrix. The
DTI sequence consisted of a multiband spin-echo echo pla-
nar imaging sequence with 60 directions at b = 1000 s/mm2

and 60 directions at b = 2200 s/mm2, with 13 b = 0 images
interleaved throughout the sequence and an additional
b = 0 image with negated phase-encoding for distortion
correction, TR of 3050 ms, TE of 60 ms, FOV of
220 � 220 mm, a 110 � 110 matrix, 2 mm slices with a
0.2 mm slice gap and multiband factor 2. Basal ganglia vol-
umes were derived from FreeSurfer22 (caudate, putamen
and pallidum bilaterally) using an analysis of covariance
with age, gender and total intracranial volume as covariates.
Statistical analysis of fractional anisotropy (FA) and mean
diffusivity (MD), averaged over each subcortical regions of
interest (ROI) was performed using an analysis of covari-
ance with age and gender as covariates. A multiple compari-
sons correction was applied using false discovery
rate (FDR).

2.3 | mRNA formulation

hASL and Luciferase (Luc) encoding mRNA encapsulated
in lipid nanoparticles (LNPs) were provided by Moderna
Therapeutics using their proprietary technology. Codon
optimised mRNA encoding hASL was synthesised in vitro
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by T7 RNA polymerase-mediated transcription. The
mRNA initiated with a cap, followed by a 50-untranslated
region (UTR), an open reading frame encoding hASL, a
30-UTR and a polyadenylated tail. Uridine was globally
replaced with N1-methylpseudouridine, as described pre-
viously.23 LNP formulations were generated for in vivo
intravenous (IV) delivery.24 In brief, mRNA was mixed
with lipids in a molar ratio of 3:1 (mRNA:lipid). mRNA-
loaded nanoparticles were subsequently diluted into final
storage buffer and had particle sizes of 80–100 nm, >80%
encapsulation of the mRNA by RiboGreen assay and
<10 EU/mL endotoxin levels.

2.4 | Animals

Animal procedures were approved by institutional ethical
review and performed per UK home office licences
PP9223137 and PEFC6ABF1. AslNeo/Neo mice
(B6.129S7-Asltm1Brle/J) were purchased from Jackson Lab-
oratory (Bar Harbour, ME) and maintained on standard
rodent chow (Harlan 2018, Teklab Diets, Madison, WI)
with free access to water in a 12-h light/12 h dark envi-
ronment. Wild-type (WT) littermates were used as con-
trols and housed in the same cages. Genotyping was
performed using DNA extracted from tail clips as
described previously.19

2.5 | Animal experimental design

AslNeo/Neo animals received systemic administration of
hASL mRNA from birth then weekly until the age
of 8 weeks at a dose of 1 or 2 mg/kg for IV and intraperi-
toneal (IP) injections, respectively. Untreated WT litter-
mates were used as controls. All AslNeo/Neo animals
survived with normal growth and fur as described
previously.25

2.6 | Magnetic resonance imaging
in mice

Images were acquired on a 9.4 Tesla Bruker imaging sys-
tem (BioSpec 94/20 USR) with a horizontal bore and
440 mT/m gradient set with an outer/inner diameter of
205 mm/116 mm, respectively (BioSpec B-GA 12S2),
86 mm volume coil, and a four-channel array receiver-
surface coil (RAPI Biomedical GmbH). The brain ROI were
first localised using a structural T2-TurboRARE sequence
(fast-spin echo, Paravision 7.0). The olfactory bulbs were
used as an anatomical landmark to maintain consistency in
slice positioning between subjects and the slices covered
the cortex and all subcortical structures up to the

cerebellum. Imaging parameters for the T2-weighted imag-
ing sequence were as follows: TR = 4000 ms, TE = 45 ms,
FOV = 21 � 16 mm2, data matrix 256 � 196, 14 � 600 μm
coronal slices.

