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Abstract: The relationship between chemical structure
and chiroptical properties is not always clearly under-
stood. Nowadays, efforts to develop new systems with
enhanced optical properties follow the trial-error meth-
od. A large number of data would allow us to obtain
more robust conclusions and guide research toward
molecules with practical applications. In this sense, in
this work we predict the chiroptical properties of
millions of halogenated [6]helicenes in terms of the
rotatory strength (R). We have used DFT calculations to
randomly create derivatives including from 1 to 16
halogen atoms, that were then used as a data set to train
different deep neural network models. These models
allow us to i) predict the Rmax for any halogenated
[6]helicene with a very low computational cost, and ii)
to understand the physical reasons that favour some
substitutions over others. Finally, we synthesized deriva-
tives with higher predicted Rmax obtaining excellent
correlation among the values obtained experimentally
and the predicted ones.

Introduction

[n]Helicenes are prototypical helical structures consisting of
n ortho-fused phenyl rings.[1–3] They also present high
racemization barriers (when n>5) and show interesting

chiroptical properties.[4,5] Remarkably, such properties can
be now predicted with high confidence using DFT calcu-
lations with relatively low computational cost for the small-
est members of the family.[6–10] However, although the
chiroptical properties are codified in the intrinsic physics of
the molecule, it is not easy to extract any structure–property
relationship (apart from absolute configuration) from such
kind of calculations. Even in the case that any correlation
would exist, a huge volume of examples or data should be
necessary for its understanding. The situation becomes more
complex if we consider substitutions in the [n]helicene core.
As an example, if we consider multiple halogen substitution
in any of the sixteen positions in [6]helicene (Figure 1a), the
challenge is intimidating. Eq. 1 gives the number of different
compounds that can be obtained with k substituents also
considering the rotation symmetry dividing the general
expression by 2.

Nk ¼
1
2

16

k

 !

4k (1)

N1 ¼ 32 N2 ¼ 960 N3 ¼ 17920

N4 � 2:3x105 N5 � 2:2x106 N6 � 1:6x107

Thus, if we consider the mono-halogenation case only 32
derivatives can exist. An additional halogen rise the
possibilities to 960, being the DFT calculations costly but
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affordable in a reasonable period whereas the in-depth
analysis of the resulting data begins to be daunting.
Including four halogens increase the number of structures to
almost 2.33×105 and for hexadecahalogenated [6]helicenes
the variation gives an astonishing number of 2.15×109

different compounds. In those cases, neither theoretical
calculations nor the analysis becomes viable. Globally,
considering from mono- to hexadeca-halogenated
[6]helicenes, 7.63×1010 structures should be evaluated.

The problem is even more complex considering that
chiroptical properties are diverse and the corresponding
magnitude of the response can be defined in many ways. In
this work we have focused our attention on electronic
circular dichroism (ECD), one of the prototypical chirop-
tical techniques employed.[6] In this case, rotational strength
(R0j), which is associated with each ground to excited state
transition (0 to j), is a good indicator.[11] This scalar
represents the intensity of the chiroptical response and a
complete set of R0j values can be extracted from theoretical
calculations (Figure 1c). Thus, the shape of the ECD spectra
is mainly constituted of the most intense transitions which in
turn represent higher values of R0j.

Considering the above-mentioned framework, giving an
answer to the question, “what is the maximum value for a
rotatory strength in a (poly)halogenated [6]helicene?”, is
daunting for standard approaches. As an alternative,
machine learning (ML) techniques have succeeded in many
cases to extract hidden patterns and develop predictions for
complex problems only from data points of the observed
phenomenon.[12] Specifically, neural networks – the compu-
tational model behind deep learning – have shown efficiency
in Chemistry[13–15] as to optimize[16] and classify organic
reaction mechanisms,[17–24] predict molecular properties[25–32]

and antibacterial activities.[33] Furthermore, the integration
of machine learning and computational chemistry has
proven to be very promising and fruitful,[34–36] with applica-
tions such as developing[37,38] and accelerating DFT
calculations[39,40] or the development of potentials to model
chemical processes in solution.[41] Indeed, despite ML
methodologies have been applied to achiral nanomaterials,
there are no examples including chirality.[42] It is also worth
noting that the models applied to the search of new
materials with improved properties must meet two impor-
tant requirements: i) to be able to extrapolate values for the
extreme cases, where exceptional materials are, and ii) to
propose synthetically viable candidates.[43] Within this con-
text, we tackled the starting point question using DL
approaches, searching for exceptional responses. We have
focused on chiroptical properties of [6]helicene, one of the
most significant chiral motifs. These systems have been
proposed as promising candidates for chiroptical responses
and their applications in devices,[44–47] making their study
valuable beyond pure scientific curiosity and the pursuit of
fundamental knowledge. A key aspect of our approach is
the ability to predict chiroptical properties in [6]helicenes
more rapidly than traditional methods, such as DFT
simulations. This enables for the efficient estimation of
maximum R0j values (Rmax) across a large number of systems
(Figure 1c). With millions of data points available, robust
patterns and conclusions can be established. Therefore, we
aimed to determine if there is a limit to Rmax and, if so, what
it is. Thus, knowing the limit, we can either be driven to
explore these limits or, on the other hand, we can turn to
other chiral entities. Here we have designed and trained a
neural network able to estimate Rmax of halogenated
[6]helicenes with a minimal computational cost, affording
structure–property relationships for systems ranging from
mono- to hexadeca-halogenated [6]helicenes (Figure 1a).
Such results were then compared with the prediction of two
simpler and physically interpretable models. In these mod-
els, Rmax values can be deconvoluted as a linear combination
of coefficients depending on the relative position of 1 to 2
halogens on the structure. While the approach is less precise
than DFT calculations, the developed models allow a ration-
alization of the results by two main reasons: i) the neural
network can produce a big amount of data that additionally
fits with those obtained through calculations and ii) simpler
models give interpretable physical information of the
behaviour of the system. The former allows the creation of a
full database in which the selection of the better substitution
pattern is straightforward even for blind interpretative

Figure 1. a) [6]helicene structure. Geometry optimized at the M06/
TZVP level of calculation (PCM dichloromethane). b) 1D vector
notation examples employed for differently halogenated [6]helicenes. c)
Interplay between DFT calculations and Deep Learning (DL) based
training and prediction of chiroptical properties.
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models. Considering the latter, we have interestingly found
that better values correspond to certain structures, indicat-
ing that some positions and atoms are preferred. Under this
circumstance, a kind of parameterization can be made,
assigning different weights to each halogen for each position.
This situation resembles the concept of free energy linear
relationships developed from seminal studies by Hammet.[48]

That is, primary positions of the halogens establish a relative
weight, αi coefficients, using hydrogen atom substitution as a
reference. Vicinal substitutions are then considered as
secondary corrections, quantified in βi coefficients.

We have organized the discussion presenting sequential
training of models (up to hexahalogenated [6]helicenes) for
which parameterizations seem to be robust, allowing a
confident prediction about Rmax. For highly substituted
systems, the model has been statistically checked. The
models determine that the best response in terms of Rmax
can be found for some tetra-substituted [6]helicenes among
thousands of millions of potential structures. Our full
analysis suggests that 2,3,14,15-tetrabromo [6]helicene 1 is
the best candidate to achieve the highest rotatory strength.
It is worth noting that Rmax value for this compound has
been predicted, being outside of the training dataset. The
product has been synthesized and its chiroptical properties
were experimentally determined, being in excellent agree-
ment with the prediction.

Results and Discussion

Data Set and Model Training

The success of deep learning approaches relies on the
capabilities of neural networks to approximate functions
from several sample points. Thus, we decided to use data
samples as pairs <X, Y> , where X is the representation of
the molecule and Y is the property to be predicted (in this
case Rmax) for a given X. Since all the input molecules share
the same carbo[6]helicene skeleton, we decided to represent
the helicene as a 1D vector constituted by 16 elements
representing the substitution of the molecule (Figure 1b). To
this regard, the combination of a simple vector containing
the hydrogen position to be exchanged (1 to 16) and the
nature of the saturation atom (0=H, 1=F, 2=Cl, 3=Br,
and 4= I) is sufficient for a complete description of the
structure. Furthermore, all models were built to respect the
rotational symmetry of the molecule, being the position n
equivalent to the position 17-n, with n=1,…,16 (Figure 1b).