Diffusion weighted imaging (DWI) was performed
using a 4-shot spin echo-planar imaging sequence. Imag-
ing parameters were: TR = 2500 ms; FOV = 20 �
16 mm2; FOV = 20 � 16 mm2, data matrix 110 � 85;
14 � 600 μm coronal slices. To implement the multiple
echo-time neurite orientation dispersion and density
imaging model (MTE-NODDI), the DWI images were
acquired at three different echo times of 30, 45, and
60 ms. At each echo time, the MRI protocol consisted of
two shells, detailed as follows:

1. Shell one: 30 directions, five b = 0 s/mm2 images and
diffusion weighting of b = 2000 s/mm2

2. Shell two: 15 directions, five b = 0 s/mm2 images and
diffusion weighting of b = 700 s/mm2

with gradient duration and separation δ/Δ = 4.5/11 ms
for all b-values and TEs. The total acquisition time was
approximately 120 min.

2.7 | Image processing and
quantification of diffusion data

The effects of noise and imaging artefacts on the acquired
diffusion data were reduced by applying a denoising
method based on random matrix theory (MRtrix3), cor-
rection of B0 inhomogeneity and motion with TOPUP
tool in FMRIB Software Library (FSL, University of
Oxford, UK). DWI images were then co-registered to a
reference b = 0 image. Brain masks were created manu-
ally using ITK-SNAP software (www.itksnap.org).26 Stan-
dard DTI measures of FA and MD were generated from
diffusion data obtained at TE = 30 ms using DTIfit in
FSL, which fits a diffusion tensor model at each voxel of
the data that has been pre-processed. NODDI parameters
were estimated for each TE session separately with the
NODDI MATLAB toolbox, and the estimated parameters
were aligned to the first TE session to extract TE-
independent MTE-NODDI parameters.

For quantitative analysis, brain ROIs were manually
defined using ITK-SNAP. ROIs were drawn in WT and
hASL LNP-mRNA treated AslNeo/Neo mice in the cortex,
striatum for grey matter; corpus callosum, fimbria, and
internal capsule for white matter; and hippocampus as a
function region. All ROIs were subsequently exported to
fitted diffusion maps and mean values for neurite density
index (NDI), extra-neurite volume fraction (fen), orienta-
tion dispersion index (ODI), FA and MD were exported
for quantitative analysis.
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2.8 | SPECT imaging in mice

123I-ioflupane was obtained from Curium Pharma UK Ltd
with a patient dose of 185 MBq. Mice were injected with
approximately 15–20 MBq of 123I-ioflupane via tail vein injec-
tion. Mice were then anaesthetised using isoflurane anaesthe-
sia (1.5%–2% isoflurane in oxygen 1 L/min) and mouse head
SPECT/CT scans were acquired 2 h after injection using a
NanoScan SPECT/CT system (Mediso, Hungary). CT images
were acquired using a 55 KV peak (kVp) x-ray source with
300 ms exposure time in helical mode, resulting in a scan time
of approximately 3–4 min. SPECT images were obtained with
a four-head scanner with nine 1.4 mm pinhole apertures in
helical scan mode using a time per view of 60 s resulting in a
scan time of 40 min. Respiration was monitored throughout
the scan and the body temperature was maintained by a
heated bed. CT images were reconstructed in voxel size
124 � 124 � 124 μm using Mediso Nucline (Mediso,
Hungary) software, whereas SPECT images were recon-
structed in a 256 � 256 matrix using HiSPECT (ScivisGmbH,
Bioscan/Mediso). Imageswere analysed usingVivoQuant soft-
ware (InViCro). 3D ROIs were drawn manually and included
the whole brain, a spherical region including the locus coeru-
leus, and basal ganglia. The percentage of injected dose/organ
(%ID/organ)was calculated using decay-correctedROI values.

2.9 | Dopamine metabolites

Dopamine, 3-O-methylDOPA, homovanillic acid,
3,4-dihydroxyphenylacetic acid and 5-hydroxyindolacetic
acid (5-HIAA) were quantified using reverse-phase high per-
formance liquid chromatography as described previously.27

2.10 | Statistical analysis

Statistical analysis was performed using Prism 9.0 soft-
ware (San Diego, CA, USA). Differences between groups
were assessed using a two-tailed unpaired t test with
adjustment for multiple comparisons using FDR. p values
≤0.05 were considered statistically significant. Correla-
tion between continuous variables was assessed by Spear-
man's rank correlation test.