Despite the simplicity of the representation, all hidden
contributions of any geometrical distortions (bond length-
ening, resonance/inductive effects, etc) are codified in the
calculated rotatory strengths. For the training, examples
dealing only with the P configuration in the helix were
selected. By symmetry, the conclusions of this study can be
applied to the opposite M helical configuration. At this
point, it is worth noting that R0j values can be positive and
negative and we have analysed both situations independ-
ently. The model is then trained to fit Y for X, and to make
a meaningful estimation of Y for a given X. To this end, it is

desirable to train the neural network with the most diverse
and accurate available data. Hereof, theoretical calculations
of a randomly selected family of [6]helicenes provided the
dataset, including molecules with low and high Rmax
values.[39,49] It should also be noted that all the results are
indispensable in every machine learning protocol.[50,51]

Although neural networks are suitable regressors to
capture complex non-linear relations between input molec-
ular representations and target magnitudes, they are black-
box models that suffer from a lack of interpretability.
Therefore, we decided to accompany this approach with the
1- and 2-body models, two simpler alternatives where the
interpretation of the underlying physics is more easily
achieved. In the simplest 1-body model, the Rmax of a
molecule can be obtained directly by adding 16 αi parame-
ters to constant Ro. Those αi coefficients (red in Figure 2)
simply evaluate which substituents are in the [6]helicene and
in which position (e.g., in 1-bromo[6]helicene there is a
bromine in the position 1 and hydrogens in the rest). The 1-
body model was defined by a 1D vector, containing 5×8=40
free αi parameters, coming from the number of different
atoms (hydrogen plus four halogens) multiplied by the
number of non-equivalent positions (Figure 2a–3a and
Eq. 2). That model is extremely simple in concept but allows
for a very simple and understandable parametrization in
terms of a few αi coefficients. Furthermore, the 2-body
model is defined by a 5×5 matrix (Eq. 3) increasing the free
parameters up to 240. It considers the previous αi coefficient

Figure 2. Equations and parameters for (a) 1-body, (b) 2-body and (c)
N-body model where f is a neural network-based function constructed
to impose the symmetry.
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plus an additional contribution called βi accounting for
adjacent interactions between first neighbors (Figure 2b,
Eq. 3). From such local and neighboring parameters, general
conclusions can be drawn about the physics of the system.
Following this terminology, the neural network model could
be considered a many-body model, hereafter called N-body
model (Figure 2c, Eq. 4), where the contributions of single
positions are mixed by a multilayer perceptron (MLP) to
obtain the final output (Figure 3b). Obviously, the accuracy
of the N-body neural network model, with 9257 parameters,
is better than that of the 1- and 2-body models. However,
the possibility of easily parameterizing the response together
with the good correlations also obtained from simpler
models, makes them very attractive and powerful strategies.
All models have an adding constant (R0), which is set to the
mean rotatory strength of the whole dataset.

Our dataset was composed of 32 mono-halogenated
[6]helicenes and randomly selected families of di (150), tri
(200), tetra (200), penta (200) and hexa-halogenated
[6]helicenes (400), constituting 1182 examples in total. For
each molecule, the ECD spectra as a set of R0j values versus
absorption wavelengths were calculated using DFT methods
as implemented in Gaussian 09 (see SI).[52] All Rmax values
given in the text are in 10� 40 cgs units. Most calculated
positive Rmax values are around 400–700 with minor subsets
with examples presenting lower (100–300) and higher (800–
900) ones (Figure 4d). Negative Rmax values present a mean
absolute value of � 250 (R0) with a very minor subset beyond
� 600. Owing to this different behaviour we analysed the two

scenarios independently. The dataset was then split into
80% of the molecules for training and 20% for testing. The
robustness of the predictive models was tested by means of
a 10-times repeated random sub-sampling validation. All the
models were implemented and trained using TensorFlow.[53]

A detailed explanation of the models, including the
architecture of the neural network, the optimization of
hyperparameters, and the training process, is provided in
Section 2 of the Supporting Information. All scripts used for
training the models, along with the complete dataset, are
available in the repository https://github.com/alfonsogijon/
Helicenes NNs. The prediction of Rmax is treated as a
regression task, and we employed evaluation metrics such as
Mean Absolute Error (MAE), Mean Absolute Percentage
(MAPE), Mean Squared Error (MSE) and coefficient of
determination R2, to assess the performance of the proposed
methods.[54]