3 | RESULTS

3.1 | Demographic and clinical
characteristics

Sixty patients (32 males, 28 females) were included with
a median age of 12.7 years (range: 6 months to 53 years).

Thirty-four patients (57%) had early-onset ASA. ASA was
diagnosed biochemically and was confirmed genetically
in 25 patients (Table S1). Three patients who died during
the first month of life were excluded from the analysis.

3.2 | Clinical characteristics of
movement disorder-related symptoms

This study included 17 (28%) individuals with ASA with
neurodegenerative-related symptoms, movement disor-
der, hypotonia/fatigue and abnormal behaviour. The
median age was 19 years (range: 4–53 years) and the ratio
of male:female was 10:7 (Table 1).

A movement disorder phenotype and hypotonia/
fatigue were the most frequent symptoms observed. Move-
ment disorder was observed in nine (15%) patients with a
median age at onset of 10 years (range: 8–25 years) with a
ratio of male:female of 5:4 (Figure 1A). Tremor was
observed in three patients and described as intention
tremor, with high amplitude, rhythmic and oscillatory
tremor during a purposeful movement. No resting tremor
was observed. Patients with tremor reported a negative
impact on their quality of life. No patient received tremor-
targeting therapy. One patient presented with dystonia at
the age of 25 years. Hypotonia and fatigue-related symp-
toms were observed in nine (15%) patients with a median
age at onset of 11.5 years (range: 1–18 years) and a
male:female ratio of 7:2 (Figure 1B). Behaviour changes
were observed in four (7%) patients with a median age at
onset of 16.5 years (range: 10–28 years) and a male:female
ratio of 1:1 (Figure 1C). Some patients presented with a
combination of these symptoms (Figure 1D). After a
symptom free interval during childhood, the onset of
hypotonia/fatigue-related symptoms and behaviour
changes was observed in the second decade, whereas
movement disorder symptoms were recognised in early
adulthood during the third decade (Figure 1E). These
symptoms affected early- and late-onset patients similarly
(Figure 1F). The prevalence of these symptoms increased
gradually with ageing with 100% of patients aged
25–29 years affected (Figure 1G). Patients aged >30
showed a lower prevalence with only 33% displaying these
symptoms. A correlation between prevalence of these
symptoms and age was observed (Spearman's correlation
coefficient r2 = 0.22, p = 0.34) (Figure 1H).

Individuals with ASA presenting with neurodegenera-
tion-related symptoms did not have a higher risk of learning
disability (p = 1) and epilepsy (p = 0.79), compared to indi-
viduals with ASAwithout amovement disorder phenotype.

Only one patient with neurodegenerative-related
symptoms had not had previous episodes of hyperammo-
nemia (Table 1).
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3.3 | Brain MRI in an individual with
ASA showed normal conventional
sequences but functional MRI revealed
involvement of basal ganglia

We aimed to assess neuroimaging in one patient with
ASA who had neurodegenerative-related symptoms and
which included a movement disorder phenotype. A
neonatal-onset male ASA patient was investigated at the
age of 16 years using brain MRI with conventional and
diffusion tensor imaging (DTI) sequences. Their diagno-
sis had been confirmed by identification of bi-allelic path-
ogenic mutations in the ASL gene (c.719-2A>G and
c.857A>G [p.Q286R]) and their symptoms were managed
with a protein-restricted diet, sodium benzoate
(200 mg/kg/day) and arginine (70 mg/kg/day) supple-
mentation. He had previously had greater than five
hyperammonemic decompensations during childhood
and adolescence and had participated in a phase I/II clin-
ical trial of cell therapy (NCT01765283). The latter was
not shown to be efficacious, it did not improve ureagen-
esis and did not allow therapies based on standard of care

to be relaxed. The patient had mild learning difficulties,
with intention tremor, a hypomimic face and occasional
episodes of unexplained and self-resolving acute tired-
ness. A brain MRI with conventional T1-weighted and
diffusion tensor imaging (DTI) sequences was performed
at the age of 16 years to explore his motor disorder.