Case 1. Positive Rmax values for tetrahalogenated (P)-[6]helicenes

The number of potential tetrahalogenated [6]helicenes is
232960, a number big enough to evaluate the feasibility of
the DL approach. A set of 582 individual DFT calculations
was used as training and test dataset. Figure 4 shows the
correlation results using the three models, expanding from
very different Rmax values. The correlation improves with the
number of bodies together with a decrease of data
dispersion. In this sense, the N-body model also presents a
reasonable MAE of 17 and 30 10� 40 cgs for the train and test
datasets, respectively (Figure 4c, Table S1). The MAE
remains similar independently of the substitution degree
which also evidences the reliability of the model (Figure S7).
With the confidence that the model is suitable at this level
of substitution, we then estimated the rest of the members
of the tetrahalogenated family (Figure 4d). The prediction
yielded an Rmax distribution very similar to that obtained
with the pure DFT dataset (Figure 4d, orange), spanning
mainly from 200 to 800. Remarkably, the DFT-calculated
Rmax value for the parent [6]helicene is 698 and the predicted
one 696. These results suggest that the N-body model is
getting the underlying physics of the system. To achieve a
better understanding of the origin of the Rmax values, we
analysed derivatives with Rmax>800, finding a substantial
preference (between 650 and 750 possibilities) when bro-
mine and iodine atoms (Figure 4e, green and red bars
respectively) are placed in the 2,3,14 and 15 positions. This
intriguing preference for some positions and specific halo-
gens could be rationalized simplifying the model and
invoking a kind of parameterization. That is, the Rmax value
could be obtained by simple addition of individual contribu-
tions of substituents (αi) to an initial R0 value (Figure 2). Not
surprisingly, the use of the 1-body approach and the original
N-body simulation look similar (Figure 4d, blue and red),
pointing out that the position, halogen, and Rmax value are in
fact closely related in an apparently systematic way. Thus,
the extracted parameterization data (See Table 1) are
relevant for rationalizing the previous findings obtained at
the level of the N-body model. Hydrogen substitution by aFigure 3. Process diagram of a) 1-body and b) N-body model.
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halogen generally disfavors the maximum Rmax value except
in the 2,3,14 and 15 positions when a bromine or iodine
atom is placed. Nevertheless, spatially close 1,4,13 and 16
positions are compellingly highly disfavoring. In any case, 1-
body simulations must be only used to look for tendencies
owing to the predicted Rmax values are systematically higher
than DFT ones. In addition, it is worth noting that the model
is able to extrapolate values beyond those used in the
training data set, which is of critical importance for our

purpose. In this sense, 1-Body model showed 15 privileged
candidates for high Rmax values (878 – 914) (Table S12), all
of them possessing bromine and iodine atoms in the 2,3,14
and 15 positions. Their DFT Rmax values were then
calculated and it is especially relevant the case of 2,3,14,15-
tetrabromo [6]helicene 1 (Figure 5), with a DFT-calculated
Rmax value of 942, astonishing for a small molecule.

Differences between 1- and N-body simulations probably
arise from the inability of the simplest model to describe
secondary interactions between bulky halogens placed in
contiguous positions. Thus, we built an improved 2-body
model including such contributions, quantified in βi (Fig-
ure 4a-b). The primary parameterization table (Table S3)
remains similar to the previous one and secondary contribu-
tions correct the initial values using a new 5x5 matrix for
each position (Tables S4–S11). A close inspection of the
secondary corrections reveals that very few combinations
can increase Rmax because the global value is controlled by
the primary parameterization. General trends show again
that hydrogen atoms are the most efficient substituents for
high Rmax values, except for 2,3,14 and 15 positions in which
bromine and iodine atoms are the best ones. An increase in
the number of halogens is always detrimental to achieve
high R values.

Figure 4. Correlation between model-predicted (y axis) vs DFT-calculated (x axis) rotational strength values (R, 10� 40 cgs units) for halo[6]helicenes
up to 4 halogen atoms (N=582 [6]helicenes) employing a) 1-body, b) 2-body, c) N-body models. The statistical parameters of the models can be
found in Table S1. d) Distributions of positive Rmax obtained from DFT, 1-, 2-, and N-body models for tetrahalogenated[6]helicenes. e) Location of
halogens in molecules with high Rmax from N-body model for tetrahalogenated[6]helicenes.