A global and detailed analysis of the brain was per-
formed using conventional and functional MRI, with a
focus on basal ganglia areas involved in movement
disorder phenotypes. This was compared to age and
sex-matched control cohort images (n = 21: 7 males and
14 females, age 16.7 ± 1.7 years). There was no difference
in the volume of the caudate, putamen and pallidum of
the individual with ASA and the control cohort. A com-
parison however, of the more focussed DTI MRI analysis
of the subcortical ROI showed a significantly higher MD
for both left and right pallidum in the individual with
ASA, compared to controls (p = 0.0006 and p = 0.0022,
respectively) as well as the left and right putamen
(p = 0.0037 and p = 0.0041, respectively). No difference
in FA was observed in the individual with ASA compared
to controls in any of the ROI. A tract-based spatial
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FIGURE 1 Movement, hypotonia/fatigue and behaviour disorders in individuals with argininosuccinic aciduria (ASA). (A) Individuals
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statistics analysis28 was performed to analyse the white
matter microstructure. The patient has significantly
lower FA than controls (p < 0.05) bilaterally in the inter-
nal capsule, external capsule and cerebral peduncle, as
well as the left anterior corona radiata and fornix
(Figure 2A–C). No significant difference in the MD for
the white matter was detected.

3.4 | Functional MRI in LNP-mRNA-
treated ASA mice

Movement disorder in ASA is, at least partially, not related
to hyperammonemia as demonstrated in a knockout Asl
model in dopaminergic neurons, Aslflox/flox;TH Cre+/�

mouse.20,21 Various neurological symptoms in individuals
with ASA appear unrelated to hyperammonemia such as
developmental delay,3 epilepsy12 and tremor.20 Therefore,
we aimed to assess the cell-autonomous central component
of the neurological disease in an ASLD mouse with normal-
ised ureagenesis to exclude the potential bias of hyperam-
monemia. Modelling movement disorder-related symptoms
is essential to better understand the pathophysiology of the
disease, identify the main cerebral structures affected and
test adequate therapies. In order to test the hypothesis that
the ureagenesis defect is not the main cause of the motor
phenotype in ASLD, the lethal AslNeo/Neo mouse model,
which is recognised as a reliable model recapitulating the
ASLD human phenotype, was maintained by systemic
administration of the liver-targeting hASL LNP-mRNA for-
mulation weekly from birth until adulthood. This normal-
ised plasma ammonia (Figure S1A), ALT (Figure S1B)
levels and liver ASL activity (Figure S1C). The ASL biodis-
tribution in the liver of hASLmRNA treated AslNeo/Neo mice

is homogeneous across the whole hepatic lobule.25 At
8 weeks of age, these ASLD mice underwent brain MRI
with both structural and DWI sequences before down-
stream modelling and quantification (Figure 3A). The
images obtained were of sufficient quality to reliably
delineate the different brain structures and assess
multiple parameters including volume on conventional
T2-weighted images and standard DTI metrics such as
FA, MD. We also used the NODDI model to extract ODI,
fen, NDI and free-water volume fraction (isoVF) which
describe underlying cerebral microstructure more accu-
rately than DTI (Figure 3B). Different ROI were drawn
(Figures 3C and S2A) and analysed: frontal cortex
(Figure 3D), striatum (Figure 3E), fimbria (Figure S2B)
and hippocampus (Figure S2C) to represent grey matter;
corpus callosum (Figure 3F), and internal capsule
(Figure S2D) to assess white matter. In contrast to the
patient's data (Figure 2A–C), no difference between WT
and hASL LNP-mRNA-treated AslNeo/Neo mice was
observed (Figures 3D–F and S2B–D).