Table 1: αi coefficients for with the 1-body model

Position[a] H[b] F Cl Br[b] I[b]

1 35.66 -90.05 -81.33 -55.88 -7.11
2 -21.49 -52.21 6.91 42.68 41.32
3 -23.53 -25.70 4.88 25.39 26.16
4 28.73 6.98 -21.90 -26.65 -102.83
5 32.47 2.77 -49.25 -58.93 -96.61
6 16.09 -16.64 -27.80 -24.26 -62.44
7 14.41 -7.56 -29.08 -46.16 -73.10
8 6.89 -14.32 -23.95 -26.53 -35.49

[a] n position is equivalent to 17-n position (e.g. position 3 and
position 14). [b] Green shading corresponds to the most favouring
and red shading to the worst substitution. R0=508.89x10� 40 cgs units.
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Trying to rationalize the results from a photophysical
perspective, we analysed in more detail some prototypical
examples. Symmetric structures with two halogens (1,16-,
2,15-, 3,14-, … Figure S8) were calculated by DFT to find
any potential structure–property relationship. R0j is de-
scribed as the scalar product of the electric (μ0j) and
magnetic (m0j) transition dipole moments for a certain
transition, R0j=μ0jm0j= jμ0j j · jm0j j ·cosθ. The corresponding
parameters for dibrominated [6]helicenes and the parent
[6]helicene are presented in Table 2. As can be seen, the
best Rmax values come from an optimization of both jm0j j

and θ. The value of jm0j j is maximized when the transition
involves the extended helicene π-orbitals.[55] The visual-
ization of the transition magnetic dipole moment density
graphs employing the Multiwfn software package[56] dis-
played that the magnetic transition extends to the bromine
atoms for some favoured (2,15 and 3,14) positions, thus
creating a better electron circulation during the transition
(Figure 5b), and enhancing jm j and Rmax as a consequence.
A similar analysis can be done for the iodine substitution
(See Table S16). On the other hand, in compounds with
fluorine and chlorine substitution jm j is not improved and
the angle is also worse than the one in parent helicene
(Tables S13–S14). Consequently, such substitutions are

detrimental for exceptional Rmax values. In essence, the
privileged role of bromine and iodine in positions 2 and 3
can be rationalized on the basis of the increase of jm j and
cos θ values.[57]

Case 2. Positive Rmax values for hexahalogenated (P)-[6]helicenes

At this point, we tested a more complex case, the prediction
of the highest positive Rmax values for the hexahalogenated
[6]helicene family, increasing the number from 200,000 to
almost 19 million molecules. Here, the critical point is how
to train the new model at the same level as for the Case 1.
We used up to 1182 randomly selected molecules generated
using the Python random library (see Supporting Informa-
tion for details), and containing one to six halogens as
training examples.[58] We observed that with the new model
the predicted Rmax values for halogenated[6]helicenes (Fig-
ure 6c) were slightly smaller than in Case 1 owing to training
values for hexahalogenated [6]helicenes are, in general,
smaller. Such full data set presents a Rmean value of 508
(Figure 6d) with very few cases with Rmax beyond 800.

Then, 1- and 2-body (Figure 6a-b) models were created,
both presenting a reasonable correlation. This suggests that
a kind of parameterization is again present in the physics of
the system, presenting αi and βi coefficients for both cases
common main features (SI, Tables S2–S11 for Case 1 and
Tables S18–S27 for Case 2). Among them, it is worth
highlighting that the higher the substitution, the lower the
Rmax value. Furthermore, the 2-body model presented a
better correlation than in Case 1, which is reasonable since
the database now includes more examples of adjacently
substituted helicenes.

With the three models in hand, the Rmax value distribu-
tions for the total 1.64×107 hexahalogenated[6]helicenes
were predicted, providing quite similar distributions. The N-
body one is slightly narrower and properly fits the DFT Rmax
value distribution (Figure 6d). Again, the substitution in-
crease seems to be detrimental for high Rmax values, which is
in qualitative agreement with the underlying physics from
case 1. Additional substituents disfavour the electronic
circulation of the π conjugated system during the transition,
minimizing jm0j j values. If that assumption is correct, higher
substitution numbers from hepta- to hexadecahalogenated
[6]helicenes would always yield poorer chiroptical responses.
The model suggested good hexahalogenated [6]helicene
candidates (ca. 20) with high values of Rmax (>910)
(Table S28). All have bromine/iodine atoms in positions
2,3(14,15), supporting the conclusions from Case 1, and the
smallest fluorine/chlorine atoms in the furthest 8–9 positions
(Figure 6e and 7). All were evaluated by DFT (Table S28),
but neither resulted in Rmax values higher than the obtained
one for privileged compound 1.

Figure 5. a) Structure of 2,3,14,15-tetrabromo[6]helicene 1. b) Transi-
tion magnetic dipole moment density map for the best substitutions,
corresponding to (2,15� ) and (3,14� )dibromo [6]helicene.

Table 2: DFT-calculated parameters involved in the Rmax value for
dribrominated[6]helicenes

Bromine
position

1020 jμ j [a]

/ esu cm
1020 jm j [a]

/ erg G� 1
θ [a]/ ° cos θ [a] 1040Rmax

[a] /cgs units

1,16 447 3.59 68 0.37 606
2,15 473 3.98 62 0.47 866
3,14 564 4.42 70 0.34 847
4,13 563 3.91 75 0.26 541
5,12 652 3.74 78 0.21 506
6,11 515 3.20 68 0.37 611
7,10 596 2.90 70 0.34 569
8,9 542 2.49 64 0.44 569
[6]helicene 556 3.65 70 0.34 698

[a] Parameters with equal/better values than parent [6]helicene are
shown in bold.

Angewandte
ChemieResearch Article

Angew. Chem. Int. Ed. 2024, 63, e202409998 (6 of 11) © 2024 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH



Case 3. Positive Rmax values from hepta- to
hexadecahalogenated (P)-[6]helicenes

To check if the models developed in Case 2 remains valid
for hepta- to hexadecahalogenated [6]helicenes, we com-
puted 1000 randomly selected examples (100 samples each
family) and we compared the DFT values with the
predictions of the models. Figure 8a shows the DFT-

calculated Rmax values and those predicted by the N-body
model for the 100 heptahalogen[6]helicenes. Regarding
DFT examples, the decrease of Rmax value is clearly
consistent with the conclusions of cases 1 and 2 (Figur-
es S10–S19). 1-Body model, despite its simplicity, gives again
a reasonable agreement, catching the main feature of max-
imizing jm0j j value, which is essentially dependent of the
halogen position. In general, the 2-body model becomes
invalid (e.g. Figure S19) with higher halogenation levels and
even provides negative Rmax. This observation can be
reasoned as follows: the primary conclusion of the 2-body
model is that two adjacent halogens lead to a decrease in
Rmax, as quantified by the βi coefficients. When a model
based on this premise is applied to helicenes with more
neighboring halogens (resulting from increased substitu-
tion), it is consistent to observe much lower Rmax values. The
1-body model, which considers only the position of the
halogens, continues to provide accurate predictions. Finally,
N-Body model, although less interpretable, deals with such
multiple interactions owing to the nature of the model. It
remains valid, reporting suitable values for higher halogen-
ations degrees even being trained using only up to six
halogens.

If the mentioned distributions are considered representa-
tive and a Gaussian-type curve is assumed, an estimation of
the expected values beyond some critical number can be
done (Tables S29–S31). For example, the probability of
finding a heptahalogenated[6]helicene with a Rmax higher
than 1000 is 0.000379%, which means that despite being

Figure 6. Correlation between model-predicted (y axis) vs DFT-calculated (x axis) rotational strength (R, 10� 40 cgs units) values for halo[6]helicenes
up to 6 halogen atoms (N=1182 [6]helicenes) employing a) 1-body, b) 2-body, c) N-body models. The statistical parameters of the models can be
found in Table S17. d) Distributions of positive Rmax obtained from DFT, 1-, 2-, and N-body models for hexahalogenated[6]helicenes. e) Location of
halogens in molecules with high obtained from N-body model for hexahalogenated[6]helicenes.

Figure 7. a) Role of position and nature of the substitution in
[6]helicenes and b) Examples of derivatives with high, normal and low
Rmax values. Color code: iodine, violet; bromine, brown; chlorine, green;
fluorine, pale green.
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such small value, approximately 300 helicenes are statisti-
cally predicted. We then evaluated Rmax values for the entire
family of heptahalogenated [6]helicenes (9.4×107 molecules).
The maximum value obtained using the N-body model was
846, in line with previous findings. The relevant thing here is
that the N-body and 1-body predictions seem to remain
essentially valid for any kind of substitution.

For higher substitutions, the values in the initial 100
examples evaluated by the 1-body and N-body models and
DFT-calculated values show satisfactory fitting. Therefore, a
total of 106 examples of each family were evaluated using
the models to have a better description of the phenomena.