3.5 | Dopamine metabolism
in LNP-mRNA treated ASA mice

Individuals with ASA develop disabling motor symptoms
with age. The pathophysiology involves the NO-mediated
downregulation of tyrosine hydroxylase (TH) and subse-
quent deficiency of central catecholamines.21 To date, dif-
ferent ASA mouse models have been described. The
AslNeo/Neo mouse is a hypomorphic mouse model, which
presents with a systemic phenotype. The Aslflox/flox;TH
Cre+/� mouse is a model of ASA, where the Asl gene is
knocked out specifically in dopaminergic neurones. Both

FIGURE 2 Functional magnetic resonance imaging from an individual with argininosuccinic aciduria (ASA) showed involvement of

basal ganglia. (A–C) Decreased fraction of anisotropy in the internal capsule, fornix and white-matter tracts in the vicinity of basal ganglia in

an individual with ASA with (A) axial, (B) sagittal and (C) coronal sections.
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FIGURE 3 Legend on next page.
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models exhibit motor abnormalities. Central catechol-
amine deficiency was demonstrated in Aslflox/flox;TH
Cre+/� mice, but has not been assessed in AslNeo/Neo mice.
As AslNeo/Neo mice recapitulate the human phenotype
with systemic ASLD affecting cerebral cell types, we
aimed to model and assess the dopaminergic pathway
in vivo using this model. 123I-ioflupane SPECT or dopa-
mine transporter (DAT) scans of adult WT and adult
AslNeo/Neo mice which had been treated with hASL LNP-
mRNA from birth were compared. These, technologies
are routinely used in clinical settings to study inherited29

or acquired neurodegenerative30 disorders affecting the
dopamine synthesis or uptake pathway. Following IV
administration of 123I-ioflupane, no cerebral retention of
the radiotracer was observed in either the WT and AslNeo/
Neo mice (Figure 4A,B). Analysis of 123I-ioflupane reten-
tion index for the whole brain (Figure 4C), and uptake in
locus coeruleus (Figure 4D) and basal ganglia (Figure 4E)
did not show any difference.

To assess whether serotonin and dopamine catabo-
lism pathways (Figure 4F) were abnormal in AslNeo/Neo

mice, cerebral dopamine-related metabolites were mea-
sured in 2-week-old untreated AslNeo/Neo mice and com-
pared to those of WT mice. No significant difference was
observed (Figure 4G–L). An increasing trend in cerebral
5-HIAA levels was seen in AslNeo/Neo mice compared to
WT mice (p = 0.09) (Figure 4G).

4 | DISCUSSION

This study sheds light on the natural history of
neurodegenerative-related symptoms, movement disor-
der, hypotonia/fatigue and abnormal behaviour, which
are common but poorly characterised features in ASA
chronic encephalopathy.3,21 After a symptom-free period
during childhood, neurodegenerative-related symptoms
develop progressively during the second and third
decades of life, affecting 29% of patients. Movement dis-
order including tremor and ataxia affected 15% of
patients, which is comparable to 17% and 19% described
previously by Baruteau et al. in a British cohort3 and Ler-
ner et al. in an international consortium with patients
from North-America,20 respectively. These symptoms,

especially intention tremor, are particularly disabling.
Tremor is more characteristic of ASA when compared to
other urea cycle defects.20 The main pathophysiological
mechanism proposed is down-regulation of TH, the ini-
tial and rate-limiting step in the biosynthetic pathway of
catecholamines including dopamine, noradrenaline and
adrenaline. TH activity is altered by two mechanisms:
decreased ASL expression mediated by NO-mediated
downregulation of TH transcriptional factor cyclic adeno-
sine monophosphate response element-binding protein,
and abnormal protein conformation caused by deficient
nitrosylation.21 The pathogenic role of central catechol-
amine deficiency in ASA has been shown in abnormal
stress response, epilepsy, memory and movement disor-
der. These symptoms can be partially rescued by NO
donors.20,21