As the number of halogens increases, the Rmean value
diminishes (Figure 8b), hampering the existence of com-
pounds with exceptional Rmax values (Figure 8c). Based on
the previous reasoning, the expectation for Rmax values
beyond 1000 10� 40 cgs units is spurious and no candidates
with an Rmax above 1150 10� 40 cgs units are statistically
expected for any kind of substitution (Table S32). Basically,
almost no halogen substitution beyond four halogen atoms
in privileged positions allows a reinforcement of the optimal
rotatory strength of the system.

Case 4. Negative Rmax values from mono- to
hexadecahalogenated (P)-[6]helicenes

Negative Rmax values were also evaluated using a similar
approach to case 3, obtaining a reasonably good correlation
within the N-body model (Figure S21). The Rmean is smaller
than in the case of positive ones and very few examples with
Rmax values beyond -850 were predicted (Table S34). Its
DFT evaluation also supported the lower values. Once again
some positions are preferred (3,14- and 5,12� ), resulting
from an elongation of the helicene electron density to the
substituents and consequently the increase of the involved
momenta associated to an electronic circulation along the C2

axis of the [6]helicene core (Table S35 and Figure S22).
Again, the 106-element simulation for each substitution
degree show the Rmax values strongly diminish with the
substitution and no values around -900 can be stadistically
obtained (Figure S23). This case concludes that positive Rmax
values are higher than negative ones in absolute value for
the P-enantiomer.

Synthesis of selected examples with exceptional chiroptical
properties.

Although machine learning approaches are considered
valuable for exploring the extrema of desired properties, the
subsequent validation of the predictions is highly infrequent.
In our case, the verification was carried out and the most
outstanding candidate 1 was synthesized (See SI). In
addition, 2,15-bromo[6]helicene (2) also proposed as candi-
date by the models, was prepared for comparison.[59]

Structural assignment was carried out by usual NMR
techniques and by single crystal X-ray diffraction of suitable
crystals for compound 1.[60] The results obtained from the
refinement of the diffraction data confirmed the proposed
structure of the compound, revealing geometrical features
similar to those of unsubstituted [6]helicene (see Supporting
Information for details).[61]

We then studied the chiroptical properties, particularly
the ECD, which has not been reported for compound 2.
Experimental ones for compounds 1 and 2 are in excellent
agreement with the expected ones (Figure 9). Molar circular
dichroism for tetrabromo[6]helicene 1 (317 m–1cm–1) is high-
er than for the dibromo derivative (287 m–1cm–1), matching
as well their relative intensities. These values are higher
than the reported for parent [6]helicene (259 m–1cm–1).[6]

Figure 8. a) Distributions of positive Rmax obtained from DFT and N-
body model for heptahalogenated [6]helicenes, including mean (μ) and
standard deviation (σ). Predicted Rmax distributions (b) and evolution
of the largest Rmax values (c) using N-body model for [6]helicenes
ranging from hepta- to hexadeca- halosubstituted ones. Predictions
employing all possible molecules (solid line) and 106 selected
candidates of each family (dashed line). Error bars correspond to the
standard deviation.
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Overall, this final experimental work, validates the
accuracy of the predicting models, according to their
corresponding trainings. Thus, the reliability of the devel-
oped deep learning, turns it into a perfect tool on the rapid
elucidation of optimal synthetic targets in order to maximize
chiroptical properties.

Conclusion

Taking advantage of deep learning techniques, in this work
we have developed a neutral network to predict the Rmax
values of billions of halogenated [6]helicenes, from one to
the full hexadecahalogenated derivatives, with minimal
computation cost. We have built three different models with
increasing complexity (1-body, 2-body and N-body respec-
tively), whose predictions reasonably correspond with the
DFT-calculated values. Although the best correlation is
always obtained with the N-body model it is worth noting
that a parameterization of Rmax acquire evident physical
meaning when simpler 1- and 2-body models are used in
derivatives with up to six halogen atoms. It has also been
observed that increasing the number of halogens above four
promotes a diminishing of Rmax. More interestingly, we have
found a structure-properties relationship, as there are
favoured positions and halogen atoms that increase its value,
mainly bromine and iodine in 2,3 and 14,15 positions. An
exhaustive analysis of data has been done, considering both
positive and negative values of rotational strength, present-
ing these last lower values. Finally, the predictions have
been experimentally supported by the synthesis of the two
best candidates predicted by the network, confirming the
optimal ECD values in excellent agreement with the
predicted by the deep learning approach.
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