Neuroimaging in individuals with ASA at baseline
has shown various non-specific findings such as brain
atrophy, focal infarcts, white matter and basal ganglia
hyperintense signals, grey matter heterotopia, ulegyria
and gliosis,3,12 findings which can be associated with
developmental delay and epilepsy. Focal infarct is occa-
sionally a complication of hyperammonemia.10 In a sig-
nificant number of cases (48%), neuroimaging with
conventional MRI sequences is normal.3 Magnetic reso-
nance (MR) spectroscopy can show reduced creatine or
increased guanidinoacetate in white matter and reduced
N-acetylaspartate, suggesting reduced cellularity in basal
ganglia.3 DTI enables a more accurate characterisation.
In one patient with significant movement disorder
reported here, brain MRI with conventional sequences
appeared normal but DTI showed abnormal remodelling
of grey and white matter affecting basal ganglia, espe-
cially the globi pallidi, and white matter tracts in the
vicinity of these structures. Pallidi are essential structures
in movement control. Basal ganglia, especially thalami,
are sensitive to hyperammonemia31,32 and abnormal sig-
nals in context of acute decompensations have been dem-
onstrated previously.33,34 Although only one case is
presented here, this may be characteristic of this disorder
as abnormal basal ganglia findings are rare during
follow-up of individuals with ASA with normal ammonia
levels.3,12 Our case report highlights that DTI is a better
tool than conventional MRI when assessing

FIGURE 3 Functional magnetic resonance imaging (MRI) in lipid nanoparticles (LNP)-mRNA treated argininosuccinic aciduria mice.

(A) Schematic describing the experimental study in AslNeo/Neo mice treated systemically by hASL LNP-mRNA from birth until 7 weeks of

age. The MRI was performed 3–4 days after the last injection of hASL LNP-mRNA, before post-processing and data analysis.

(B) Representative MRI images of hASL LNP-mRNA treated AslNeo/Neo mice with conventional T2, fractional anisotropy (FA), orientation

dispersion index (ODI) and neurite dispersion index (NDI) sequences. (C) Manual definition of cerebral regions of interest with ITK-SNAP

software. (G–I) Analysis of functional magnetic resonance imaging endpoints in various cerebral regions of interest (D) cortex, (E) striatum

and (F) corpus callosum. Graph shows mean ± SD. (D–F): Unpaired two-tailed Student's t test (false discovery rate corrected; p = 0.05,

n = 5–6; ns, not significant. MD, mean diffusivity.
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FIGURE 4 Dopamine

metabolism in lipid

nanoparticles (LNP)-mRNA

treated AS mice. (A, B)

Representative pictures of DAT

scan in WT and hASL LNP-

mRNA treated AslNeo/Neo mice.

(C–E) Quantification of

retention of 123I-ioflupane in

(C) whole brain, (D) uptake in

locus coereleus and (E) in basal

ganglia. (F) Schematic

representing the synthesis and

catabolism of serotonin and

dopamine. (G–K) Metabolomic

data of serotonin and dopamine

catabolism pathways in WT and

hASL LNP-mRNA treated

AslNeo/Neo mice, (G) 5-HIAA,

(H) 3OMD, (I) dopamine,

(J) DOPAC and (K) HVA.

(L) Dopamine turnover

estimated by (DOPAC + HVA)/

dopamine. Graph shows mean

± SD. (C–E, G–L): Unpaired
two-tailed Student's t test;

n = 5–6. AADC, aromatic L-

amino acid decarboxylase; BG,

basal ganglia; COMT, catechol-

O-methyltransferase; CT,

computed tomography; DA,

dopamine; DOPAC, 3,4-

dihydroxyphenylacetic acid; 5-

HIAA, 5-hydroxyindolacetic

acid; HVA, homovanillic acid;

3OMD, 3-O-methylDOPA; LC,

locus coereleus; ns, not

significant.
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neuroimaging abnormalities in individuals with ASA pre-
senting with a movement disorder. It is possible to specu-
late that previous hyperammonemic decompensations in
this patient are at least partially responsible for the DTI
findings.35 Further work is needed to provide a definitive
description of the nature and evolution of these abnor-
malities. Although this individual with ASA was involved
in a clinical trial with liver-directed cell therapy, no effi-
cacy was observed, no improvement of ureagenesis was
noted and the patient remained on the same combined
therapy of diet and scavengers with similar dose. Interest-
ingly, abnormal hyperintensities of basal ganglia with a
rostro-caudal gradient in the putamen have been
described in individuals with ASA.36 Blood brain barrier
dysfunction has been observed in ASLD mice.36 Whether
some MRI findings observed in individuals with ASA
could be attributable to enhanced blood brain barrier
leakage warrants the need for additional studies.

We attempted to model the features observed in
human neuroimaging in AslNeo/Neo mice, which recapitu-
late the human disease phenotype and present with a
motor and movement disorder. To decipher the cerebral
consequences of central ASLD and avoid any confound-
ing factors caused by hyperammonemia, we treated Asl-
Neo/Neo mice with liver-targeting mRNA therapy to restore
ureagenesis. AslNeo/Neo mice show systemic NO
deficiency,37 especially in the brain,19,38 and are assumed
to present with central catecholamine deficiency as
observed in the knockout Asl model in dopaminergic
neurons, Aslflox/flox;TH Cre+/� mouse.20,21 Conventional
and DTI sequences did not show any significant differ-
ences between LNP-mRNA treated AslNeo/Neo and WT
mice. It could be that these abnormalities remain mild
and are below the sensitivity of these neuroimaging tools.
Additionally, liver-targeting mRNA therapy could as well
partially alleviate the severity of the neurological disease,
as suggested in liver transplanted individuals with ASA.15

It is also possible that LNP-mRNA treated AslNeo/Neo mice
scanned at 8 weeks of life might have developed abnor-
mal neuroimaging findings later in life. The absence of
differences observed between LNP-mRNA treated AslNeo/
Neo and WT mice by cerebral 123I-ioflupane SPECT sug-
gests the persistence of dopaminergic neurons with no
neurodegeneration and supports the findings of Lerner
et al. with a functional reduction of central catechol-
amine synthesis, which responds to NO therapy.20,21

Another scenario could be a compensatory mechanism,
with an increased number of DAT receptors to palliate
the reduction of dopaminergic neurons as observed in
Parkinson's disease.39 Also, we cannot exclude the possi-
bility that SPECT imaging performed later in life could
show a different result. The absence of differences in
metabolomic analysis of dopamine synthesis and catabo-
lism pathways between LNP-mRNA treated AslNeo/Neo

and WT mice suggests that TH downregulation is com-
pensated for in this mouse model and does not affect the
overall levels of central catecholamine metabolites. To
better assess TH downregulation, measurement of dopa-
mine metabolites and TH transcriptomics specifically in
dopaminergic neurons rather than whole brain would
provide a more accurate measurement. Overall, these
findings bring hope for individuals with ASA with regard
to liver replacement therapy, that is, liver transplantation
or gene therapy, as they support a therapeutic window,
where movement disorder could be responsive to ade-
quate therapy like NO donors, with no or limited damage
of dopaminergic neurons.

This work has limitations due to the small number of
patients identified with this rare disease, the methodol-
ogy with retrospective analysis, the findings of DTI MRI
reported in only one patient and limited evidence of TH
downregulation in AslNeo/Neo mice. Our findings require
further prospective of larger cohorts of patients with urea
cycle defects, which could be achieved via existing regis-
tries in Europe and in the United States, and warrant the
inclusion of DTI sequences in neuroimaging of individ-
uals with ASA.40,41 Additionally, to better decipher the
complex neuropathophysiology of ASA, further charac-
terisation of dopaminergic neurotransmission at the cel-
lular or circuitry levels in AslNeo/Neo mice would be
required. Furthermore, developing surrogate models such
as induced pluripotent stem cell derived neurons or
three-dimensional organoid cultures42,43 or cultured
ex vivo precision-cut organ slices44,45 could become valu-
able alternatives to screen therapies able to treat TH
downregulation, suspected to be the main driver of this
movement disorder in ASA.21

5 | CONCLUSION

In conclusion, neurodegenerative-related symptoms in
ASA are a common and debilitating feature, which
appear during adolescence and early adulthood. These
symptoms are independent from the age of onset of
hyperammonemia. DTI neuroimaging shows remodelling
of basal ganglia, particularly globi pallidi, which provides
an anatomical substratum for movement disorder. DTI
neuroimaging, cerebral 123I-ioflupane SPECT and cere-
bral dopamine metabolomics in AslNeo/Neo mice with
restored ureagenesis failed to identify endpoints which
could be used for therapeutic testing to target movement
disorder.
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